Impact of drugs on venous thromboembolism risk in surgical patients



This review focuses on the most common drugs administered to surgical patients during the perioperative period that affect the risk of venous thromboembolism (VTE).


Among analgesics, the risk of VTE is increased in patients treated with diclofenac, ibuprofen, and rofecoxib, but not naproxen, while metamizole can confer a protective effect. The relationship between sedatives and VTE has not been sufficiently studied. Tricyclic antidepressants, low-potency serotonin reuptake inhibitors, and antipsychotics have been associated with increased risk of VTE. The use of diuretics in the perioperative period is poorly researched; however, hyponatremia is considered a risk factor. Other factors that may influence the risk of VTE include bridging anticoagulation, allogeneic transfusion, and hemostatic management before surgery. Pharmacotherapy for HIV or cancer may also increase VTE risk.


Increased monitoring for VTE is therefore advisable in surgical patients and those receiving antipsychotics, antidepressants, diuretics, or analgesics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Boddi M, Peris A (2017) Deep vein thrombosis in intensive care. Adv Exp Med Biol 906:167–181

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Lau BD, Streiff MB, Hobson DB, Kraus PS, Shaffer DL, Popoola VO, Farrow NE, Efron DT, Haut ER (2016) Beneficial “halo effects” of surgical resident performance feedback. J Surg Res 205:179–185

    Article  PubMed  Google Scholar 

  3. 3.

    Hansrani V, Khanbhai M, McCollum C (2017) The prevention of venous thromboembolism in surgical patients. Adv Exp Med Biol 906:1–8

    PubMed  Google Scholar 

  4. 4.

    Boey JP, Gallus A (2016) Drug treatment of venous thromboembolism in the elderly. Drugs Aging 33:475–490

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Arnold DM, Anderson J, Kearon C (2009) Preoperative risk assessment for bleeding and thromboembolism. BMJ 339:b2299

    Article  PubMed  Google Scholar 

  6. 6.

    Gordon RJ, Lombard FW (2017) Perioperative venous thromboembolism: a review. Anesth Analg 125:403–412

    Article  PubMed  Google Scholar 

  7. 7.

    Wang KL, Chu PH, Lee CH, Pai PY, Lin PY, Shyu KG, Chang WT, Chiu KM, Huang CL, Lee CY, Lin YH, Wang CC, Yen HW, Yin WH, Yeh HI, Chiang CE, Lin SJ, Yeh SJ (2016) Management of Venous Thromboembolisms: part I. The Consensus for deep vein thrombosis. Acta Cardiol Sin 32:1–22

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Cushman M, Creager AM (2015) Improving awareness and outcomes related to venous thromboembolism. JAMA 314:1913–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Bertina RM (2001) Genetic approach to thrombophilia. Thromb Haemost 86:92–103

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Spencer FA, Emery C, Lessard D, Anderson F, Emani S, Aragam J, Becker RC, Goldberg RJ (2006) The Worcester venous thromboembolism study: a population-based study of the clinical epidemiology of venous thromboembolism. J Gen Intern Med 21:722–727

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Lowe GD (2003) Virchow's triad revisited: abnormal flow. Pathophysiol Haemost Thromb 33:455–457

    Article  PubMed  Google Scholar 

  12. 12.

    Chung I, Lip GY (2003) Virchow's triad revisited: blood constituents. Pathophysiol Haemost Thromb 33:449–454

    Article  PubMed  Google Scholar 

  13. 13.

    Blann AD (2003) How a damaged blood vessel wall contibutes to thrombosis and hypertenasion. Pathophysiol Haemost Thromb 33:445–448

    Article  PubMed  Google Scholar 

  14. 14.

    Bick RL, Kaplan H (1998) Syndromes of thrombosis and hypercoagulability: congenital and acquired causes of thrombosis. Med Clin North Am 82:409–458

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    McQueen K, Coonan T, Ottaway A, Dutton RP, Nuevo FR, Gathuya Z, Wilson IH (2015) Anesthesia and perioperative care. In: Essential surgery: disease control priorities, 3rd edn. The International Bank for Reconstruction and Development / The World Bank, Washington, pp 263–278

  16. 16.

