Skip to main content

Role of metformin in overweight and obese people without diabetes: a systematic review and network meta-analysis

Abstract

Purpose

Our aim was to assess the efficacy of metformin for weight loss in overweight and obese people through a systematic review and network meta-analysis and to identify the most suitable dosage and intervention period for using metformin in adolescents and adults.

Methods

We searched databases for studies published by April 2018. A total of 34 trials (44 analyses) involving 8461 participants and 16 intervention arms were eligible. The study was registered with PROSPERO International prospective register of systematic reviews (CRD42017081053).

Results

Metformin was found to significantly decrease body mass index percentile (BMI) and had a tendency to decrease BMI (kg/m2) and weight (kg). Significant efficacy was observed in many subgroups. The metaregression may have identified the causes of heterogeneity as metformin dosage, control type, and intervention period. Network meta-analysis revealed that in adolescents, intervention with 2000 mg/day metformin ranked better than other interventions; however, 1000 mg/day metformin for 3 months may be most suitable for adolescents. For adults, metformin at doses of 3000 and 1000 mg/day ranked the highest, other than minimeal and lifestyle interventions; moreover, intervention with 3000 mg/day for 6 months and 1000 mg/day for 0.5 months may be suitable for adults.

Conclusion

When considering the efficacy of interventions for losing weight, metformin offers clear advantages for overweight and obese populations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Singh GK, Siahpush M, Hiatt RA, Timsina LR (2001) Dramatic increases in obesity and overweight prevalence and body mass index among ethnic-immigrant and social class groups in the United States, 1976–2008. J Community Health 36:94–110

    Article  Google Scholar 

  2. Reinehr T, de Sousa G, Toschke AM, Andler W (2006) Long-term follow-up of cardiovascular disease risk factors in children after an obesity intervention. Am J Clin Nutr 84:490–496

    CAS  Article  Google Scholar 

  3. Neuhouser ML, Aragaki AK, Prentice RL, Manson JE, Chlebowski R, Carty CL, Ochs-Balcom HM, Thomson CA, Caan BJ, Tinker LF, Urrutia RP, Knudtson J, Anderson GL (2015) Overweight, obesity, and postmenopausal invasive breast cancer risk: a secondary analysis of the women’s health initiative randomized clinical trials. JAMA Oncology 1:611–621

    Article  Google Scholar 

  4. Lakoski SG, Cushman M, Siscovick DS, Blumenthal RS, Palmas W, Burke G, Herrington DM (2011) The relationship between inflammation, obesity and risk for hypertension in the multi-ethnic study of atherosclerosis (MESA). J Hum Hypertens 25:73

    CAS  Article  Google Scholar 

  5. Mathieu P, Poirier P, Pibarot P, Lemieux I, Després JP (2009) Visceral obesity: the link among inflammation, hypertension, and cardiovascular disease. Hypertension 53:577–584

    CAS  Article  Google Scholar 

  6. Summerbell CD, Ashton V, Campbell KJ, Edmunds L, Kelly S, Waters E (2003) Interventions for treating obesity in children. Cochrane Database Syst Rev 3:CD001872

    Google Scholar 

  7. Straznicky N, Grassi G, Esler M, Lambert G, Dixon J, Lambert E, Jordan J, Schlaich M, European Society of Hypertension Working Group on Obesity (2010) European society of hypertension working group on obesity antihypertensive effects of weight loss: myth or reality? J Hypertens 28:637–643

    CAS  Article  Google Scholar 

  8. Aucott L, Rothnie H, McIntyre L, Thapa M, Waweru C, Gray D (2009) Long-term weight loss from lifestyle intervention benefits blood pressure?: a systematic review. Hypertension 54:756–762

    CAS  Article  Google Scholar 

  9. Markowicz-Piasecka M, Sikora J, Szydłowska A, Skupień A, Mikiciuk-Olasik E, Huttunen KM (2017) Metformin–a future therapy for neurodegenerative diseases. Pharm Res 34:2614–2627

    CAS  Article  Google Scholar 

  10. Jin HE, Hong SS, Choi MK, Maeng HJ, Kim DD, Chung SJ, Shim CK (2009) Reduced antidiabetic effect of metformin and down-regulation of hepatic Oct1 in rats with ethynylestradiol-induced cholestasis. Pharm Res 26:549–559

    CAS  Article  Google Scholar 

  11. Zordoky BN, Bark D, Soltys CL, Sung MM, Dyck JR (2014) The anti-proliferative effect of metformin in triple-negative MDA-MB-231 breast cancer cells is highly dependent on glucose concentration: implications for cancer therapy and prevention. Biochim Biophys Acta Gen Subj 1840:1943–1957

