Skip to main content
Log in

Prolonged infusion of linezolid is associated with improved pharmacokinetic/pharmacodynamic (PK/PD) profiles in patients with external ventricular drains

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

We previously investigated the pharmacokinetic and pharmacodynamic (PK/PD) parameters of routine linezolid infusions (1 h) in patients with external ventricular drains (EVD). The aim of the study was to determine whether extended linezolid infusions (200 mg/h for 3 h) were more efficacious than short linezolid infusions (600 mg/h for 1 h).

Methods

We collected cerebrospinal fluid (CSF) and plasma samples from 10 patients who received linezolid infusions after cerebral hemorrhage surgery with EVDs. Linezolid concentrations were measured by high-performance liquid chromatography (HPLC). A Monte Carlo simulation was used to measure the probability of target attainments (PTA) and the PK/PD indexes at four minimum inhibitory concentrations (MIC).

Results

When the same dose (600 mg) was given as an extended infusion (3 h), linezolid reached its maximum concentrations in the plasma and CSF at 3.00 h and 4.40 h, respectively. The mean penetration of linezolid in CSF was 41.31%. Using the parameter of AUC0–24 h/MIC ≥ 100, the plasma PTA provided good coverage at > 90% when MIC was ≤ 1 μg/mL, while the values were 0 in CSF. Using the parameter %T (time) > MIC ≥ 85%, the PTA in both the plasma and CSF provided good coverage when MIC ≤ 2 μg/mL. Compared with routine infusions, prolonged infusion times (3 h) showed increased PTA of linezolid.

Conclusions

Prolonged infusion times increased the concentration of linezolid in the plasma, leading to improved therapeutic outcomes. However, this improvement did not exist in CSF. Lastly, the PK/PD indicator AUC/MIC ≥ 100 may be used to achieve improved outcomes in patients with critical infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Korinek AM, Baugnon T, Golmard JL, van Effenterre R, Coriat P, Puybasset L (2006) Risk factors for adult nosocomial meningitis after craniotomy role of antibiotic prophylaxis. Neurosurgery 59:126–133

    PubMed  Google Scholar 

  2. Lele AV, Hoefnagel AL, Schloemerkemper N, Wyler DA, Chaikittisilpa N, Vavilala MS, Naik BI, Williams JH, Venkat Raghavan L, Koerner IP (2017) Perioperative management of adult patients with external ventricular and lumbar drains: guidelines from the Society for Neuroscience in Anesthesiology and Critical Care. J Neurosurg Anesthesiol 29:191–210

    PubMed  Google Scholar 

  3. Zhang Y, Zhang J, Chen Y, Yu J, Cao G, Wu X, Chen M, Wu J, Zhao X (2017) Evaluation of meropenem penetration into cerebrospinal fluid in patients with meningitis after neurosurgery. World Neurosurg 98:525–531

    PubMed  Google Scholar 

  4. Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES Jr (2008) Ventriculostomy-related infections: a critical review of the literature. Neurosurgery 62:688–700

    PubMed  Google Scholar 

  5. Hagel S, Bruns T, Pletz MW, Engel C, Kalff R, Ewald C (2014) External ventricular drain infections: risk factors and outcome. Interdiscip Perspect Infect Dis 2014:708531

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Eymann R, Chehab S, Strowitzki M, Steudel WI, Kiefer M (2008) Clinical and economic consequences of antibiotic-impregnated cerebrospinal fluid shunt catheters. J Neurosurg Pediatr 1:444–450

    PubMed  Google Scholar 

  7. Lyke KE, Obasanjo OO, Williams MA, O'Brien M, Chotani R, Perl TM (2001) Ventriculitis complicating use of intraventricular catheters in adult neurosurgical patients. Clin Infect Dis 33:2028–2033

    CAS  PubMed  Google Scholar 

  8. Tunkel AR, Hasbun R, Bhimraj A, Byers K, Kaplan SL, Michael Scheld W, van de Beek D, Bleck TP, Garton HJ, Zunt JR (2017) 2017 Infectious Diseases Society of America’s clinical practice guidelines for healthcare-associated ventriculitis and meningitis. Clin Infect Dis 64:701–706

    CAS  Google Scholar 

  9. Chen K, Wu Y, Wang Q, Wang J, Li X, Zhao Z, Zhou J (2015) The methodology and pharmacokinetics study of intraventricular administration of vancomycin in patients with intracranial infections after craniotomy. J Crit Care 30(218):e211–e215

    Google Scholar 

  10. Lutsar I, Friedland IR (2000) Pharmacokinetics and pharmacodynamics of cephalosporins in cerebrospinal fluid. Clin Pharmacokinet 39:335–343

    CAS  PubMed  Google Scholar 

  11. Rageh AH, Atia NN, Abdel-Rahman HM (2018) Application of salting-out thin layer chromatography in computational prediction of minimum inhibitory concentration and blood-brain barrier penetration of some selected fluoroquinolones. J Pharm Biomed Anal 159:363–373