    Hlinková E, Nemcová J, Balková M, Čutka M, Dzian A, Huľo E, Janík J, Ježová Ľ, Kolarovszki B, Miertová M, Mikolajčík A, Smolár M, Strelka Ľ, Mesárošová J, Vörösová G, Cuperová J, Mýtnik M, Daňová I, Korenčiaková K, Lepiešová M, Ovšonková A, Šinák I, Švrková I, Šulov M (2015) Multimediálna e-učebnica Ošetrovateľské postupy v špeciálnej chirurgii. Univerzita Komenského Bratislava, Jesseniova lekárska fakulta v Martine. Accessed 28 December 2018

  17. 17.

    Premuš Marušič A, Petrovič D, Mrhar A, Locatelli I (2017) Polypharmacotherapy and blood products as risk factors for venous thromboembolism in postsurgical patients: a case-control study. Int J Clin Pharm 39:416–423

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Ramsay MAE (2000) Acute postoperative pain management. Proc (Bayl Univ Med Cent) 13:244–247

    Article  CAS  Google Scholar 

  19. 19.

    Vane JR (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 231:232–235

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Ahmetaj-Shala B, Kirkby NS, Knowles R, Al'Yamani M, Mazi S, Wang Z, Tucker AT, Mackenzie L, Armstrong PC, Nüsing RM, Tomlinson JA, Warner TD, Leiper J, Mitchell JA (2015) Evidence that links loss of cyclooxygenase-2 with increased asymmetric dimethylarginine. Novel explanation of cardiovascular side effects associated with anti-inflammatory drugs. Circulation 131:633–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Patrono C (2016) Cardiovascular effects of cyclooxygenase-2 inhibitors: a mechanistic and clinical perspective. Br J Clin Pharmacol 82:957–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Chou SY, Dahhan A, Porush JG (1990) Renal actions of endothelin: interaction with prostacyclin. Am J Phys 259:F645–F652

    CAS  Google Scholar 

  23. 23.

    Oliver JA, Pinto J, Sciacca RR, Cannon PJ (1980) Increased renal secretion of norepinephrine and prostaglandin E2 during sodium depletion in the dog. J Clin Invest 66:748–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Scharschmidt LA, Dunn MJ (1983) Prostaglandin synthesis by rat glomerular mesangial cells in culture. Effects of angiotensin II and arginine vasopressin. J Clin Invest 71:1756–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Yared A, Kon V, Ichikawa I (1985) Mechanism of preservation of glomerular perfusion and filtration during acute extracellular fluid volume depletion. Importance of intrarenal vasopressin-prostaglandin interaction for protecting kidneys from constrictor action of vasopressin. J Clin Invest 75:1477–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Lamberts M, Lip GY, Hansen ML, Lindhardsen J, Olesen JB, Raunsø J, Olsen AM, Andersen PK, Gerds TA, Fosbøl EL, Torp-Pedersen C, Gislason GH (2014) Relation of nonsteroidal anti-inflammatory drugs to serious bleeding and thromboembolism risk in patients with atrial fibrillation receiving antithrombotic therapy: a nationwide cohort study. Ann Intern Med 161:690–698

    Article  PubMed  Google Scholar 

  27. 27.

    Lee T, Lu N, Felson DT, Choi HK, Dalal DS, Zhang Y, Dubreuil M (2016) Use of non-steroidal anti-inflammatory drugs correlates with the risk of venous thromboembolism in knee osteoarthritis patients: a UK population-based case-control study. Rheumatology (Oxford) 55:1099–1105

    Article  Google Scholar 

  28. 28.

    Bergendal A, Adami J, Bahmanyar S, Hedenmalm K, Lärfars G, Persson I, Sundström A, Kieler H (2013) Non-steroidal anti-inflammatory drugs and venous thromboembolism in women. Pharmacoepidemiol Drug Saf 22:658–666

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Goy J, Paikin J, Crowther M (2014) Rofecoxib does not appear to increase the risk of venous thromboembolism: a systematic review of the literature. Thromb Res 134:997–1003

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Ungprasert P, Srivali N, Wijarnpreecha K, Charoenpong P, Knight EL (2015) Non-steroidal anti-inflammatory drugs and risk of venous thromboembolism: a systematic review and meta-analysis. Rheumatology (Oxford) 54:736–742

    Article  CAS  Google Scholar 

  31. 31.

    Dorr VJ, Cook J (1996) Agranulocytosis and near fatal sepsis due to 'Mexican aspirin' (dipyrone). South Med J 89:612–614

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    van der Klauw MM, Goudsmit R, Halie MR, van't Veer MB, Herings RM, Wilson JH, Stricker BH (1999) A population-based case-cohort study of drug-associated agranulocytosis. Arch Intern Med 159:369–374

    Article  PubMed  Google Scholar 

  33. 33.