    CAS  Article  Google Scholar 

  12. August GP, Caprio S, Fennoy I, Freemark M, Kaufman FR, Lustig RH, Silverstein JH, Speiser PW, Styne DM, Montori VM (2008) Prevention and treatment of pediatric obesity: an endocrine society clinical practice guideline based on expert opinion. J Clin Endocrinol Metab 93:4576–4599

    CAS  Article  Google Scholar 

  13. Kirpichnikov D, McFarlane SI, Sowers JR (2002) Metformin: an update. Ann Intern Med 137:25–33

    CAS  Article  Google Scholar 

  14. Caprio S (2008) Treatment of impaired glucose tolerance in childhood. Nat Clin Pract Endocrinol Metab 4:320–321

    Article  Google Scholar 

  15. Hearnshaw C, Matyka K (2010) Managing childhood obesity: when lifestyle change is not enough. Diabetes Obes Metab 12:947–957

    CAS  Article  Google Scholar 

  16. Salanti G (2012) Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Res Synth Methods 3:80–97

    Article  Google Scholar 

  17. Levri KM, Slaymaker E, Last A, Yeh J, Ference J, D’Amico F, Wilson SA (2005) Metformin as treatment for overweight and obese adults: a systematic review. Ann Fam Med 3:457–461

    Article  Google Scholar 

  18. Park MH, Kinra S, Ward KJ, White B, Viner RM (2009) Metformin for obesity in children and adolescents: a systematic review. Diabetes Care 32:1743–1745

    CAS  Article  Google Scholar 

  19. Björkhem-Bergman L, Asplund AB, Lindh JD (2011) Metformin for weight reduction in non-diabetic patients on antipsychotic drugs: a systematic review and meta-analysis. J Psychopharmacol 25:299–305

    Article  Google Scholar 

  20. McDonagh MS, Selph S, Ozpinar A, Foley C (2014) Systematic review of the benefits and risks of metformin in treating obesity in children aged 18 years and younger. JAMA Pediatr 168:178–184

    Article  Google Scholar 

  21. Bouza C, López-Cuadrado T, Gutierrez-Torres LF, Amate J (2012) Efficacy and safety of metformin for treatment of overweight and obesity in adolescents: an updated systematic review and meta-analysis. Obes Facts 5:753–765

    CAS  Article  Google Scholar 

  22. PROSPERO, Centre for Reviews and Dissemination (2009) Systematic reviews: CRD’s guidance for undertaking reviews in health care (internet). University of York, York. (http://www.cdr.york.ac.uk/prospero)

  23. Moher D, Liberati A, Tetzlaff J, Altman DG, Prisma Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097

    Article  Google Scholar 

  24. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP, Mulrow C, Catalá-López F, Gøtzsche PC, Dickersin K, Boutron I, Altman DG, Moher D (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162:777–784

    Article  Google Scholar 

  25. Higgins JP, Green S (2011) Cochrane handbook for systematic reviews of interventions, vol 4. Wiley, Hoboken

    Google Scholar 

  26. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M (2003) Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 8:3713–3721

    Google Scholar 

  27. Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G, Ades AE (2013) Evidence synthesis for decision making 4: inconsistency in networks of evidence based on randomized controlled trials. Med Decis Mak 33:641–656

    Article  Google Scholar 

  28. Mills EJ, Thorlund K, Ioannidis JP (2013) Demystifying trial networks and network meta-analysis. BMJ 346:f2914

    Article  Google Scholar 

  29. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557

    Article  Google Scholar 

  30. Higgins JP, Green S (2011) Cochrane handbook for systematic reviews of interventions version 5.1. 0. The cochrane collaboration, 5

  31. Salanti G, Higgins JP, Ades AE, Ioannidis JP (2008) Evaluation of networks of randomized trials. Stat Methods Med Res 17:279–301

    Article  Google Scholar 

  32. Lu G, Ades AE (2004) Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med 23:3105–3124

    CAS  Article  Google Scholar 

  33. Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G (2013) Graphical tools for network meta-analysis in STATA. PLoS One 8:e76654

    CAS  Article  Google Scholar 

  34. Salanti G, Ades AE, Ioannidis JP (2011) Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 64:163–171

    Article  Google Scholar 

  35. Feng F, Zhang Y, Hou J, Cai J, Jiang Q, Li X, Zhao Q, Li BA (2018) Can music improve sleep quality in adults with primary insomnia? A systematic review and network meta-analysis. Int J Nurs Stud 77:189–196

    Article  Google Scholar 

  36. Balshem H, Helfand M, Schünemann HJ, Oxman AD, Kunz R, Brozek J, Vist GE, Falck-Ytter Y, Meerpohl J, Norris S, Guyatt GH (2011) GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 64:401–406