    CAS  PubMed  Google Scholar 

  12. Humphreys H, Jenks P, Wilson J, Weston V, Bayston R, Waterhouse C, Moore A, Healthcare Infection Society Working Party on Neurosurgical Infections (2017) Surveillance of infection associated with external ventricular drains: proposed methodology and results from a pilot study. J Hosp Infect 95:154–160

    CAS  PubMed  Google Scholar 

  13. Villani P, Regazzi MB, Marubbi F, Viale P, Pagani L, Cristini F, Cadeo B, Carosi G, Bergomi R (2002) Cerebrospinal fluid linezolid concentrations in postneurosurgical central nervous system infections. Antimicrob Agents Chemother 46:936–937

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zahedi Bialvaei A, Rahbar M, Yousefi M, Asgharzadeh M, Samadi Kafil H (2017) Linezolid: a promising option in the treatment of Gram-positives. J Antimicrob Chemother 72:354–364

    PubMed  Google Scholar 

  15. Tsuji Y, Hiraki Y, Matsumoto K, Mizoguchi A, Sadoh S, Kobayashi T, Sakamoto S, Morita K, Yukawa E, Kamimura H, Karube Y (2012) Evaluation of the pharmacokinetics of linezolid in an obese Japanese patient. Scand J Infect Dis 44:626–629

    CAS  PubMed  Google Scholar 

  16. Cunha BA (2006) Antimicrobial therapy of multidrug-resistant Streptococcus pneumoniae, vancomycin-resistant enterococci, and methicillin-resistant Staphylococcus aureus. Med Clin North Am 90:1165–1182

    CAS  PubMed  Google Scholar 

  17. Nukui Y, Hatakeyama S, Okamoto K, Yamamoto T, Hisaka A, Suzuki H, Yata N, Yotsuyanagi H, Moriya K (2013) High plasma linezolid concentration and impaired renal function affect development of linezolid-induced thrombocytopenia. J Antimicrob Chemother 68:2128–2133

    CAS  PubMed  Google Scholar 

  18. Ippolito JA, Kanyo ZF, Wang D, Franceschi FJ, Moore PB, Steitz TA, Duffy EM (2008) Crystal structure of the oxazolidinone antibiotic linezolid bound to the 50S ribosomal subunit. J Med Chem 51:3353–3356

    CAS  PubMed  Google Scholar 

  19. De Vriese AS, Coster RV, Smet J, Seneca S, Lovering A, Van Haute LL, Vanopdenbosch LJ, Martin JJ, Groote CC, Vandecasteele S, Boelaert JR (2006) Linezolid-induced inhibition of mitochondrial protein synthesis. Clin Infect Dis 42:1111–1117

    PubMed  Google Scholar 

  20. Barrasa H, Soraluce A, Isla A, Martín A, Maynar J, Canut A, Sánchez-Izquierdo JA, Rodríguez-Gascón A (2019) Pharmacokinetics of linezolid in critically ill patients on continuous renal replacement therapy: influence of residual renal function on PK/PD target attainment. J Crit Care 50:69–76

    CAS  PubMed  Google Scholar 

  21. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, Rybak MJ, Talan DA, Chambers HF (2011) Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin Infect Dis 52:e18–e55

    Google Scholar 

  22. Wunderink RG, Niederman MS, Kollef MH, Shorr AF, Kunkel MJ, Baruch A, McGee WT, Reisman A, Chastre J (2012) Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis 54:621–629

    CAS  PubMed  Google Scholar 

  23. Hashemian SMR, Farhadi T, Ganjparvar M (2018) Linezolid: a review of its properties, function, and use in critical care. Drug Des Devel Ther 12:1759–1767

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu X, Tang Y, Zhang X, Wu C, Kong L (2018) Pharmacokinetics and pharmacodynamics of linezolid in plasma/cerebrospinal fluid in patients with cerebral hemorrhage after lateral ventricular drainage by Monte Carlo simulation. Drug Des Devel Ther 12:1679–1684

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu LL, Zhou Q (2018) Optimal infusion rate in antimicrobial therapy explosion of evidence in the last five years. Infect Drug Resist 11:1105–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cai Y, Bai N, Liu X, Liang B, Wang J, Wang R (2015) Pharmacokinetic/pharmacodynamic research on three different infusion time regimens of linezolid in healthy Chinese volunteers. Int J Clin Pharmacol Ther 53:765–771

    CAS  PubMed  Google Scholar 

  27. Fernandes G, Salgado HRN, Santos JLD (2019) A critical review of HPLC-based analytical methods for quantification of linezolid. Crit Rev Anal Chem:1–16

  28. Craig WA (2003) Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin N Am 17:479–501

    Google Scholar 

  29. Rayner CR, Forrest A, Meagher AK, Birmingham MC, Schentag JJ (2003) Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet 42:1411–1423