    Edwards JE, McQuay HJ (2002) Dipyrone and agranulocytosis: what is the risk? Lancet 360:1438

    Article  PubMed  Google Scholar 

  34. 34.

    Hinz B, Cheremina O, Bachmakov J, Renner B, Zolk O, Fromm MF, Brune K (2007) Dipyrone elicits substantial inhibition of peripheral cyclooxygenases in humans: new insights into the pharmacology of an old analgesic. FASEB J 21:2343–2351

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Lampl C, Likar R (2014) Metamizole (dipyrone): mode of action, drug-drug interactions, and risk of agranulocytosis. Schmerz 28:584–590

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Bozzo J, Escolar G, Hernández MR, Galán AM, Ordinas A (2001) Prohemorrhagic potential of dipyrone, ibuprofen, ketorolac, and aspirin: mechanisms associated with blood flow and erythrocyte deformability. J Cardiovasc Pharmacol 38:183–190

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Pierre SC, Schmidt R, Brenneis C, Michaelis M, Geisslinger G, Scholich K (2007) Inhibition of cyclooxygenases by dipyrone. Br J Pharmacol 151:494–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Reilly IA, FitzGerald GA (1987) Inhibition of thromboxane formation in vivo and ex vivo: implications for therapy with platelet inhibitory drugs. Blood 69:180–186

    CAS  PubMed  Google Scholar 

  39. 39.

    Schmitz A, Romann L, Kienbaum P, Pavlaković G, Werdehausen R, Hohlfeld T (2017) Dipyrone (metamizole) markedly interferes with platelet inhibition by aspirin in patients with acute and chronic pain: a case-control study. Eur J Anaesthesiol 34:288–296

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Wilczyński M, Wybraniec MT, Sanak M, Góral J, Mizia-Stec K (2018) Metamizole and platelet inhibition by aspirin following on-pump coronary artery bypass grafting. J Cardiothorac Vasc Anesth 32:178–186

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Zimmermann N, Gams E, Hohlfeld T (2008) Aspirin in coronary artery bypass surgery: new aspects of and alternatives for an old antithrombotic agent. Eur J Cardiothorac Surg 34:93–108

    Article  PubMed  Google Scholar 

  42. 42.

    Konijnenbelt-Peters J, van der Heijden C, Ekhart C, Bos J, Bruhn J, Kramers (2017) Metamizole (dipyrone) as an alternative agent in postoperative analgesia in patients with contraindications for nonsteroidal anti-inflammatory drugs. Pain Pract 17:402–408

    Article  PubMed  Google Scholar 

  43. 43.

    Wildpaner D, Flueckiger B, Schmid UD, Weishaupt D, Theiler R (2015) Can high dose metamizol medication contribute to postsurgical hemorrhage: a case report. OJMN 5:53–58

    Article  Google Scholar 

  44. 44.

    Theiler R, Dudler J (2013) Drug therapy of pain: reason overwhelmed by emotion? Revue Med Suisse 9:1846–1853

    CAS  Google Scholar 

  45. 45.

    Oliveri L, Jerzewski K, Kulik A (2014) Black box warning: is ketorolac safe for use after cardiac surgery? J Cardiothorac Vasc Anesth 28:274–279

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Howard ML, Warhurst RD, Sheehan C (2016) Safety of continuous infusion ketorolac in postoperative coronary artery bypass graft surgery patients. Pharmacy (Basel) 4:E22

    Article  Google Scholar 

  47. 47.

    Gupta A, Lee LK, Rao S, Aancha S, Dadachanji C, Voralu K (2014) Retrospective pharmacoeconomic analysis of perioperative use of intraveneous acetaminophen. Austin J Anesthesia and Analgesia 2:1020

    Google Scholar 

  48. 48.

    Oscier CD, Milner QJ (2009) Peri-operative use of paracetamol. Anaesthesia 64:65–72

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Koh W, Nguyen KP, Jahr JS (2015) Intravenous non-opioid analgesia for peri- and postoperative pain management: a scientific review of intravenous acetaminophen and ibuprofen. Korean J Anesthesiol 68:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Smith HS (2011) Perioperative intravenous acetaminophen and NSAIDs. Pain Med 12:961–981

    Article  PubMed  Google Scholar 

  51. 51.