    Article  Google Scholar 

  37. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336:924–926

    Article  Google Scholar 

  38. Evia-Viscarra ML, Rodea-Montero ER, Apolinar-Jiménez E, Munoz-Noriega N, García-Morales LM, Leaños-Pérez C, Figueroa-Barrón M, Sánchez-Fierros D, Reyes-García JG (2012) The effects of metformin on inflammatory mediators in obese adolescents with insulin resistance: controlled randomized clinical trial. J Pediatr Endocrinol Metab 25:41–49

    CAS  Article  Google Scholar 

  39. Gómez-Díaz RA, Talavera JO, Pool EC, Ortiz-Navarrete FV, Solórzano-Santos F, Mondragón-González R, Valladares-Salgado A, Cruz M, Aguilar-Salinas CA, Wacher NH (2012) Metformin decreases plasma resistin concentrations in pediatric patients with impaired glucose tolerance: a placebo-controlled randomized clinical trial. Metab Clin Exp 61:1247–1255

    Article  Google Scholar 

  40. Kendall D, Vail A, Amin R, Barrett T, Dimitri P, Ivison F, Kibirige M, Mathew V, Matyka K, McGovern A, Stirling H, Tetlow L, Wales J, Wright N, Clayton P, Stirling H (2013) Metformin in obese children and adolescents: the MOCA trial. J Clin Endocrinol Metab 98:322–329

    CAS  Article  Google Scholar 

  41. Mauras N, DelGiorno C, Hossain J, Bird K, Killen K, Merinbaum D, Weltman A, Damaso L, Balagopal P (2012) Metformin use in children with obesity and normal glucose tolerance–effects on cardiovascular markers and intrahepatic fat. J Pediatr Endocrinol Metab 25:33–40

    CAS  Article  Google Scholar 

  42. Rynders C, Weltman A, DelGiorno C, Balagopal P, Damaso L, Killen K, Mauras N (2012) Lifestyle intervention improves fitness independent of metformin in obese adolescents. Med Sci Sports Exerc 44:786

    CAS  Article  Google Scholar 

  43. Yanovski JA, Krakoff J, Salaita CG, McDuffie JR, Kozlosky M, Sebring NG, Reynolds JC, Brady SM, Calis KA (2011) Effects of metformin on body weight and body composition in obese insulin-resistant children: a randomized clinical trial. Diabetes 60:477–485

    CAS  Article  Google Scholar 

  44. Rezvanian H, Hashemipour M, Kelishadi R, Tavakoli N, Poursafa PA (2010) Randomized, triple masked, placebo-controlled clinical trial for controlling childhood obesity. World J Pediatr 6:317–322

    CAS  Article  Google Scholar 

  45. Wiegand S, l’Allemand D, Hübel H, Krude H, Bürmann M, Martus P, Grüters A, Holl RW (2010) Metformin and placebo therapy both improve weight management and fasting insulin in obese insulin-resistant adolescents: a prospective, placebo-controlled, randomized study. Eur J Endocrinol 163:585–592

    CAS  Article  Google Scholar 

  46. Wilson DM, Abrams SH, Aye T, Lee PD, Lenders C, Lustig RH, Osganian SV, Feldman HA (2010) Metformin extended release treatment of adolescent obesity: a 48-week randomized, double-blind, placebo-controlled trial with 48-week follow-up. Arch Pediatr Adolesc Med 164:116–123

    Article  Google Scholar 

  47. Clarson CL, Mahmud FH, Baker JE, Clark HE, Mckay WM, Schauteet VD, Hill DJ (2009) Metformin in combination with structured lifestyle intervention improved body mass index in obese adolescents, but did not improve insulin resistance. Endocrine 36:141–146

    CAS  Article  Google Scholar 

  48. Atabek ME, Pirgon O (2008) Use of metformin in obese adolescents with hyperinsulinemia: a 6-month, randomized, double-blind, placebo-controlled clinical trial. J Pediatr Endocrinol Metab 21:339–348

    CAS  PubMed  Google Scholar 

  49. Burgert TS, Duran EJ, Goldberg-Gell R, Dziura J, Yeckel CW, Katz S, Tamborlane WV, Caprio S (2008) Short-term metabolic and cardiovascular effects of metformin in markedly obese adolescents with normal glucose tolerance. Pediatr Diabetes 9:567–576

    CAS  Article  Google Scholar 

  50. Love-Osborne K, Sheeder J, Zeitler P (2008) Addition of metformin to a lifestyle modification program in adolescents with insulin resistance. J Pediatr 152:817–822