    CAS  PubMed  Google Scholar 

  30. Andes D, van Ogtrop ML, Peng J, Craig WA (2002) In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob Agents Chemother 46:3484–3489

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Stalker DJ, Jungbluth GL (2003) Clinical pharmacokinetics of linezolid, a novel oxazolidinone antibacterial. Clin Pharmacokinet 42:1129–1140

    CAS  PubMed  Google Scholar 

  32. Di Paolo A, Malacarne P, Guidotti E, Danesi R, Del Tacca M (2010) Pharmacological issues of linezolid: an updated critical review. Clin Pharmacokinet 49:439–447

    PubMed  Google Scholar 

  33. Hiramatsu K, Aritaka N, Hanaki H, Kawasaki S, Hosoda Y, Hori S, Fukuchi Y, Kobayashi I (1997) Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350:1670–1673

    CAS  PubMed  Google Scholar 

  34. Smith TL, Pearson ML, Wilcox KR, Cruz C, Lancaster MV, Robinson-Dunn B, Tenover FC, Zervos MJ, Band JD, White E, Jarvis WR (1999) Emergence of vancomycin resistance in Staphylococcus aureus. Glycopeptide-Intermediate Staphylococcus aureus Working Group. N Engl J Med 340:493–501

    CAS  PubMed  Google Scholar 

  35. Colin P, Eleveld DJ, Jonckheere S, Van Bocxlaer J, De Waele J, Vermeulen A (2016) What about confidence intervals? A word of caution when interpreting PTA simulations. J Antimicrob Chemother 71:2502–2508

    CAS  PubMed  Google Scholar 

  36. Caffrey AR, Morrill HJ, Puzniak LA, Laplante KL (2014) Comparative effectiveness of linezolid and vancomycin among a national veterans affairs cohort with methicillin-resistant Staphylococcus aureus pneumonia. Pharmacotherapy 34:473–480

    CAS  PubMed  Google Scholar 

  37. Fu J, Ye X, Chen C, Chen S (2013) The efficacy and safety of linezolid and glycopeptides in the treatment of Staphylococcus aureus infections. PLoS One 8:e58240

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vardakas KZ, Kioumis I, Falagas ME (2009) Association of pharmacokinetic and pharmacodynamic aspects of linezolid with infection outcome. Curr Drug Metab 10:2–12

    CAS  PubMed  Google Scholar 

  39. Falagas ME, Vardakas KZ (2008) Benefit-risk assessment of linezolid for serious gram-positive bacterial infections. Drug Saf 31:753–768

    CAS  PubMed  Google Scholar 

  40. Luque S, Grau S, Alvarez-Lerma F, Ferrandez O, Campillo N, Horcajada JP, Basas M, Lipman J, Roberts JA (2014) Plasma and cerebrospinal fluid concentrations of linezolid in neurosurgical critically ill patients with proven or suspected central nervous system infections. Int J Antimicrob Agents 44:409–415

    CAS  PubMed  Google Scholar 

  41. Viaggi B, Di Paolo A, Danesi R, Polillo M, Ciofi L, Del Tacca M, Malacarne P (2011) Linezolid in the central nervous system: comparison between cerebrospinal fluid and plasma pharmacokinetics. Scand J Infect Dis 43:721–727

    CAS  PubMed  Google Scholar 

  42. Myrianthefs P, Markantonis SL, Vlachos K, Anagnostaki M, Boutzouka E, Panidis D, Baltopoulos G (2006) Serum and cerebrospinal fluid concentrations of linezolid in neurosurgical patients. Antimicrob Agents Chemother 50:3971–3976

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chant C, Leung A, Friedrich JO (2013) Optimal dosing of antibiotics in critically ill patients by using continuous/extended infusions: a systematic review and meta-analysis. Crit Care 17(6):R279

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the Research Innovation Program for College Graduates of Bengbu Medical College (Byycxz1833), Key Special Project of Translational Medicine Research of Bengbu Medical College (BYTM2019015), and Program of Study Abroad for the Excellent Youth Key Scholars of Education Department of Anhui Province of China (gxgwfx2019030).

Author information

Authors and Affiliations

Authors

Contributions

Wenjun Zhao and Lingti Kong contributed equally to this work. Wenjun Zhao, Lingti Kong, and Xiaofei Wu participated in research design, performed the research, and wrote the manuscript. Wenjun Zhao and Chenchen Wu conducted the experiment. All authors contributed towards critically revising the manuscript.

Corresponding author

Correspondence to Xiaofei Wu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

This experiment was approved by the Ethics Committee of the First Affiliated Hospital of Bengbu Medical College. This study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Kong, L., Wu, C. et al. Prolonged infusion of linezolid is associated with improved pharmacokinetic/pharmacodynamic (PK/PD) profiles in patients with external ventricular drains. Eur J Clin Pharmacol 77, 79–86 (2021). https://doi.org/10.1007/s00228-020-02978-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-020-02978-x

Keywords

Navigation