    Gould MK, Garcia DA, Wren SM, Karanicolas PJ, Arcelus JI, Heit JA, Samama CM (2012) Prevention of VTE in nonorthopedic surgical patients: antithrombotic therapy and prevention of thrombosis, 9th edn: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141:e227S–e277S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Lee CW, Muo CH, Liang JA, Sung FC, Kao CH, Yeh JJ (2015) Pulmonary embolism is associated with current morphine treatment in patients with deep vein thrombosis. Clin Respir J 9:233–237

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Shapiro BA, Warren J, Egol AB (1995) Practice parameters for systemic intravenous analgesia and sedation for adult patients in the intensive care unit: an executive summary. Crit Care Med 23:1596–1600

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Wu CS, Chang CM, Chen CY, Wu EC, Wu KY, Liang HY, Chao YL, Chung WS, Tsai HJ (2013) Association between antidepressants and venous thromboembolism in Taiwan. J Clin Psychopharmacol 33:31–37

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Reddy KR, Chandramouli BA, Rao GS (2006) Acute venous thrombosis caused by lipid-free propofol. Anaesthesia 61:300–301

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    Waheed MA, Oud L (2014) Acute pulmonary edema associated with propofol: an unusual complication. West J Emerg Med 15:845–848

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Adelborg K, Sundbøll J, Videbech P, Grove EL (2017) The risk of thromboembolism in users of antidepressants and antipsychotics. Adv Exp Med Biol 906:351–361

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Zbytovská J, Gallusová J, Vidlářová L, Procházková K, Šimek J, Štěpánek F (2017) Physical compatibility of propofol-sufentanil mixtures. Anesth Analg 124:776–781

    Article  CAS  PubMed  Google Scholar 

  59. 59.

    Masaki Y, Tanaka M, Nishikawa T (2003) Physicochemical compatibility of propofol-lidocaine mixture. Anesth Analg 97:1646–1651

    Article  CAS  PubMed  Google Scholar 

  60. 60.

    Faust AC, Sutton SE (2015) Dexmedetomidine-associated fever in the intensive care unit. Ther Adv Drug Saf 6:234–237

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Cheng H, Li Z, Young N, Boyd D, Atkins Z, Ji F, Liu H (2016) The effect of dexmedetomidine on outcomes of cardiac surgery in elderly patients. J Cardiothorac Vasc Anesth 30:1502–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Wu CS, Lin CC, Chang CM, Wu KY, Liang HY, Huang YW, Tsai HJ (2013) Antipsychotic treatment and the occurrence of venous thromboembolism: a 10-year nationwide registry study. J Clin Psychiatry 74:918–924

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    Jick SS, Li L (2008) Antidepressant drug use and risk of venous thromboembolism. Pharmacotherapy 28:144–150

    Article  CAS  PubMed  Google Scholar 

  64. 64.

    Parkin L, Balkwill A, Sweetland S, Reeves GK, Green J, Beral V; Million Women Study (2017) Collaborators. Antidepressants, depression, and venous thromboembolism risk: large prospective study of UK women. J Am Heart Assoc 6

  65. 65.

    Shulman M, Njoku IJ, Manu P (2013) Thrombotic complications of treatment with antipsychotic drugs. Minerva Med 104:175–184

    CAS  PubMed  Google Scholar 

  66. 66.

    Lacut K, Le Gal G, Couturaud F, Cornily G, Leroyer C, Mottier D, Oger E (2007) Association between antipsychotic drugs, antidepressant drugs and venous thromboembolism: results from EDITH case-control study. Fundam Clin Pharmacol 21:643–650

    Article  CAS  PubMed  Google Scholar 

  67. 67.

    Conti V, Venegoni M, Cocci A, Fortino I, Lora A, Barbui C (2015) Antipsychotic drug exposure and risk of pulmonary embolism: a population-based, nested case-control study. BMC Psychiatry 15:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Ferraris A, Szmulewicz AG, Vazquez FJ, Vollmer WM, Angriman F (2017) Antipsychotic use among adult outpatients and venous thromboembolic disease: a retrospective cohort study. J Clin Psychopharmacol 37:405–411

    Article  PubMed  Google Scholar 

  69. 69.

    Wang MT, Liou JT, Huang YW, Lin CW, Wu GJ, Chu CL, Yeh CB, Wang YH (2016) Use of antipsychotics and risk of venous thromboembolism in postmenopausal women. A population-based nested case-control study. Thromb Haemost 115:1209–1219

    Article  PubMed  Google Scholar 

  70. 70.

    Rose BD (1991) Diuretics. Kidney Int 39:336

    Article  CAS  PubMed  Google Scholar 

  71. 71.

    Hropot M, Fowler N, Karlmark B, Giebisch G (1985) Tubular action of diuretics: distal effects on electrolyte transport and acidification. Kidney Int 28:477–489

    Article  CAS  PubMed  Google Scholar 

  72. 72.

    Schartum-Hansen H, Løland KH, Svingen GF, Seifert R, Pedersen ER, Nordrehaug JE, Bleie Ø, Ebbing M, Berge C, Nilsen DW, Nygård O (2015) Use of loop diuretics is associated with increased mortality in patients with suspected coronary artery disease, but without systolic heart failure or renal impairment: an observational study using propensity score matching. PLoS One 10:e0124611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Whelton A (1999) Nephrotoxicity of nonsteroidal anti-inflammatory drugs: physiologic foundations and clinical implications. Am J Med 106:13S–24S

    Article  CAS  PubMed  Google Scholar 

  74. 74.

    Power NE, Maschino AC, Savage C, Silberstein JL, Thorner D, Tarin T, Wong A, Touijer KA, Russo P, Coleman JA (2012) Intraoperative mannitol use does not improve long-term renal function outcomes after minimally invasive partial nephrectomy. Urology 79:821–825

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Fletcher JJ, Kade AM, Sheehan KM, Wilson TJ (2014) A case-cohort study with propensity score matching to evaluate the effects of mannitol on venous thromboembolism. J Clin Neurosci 21:1323–1328

    Article  CAS  PubMed  Google Scholar 

  76. 76.

    Mo XR, Luo XJ, Li CP, Pan XF, Zhou LL (2015) Effect of mannitol injection by intravenous catheter on ear vein endothelial cell apoptosis and venous thrombus in rabbits. Eur Rev Med Pharmacol Sci 19:491–497

    PubMed  Google Scholar 

  77. 77.

    Jung SY, Jeong SH, Dhong ES, Han SK, Kim WK (2017) Venous thrombosis in free flap reconstruction following intravenous administration of furosemide: a case report. Arch Hand Microsurg 22:288–292

    Article  Google Scholar 

  78. 78.

    Westhoff CL, Pike MC, Cremers S, Eisenberger A, Thomassen S, Rosing J (2017) Endogenous thrombin potential changes during the first cycle of oral contraceptive use. Contraception 95:456–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Larivée N, Suissa S, Eberg M, Joseph L, Eisenberg MJ, Abenhaim HA, Filion KB (2016) Drospirenone-containing combined oral contraceptives and the risk of arterial thrombosis: a population-based nested case-control study. BJOG 124:1672–1679

    Article  CAS  PubMed  Google Scholar 

  80. 80.

    van Vlijmen EF, Wiewel-Verschueren S, Monster TB, Meijer K (2016) Combined oral contraceptives, thrombophilia and the risk of venous thromboembolism: a systematic review and meta-analysis. J Thromb Haemost 14:1393–1403

    Article  PubMed  Google Scholar 

  81. 81.

    Larivée N, Suissa S, Coulombe J, Tagalakis V, Filion KB (2017) Drospirenone-containing oral contraceptive pills and the risk of venous thromboembolism: an assessment of risk in first-time users and restarters. Drug Saf 40:583–596

    Article  CAS  PubMed  Google Scholar 

  82. 82.

    Desciak MC, Martin DE (2011) Perioperative pulmonary embolism: diagnosis and anesthetic management. J Clin Anesth 23:153–165

    Article  PubMed  Google Scholar 

  83. 83.

    Miller J, Chan BK, Nelson HD (2002) Postmenopausal estrogen replacement and risk for venous thromboembolism: a systematic review and meta-analysis for the U.S. Preventive Services Task Force. Ann Intern Med 136:680–690

    Article  CAS  PubMed  Google Scholar 

  84. 84.

    Grady D, Wenger NK, Herrington D, Khan S, Furberg C, Hunninghake D, Vittinghoff E, Hulley S (2000) Postmenopausal hormone therapy increases risk for venous thromboembolic disease. The Heart and Estrogen/progestin Replacement Study. Ann Intern Med 132:689–696

    Article  CAS  Google Scholar 

  85. 85.

    Douketis J (2005) Hormone replacement therapy and risk for venous thromboembolism: what's new and how do these findings influence clinical practice? Curr Opin Hematol 12:395–400

    CAS  PubMed  Google Scholar 

  86. 86.

    Hurbanek JG, Jaffer AK, Morra N, Karafa M, Brotman DJ (2004) Postmenopausal hormone replacement and venous thromboembolism following hip and knee arthroplasty. Thromb Haemost 92:337–343

    Article  CAS  PubMed  Google Scholar 

  87. 87.

    Martinez C, Suissa S, Rietbrock S, Katholing A, B F, Cohen AT, Handelsman DJ (2016) Testosterone treatment and risk of venous thromboembolism: population based case-control study. BMJ i5968:355

    Google Scholar 

  88. 88.

    Argalious MY, You J, Mao G, Ramos D, Khanna S, Maheshwari K, Trombetta C (2017) Association of testosterone replacement therapy and the incidence of a composite of postoperative in-hospital mortality and cardiovascular events in men undergoing noncardiac surgery. Anesthesiology 127:457–465

    Article  CAS  PubMed  Google Scholar 

  89. 89.

    Rechenmacher SJ, Fang JC (2015) Bridging anticoagulation: primum non nocere. J Am Coll Cardiol 66:1392–1403

    Article  CAS  PubMed  Google Scholar 

  90. 90.

    Bromley A, Plitt A (2018) A review of the role of non-vitamin K oral anticoagulants in the acute and long-term treatment of venous thromboembolism. Cardiol Ther 7:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Franchini M (2007) The use of desmopressin as a hemostatic agent: a concise review. Am J Hematol 82:731–735

    Article  CAS  PubMed  Google Scholar 

  92. 92.

    Moutzouris JP, Ng AC, Chow V, Chung T, Curnow J, Kritharides L (2013) Acute pulmonary embolism during warfarin therapy and long-term risk of recurrent fatal pulmonary embolism. Thromb Haemost 110:523–533

    Article  CAS  PubMed  Google Scholar 

  93. 93.

    Lutsey PL, Norby FL, Zakai NA, MacLehose RF, Chen LY, Shah S, Datta YH, Alonso A (2018) Oral anticoagulation therapy and subsequent risk of venous thromboembolism in atrial fibrillation patients. Curr Med Res Opin 1–20

  94. 94.

    Kahn MR, Amara RS, Halperin JL (2016) Risks to reversal of anticoagulation: the cardiology perspective. Am J Gastroenterol 3:22–28

    Article  CAS  Google Scholar 

  95. 95.

    Douketis JD, Spyropoulos AC, Kaatz S, Becker RC, Caprini JA, Dunn AS, Garcia DA, Jacobson A, Jaffer AK, Kong DF, Schulman S, Turpie AG, Hasselblad V, Ortel TL, Investigators BRIDGE (2015) Perioperative bridging anticoagulation in patients with atrial fibrillation. N Engl J Med 373:823–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Kaatz S, Paje D (2011) Update in bridging anticoagulation. J Thromb Thrombolysis 31:259–264

    Article  CAS  PubMed  Google Scholar 

  97. 97.

    Spyropoulos AC, Turpie AG, Dunn AS, Kaatz S, Douketis J, Jacobson A, Petersen H, Investigators REGIMEN (2008) Perioperative bridging therapy with unfractionated heparin or low-molecular-weight heparin in patients with mechanical prosthetic heart valves on long-term oral anticoagulants (from the REGIMEN registry). Am J Cardiol 102:883–889

    Article  CAS  PubMed  Google Scholar 

  98. 98.

    Clark NP, Witt DM, Davies LE, Saito EM, McCool KH, Douketis JD, Metz KR, Delate T (2015) Bleeding, recurrent venous thromboembolism, and mortality risks during warfarin interruption for invasive procedures. JAMA Intern Med 175:1163–1168

    Article  PubMed  Google Scholar 

  99. 99.

    Kimmel SE, Sekeres M, Berlin JA, Ellison N (2002) Mortality and adverse events after protamine administration in patients undergoing cardiopulmonary bypass. Anesth Analg 94:1402–1408

    CAS  PubMed  Google Scholar 

  100. 100.

    Boer CH, Meesters MI, Milojevic M, Benedetto U, Bolliger D, von Heymann CH, Jeppsson A, Koster A, Osnabrugge RL, Ranucci M, Ravn HB, Vonk ABA, Wahba A, Pagano D (2017) EACTS/EACTA guidelines on patient blood management for adult cardiac surgery. J Cardiothorac Vasc Anesth 32:88–120

    Article  CAS  PubMed  Google Scholar 

  101. 101.

    Najafi M, Faraoni D (2014) Updates on coagulation management in cardiac surgery. J Tehran Heart Cent 9:99–103

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Rollins KE, Trim NL, Luddington RJ, Colah S, Klein A, Besser MW, Nair SK (2012) Coagulopathy associated with massive cell salvage transfusion following aortic surgery. Perfusion 27:30–33

    Article  CAS  PubMed  Google Scholar 

  103. 103.

    Kuppurao L, Wee M (2010) Perioperative cell salvage. Contin Educ Anaesth Crit Care Pain 10:104–108

    Article  Google Scholar 

  104. 104.

    Zheng J, Du L, Du G, Liu B (2013) Coagulopathy associated with cell salvage transfusion following cerebrovascular surgery. Pak J Med Sci 29:1459–1461

    Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Shen S, Zhang J, Wang W, Zheng J, Xie Y (2016) Impact of intra-operative cell salvage on blood coagulation in high-bleeding-risk patients undergoing cardiac surgery with cardiopulmonary bypass: a prospective randomized and controlled trial. J Transl Med 14:228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Ghazi L, Schwann TA, Engoren MC, Habib RH (2015) Role of blood transfusion product type and amount in deep vein thrombosis after cardiac surgery. Thromb Res 136:1204–1210

    Article  CAS  PubMed  Google Scholar 

  107. 107.

    Nielsen AW, Helm MC, Kindel T, Higgins R, Lak K, Helmen ZM, Gould JC (2018) Perioperative bleeding and blood transfusion are major risk factors for venous thromboembolism following bariatric surgery. Surg Endosc 32:2488–2495

    Article  PubMed  Google Scholar 

  108. 108.

    Goel R, Patel EU, Cushing MM, Frank SM, Ness PM, Takemoto CM, Vasovic LV, Sheth S, Nellis ME, Shaz B, Tobian AAR (2018) Association of perioperative red blood cell transfusions with venous thromboembolism in a North American registry. JAMA Surg 153:826–833

    Article  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Crescenzi G, Landoni G, Biondi-Zoccai G, Pappalardo F, Nuzzi M, Bignami E, Fochi O, Maj G, Calabrò MG, Ranucci M, Zangrillo A (2008) Desmopressin reduces transfusion needs after surgery: a meta-analysis of randomized clinical trials. Anesthesiology 109:1063–1076

    Article  CAS  PubMed  Google Scholar 

  110. 110.

    Ortmann E, Besser MW, Klein AA (2013) Antifibrinolytic agents in current anaesthetic practice. Br J Anaesth 111:549–563

    Article  CAS  PubMed  Google Scholar 

  111. 111.

    Gillette BP, DeSimone LJ, Trousdale RT, Pagnano MW, Sierra RJ (2013) Low risk of thromboembolic complications with tranexamic acid after primary total hip and knee arthroplasty. Clin Orthop Relat Res 471:150–154

    Article  PubMed  Google Scholar 

  112. 112.

    Adler Ma SC, Brindle W, Burton G, Gallacher S, Hong FC, Manelius I, Smith A, Ho W, Alston RP, Bhattacharya K (2011) Tranexamic acid is associated with less blood transfusion in off-pump coronary artery bypass graft surgery: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth 25:26–35

    Article  CAS  PubMed  Google Scholar 

  113. 113.

    Ker K, Edwards P, Perel P, Shakur H, Roberts I (2012) Effect of tranexamic acid on surgical bleeding: systematic review and cumulative meta-analysis. BMJ 344:e3054

  114. 114.

    Simmons J, Sikorski RA, Pittet JF (2015) Tranexamic acid: from trauma to routine perioperative use. Curr Opin Anaesthesiol 28:191–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Ozgönenel B, Rajpurkar M, Lusher JM (2007) How do you treat bleeding disorders with desmopressin? Postgrad Med J 83:159–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Pentimone F, Del Corso L (1991) Venous thrombosis of the lower limbs and pulmonary embolism after desmopressin: a coincidence or a pathogenetic role? Clin Ter 139:49–51

    CAS  PubMed  Google Scholar 

  117. 117.

    Albert SG, Salvato-Lechner V, Joist JH (1998) Venous thromboembolism and transient thrombocytopenia in a patient with diabetes insipidus treated with desmopressin acetate (DDAVP). Thromb Res 50:695–705

    Article  Google Scholar 

  118. 118.

    Armstrong EM, Bellone JM, Hornsby LB, Treadway S, Phillippe H (2014) Acquired thrombophilia. J Pharm Pract 27:234–242

    Article  PubMed  Google Scholar 

  119. 119.

    Sule AA, Pandit N, Handa P, Chadachan V, Tan E, Sum FN, Joyce EH, Chin TJ (2013) Risk of venous thromboembolism in patients infected with HIV: a cohort study. Int J Angiol 22:95–100

    Article  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Majluf-Cruz A, Silva-Estrada M, Sánchez-Barboza R, Montiel-Manzano G, Treviño-Pérez S, Santoscoy-Gómez M, de Chávez-Ochoa AR, Corona-de la Peña N, Nieto-Cisneros L (2004) Venous thrombosis among patients with AIDS. Clin Appl Thromb Hemost 10:19–25

    Article  PubMed  Google Scholar 

  121. 121.

    Sullivan PS, Dworkin MS, Jones JL, Hooper WC (2000) Epidemiology of thrombosis in HIV-infected individuals. The Adult/Adolescent Spectrum of HIV Disease Project. AIDS 14:321–324

    Article  CAS  PubMed  Google Scholar 

  122. 122.

    Hernandez RK, Sørensen HT, Pedersen L, Jacobsen J, Lash TL (2009) Tamoxifen treatment and risk of deep venous thrombosis and pulmonary embolism: a Danish population-based cohort study. Cancer 115:4442–4449

    Article  CAS  PubMed  Google Scholar 

  123. 123.

    Hussain T, Kneeshaw PJ (2012) Stopping tamoxifen peri-operatively for VTE risk reduction: a proposed management algorithm. Int J Surg 10:313–316

    Article  PubMed  Google Scholar 

  124. 124.

    Mirzabeigi MN, Nelson JA, Fischer JP, Kovach SJ, Serletti JM, Wu LC, Kanchwala S (2015) Tamoxifen (selective estrogen-receptor modulators) and aromatase inhibitors as potential perioperative thrombotic risk factors in free flap breast reconstruction. Plast Reconstr Surg 135:670e–679e

    Article  CAS  PubMed  Google Scholar 

  125. 125.

    Elice F, Rodeghiero F, Falanga A, Rickles FR (2009) Thrombosis associated with angiogenesis inhibitors. Best Pract Res Clin Haematol 22:115–128

    Article  CAS  PubMed  Google Scholar 

  126. 126.

    Lubezky N, Winograd E, Papoulas M, Lahat G, Shacham-Shmueli E, Geva R, Nakache R, Klausner J, Ben-Haim M (2013) Perioperative complications after neoadjuvant chemotherapy with and without bevacizumab for colorectal liver metastases. J Gastrointest Surg 17:527–532

    Article  PubMed  Google Scholar 

  127. 127.

    O'Donnell M, Weitz JI (2003) Thromboprophylaxis in surgical patients. Can J Surg 46:129–135

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Close V, Purohit M, Tanos M, Hunter S (2006) Should patients post-cardiac surgery be given low molecular weight heparin for deep vein thrombosis prophylaxis? Interact Cardiovasc Thorac Surg 5:624–629

    Article  PubMed  Google Scholar 

  129. 129.

    Tincani E, Crowther MA, Turrini F, Prisco D (2007) Prevention and treatment of venous thromboembolism in the elderly patient. Clin Interv Aging 2:237–246

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Akinwunmi F, Millen S (2012) Thromboprophylaxis after surgery. Trends in Urology & Men's Health 3:13–18

    Article  Google Scholar 

Download references


This work is supported by the Ministry of Health of the Czech Republic, grant nr. 15-33437A (R. Staffa). This publication is the result of the project implementation: "CENTER OF EXCELLENCE FOR RESEARCH IN PERSONALIZED THERAPY (CEVYPET)", ITMS: 26220120053 supported by the Operational Programme Research and Innovation funded by the ERDF.

Author information



Corresponding authors

Correspondence to Peter Kubatka or Ludovit Gaspar or Peter Kruzliak or Danijel Petrovič.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kovačič, A.P.M., Caprnda, M., Mrhar, A. et al. Impact of drugs on venous thromboembolism risk in surgical patients. Eur J Clin Pharmacol 75, 751–767 (2019).

Download citation


  • Venous thromboembolism
  • Analgesics
  • Diuretics
  • Antidepressants
  • Antipsychotics
  • Oral contraceptives
  • Surgery
  • Bridging anticoagulation
  • Transfusion
  • Thromboprophylaxis