    CAS  Article  Google Scholar 

  51. Freemark M, Bursey D (2001) The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes. Pediatrics 107:e55

    CAS  Article  Google Scholar 

  52. Kay JP, Alemzadeh R, Langley G, D’angelo L, Smith P, Holshouser S (2001) Beneficial effects of metformin in normoglycemic morbidly obese adolescents. Metab Clin Exp 50:1457–1461

    CAS  Article  Google Scholar 

  53. Worsley R, Jane F, Robinson PJ, Bell RJ, Davis SR (2015) Metformin for overweight women at midlife: a double-blind, randomized, controlled trial. Climacteric 18:270–277

    CAS  Article  Google Scholar 

  54. Kim C, Randolph JF, Golden SH, Labrie F, Kong S, Nan B, Barrett-Connor E (2015) Weight loss decreases follicle stimulating hormone in overweight postmenopausal women. Obesity 23:228–233

    CAS  Article  Google Scholar 

  55. Picarelli A, Di Tola M, Tabacco F, Marino M, Borghini R, D’Amico T, Lubrano C, Gargiulo P (2013) Enhancing treatment of obesity by using a distracting mini-meal: a new approach to an old problem. Hormones 12:101–110

    Article  Google Scholar 

  56. He H, Zhao Z, Chen J, Ni Y, Zhong J, Yan Z, Li Y, Liu D, Pletcher MJ, Zhu Z (2012) Metformin-based treatment for obesity-related hypertension: a randomized, double-blind, placebo-controlled trial. J Hypertens 30:1430–1439

    CAS  Article  Google Scholar 

  57. Lim SS, Norman RJ, Clifton PM, Noakes M (2011) The effect of comprehensive lifestyle intervention or metformin on obesity in young women. Nutr Metab Cardiovasc Dis 21:261–268

    CAS  PubMed  Google Scholar 

  58. Ackermann RT, Edelstein SL, Narayan KM, Zhang P, Engelgau MM, Herman WH, Marrero DG (2009) Changes in health state utilities with changes in body mass in the diabetes prevention program. Obesity 17:2176–2181

    Article  Google Scholar 

  59. Guimarães C, Pereira LR, Iucif Júnior N, Cesarino EJ, de Almeida CA, Carvalho DD, Queiroz RH (2006) Tolerability and effectiveness of fluoxetine, metformin and sibutramine in reducing anthropometric and metabolic parameters in obese patients. Arq Bras Endocrinol Metabol 50:1020–1025

    Article  Google Scholar 

  60. James AP, Watts GF, Mamo JCL (2005) The effect of metformin and rosiglitazone on postprandial lipid metabolism in obese insulin-resistant subjects. Diabetes Obes Metab 7:381–389

    CAS  Article  Google Scholar 

  61. Rodríguez-Moctezuma JR, Robles-López G, López-Carmona JM, Gutiérrez-Rosas MJ (2005) Effects of metformin on the body composition in subjects with risk factors for type 2 diabetes. Diabetes Obes Metab 7:189–192

    Article  Google Scholar 

  62. Stakos DA, Schuster DP, Sparks EA, Wooley CF, Osei K, Boudoulas H (2005) Long term cardiovascular effects of oral antidiabetic agents in non-diabetic patients with insulin resistance: double blind, prospective, randomised study. Heart 91:589–594

    CAS  Article  Google Scholar 

  63. Rodríguez Y, Giri M, Feyen E, Christophe AB (2004) Effect of metformin vs. placebo treatment on serum fatty acids in non-diabetic obese insulin resistant individuals. Prostaglandins Leukot Essent Fat Acids 71:391–397

    Article  Google Scholar 

  64. Kantola I, Rouru J, Malminiemi K, Arkkila P, Korhonen K, Rantanen S, Huupponen R (2002) Effect of metformin on blood pressure. Clinical Drug Investigation 22:347–354

    CAS  Article  Google Scholar 

  65. Lehtovirta M, Forsen B, Gullström M, Häggblom M, Eriksson JG, Taskinen MR, Groop L (2001) Metabolic effects of metformin in patients with impaired glucose tolerance. Diabet Med 18:578–583

    CAS  Article  Google Scholar 

  66. Charles MA, Eschwège E, Grandmottet P, Isnard F, Cohen JM, Bensoussan JL, Berche H, Chapiro O, André P, Vague P, Juhan-Vague I, Bard JM, Juhan-Vague I (2000) Treatment with metformin of non-diabetic men with hypertension, hypertriglyceridaemia and central fat distribution: the BIGPRO 1.2 trial. Diabetes Metab Res Rev 16:2–7

    CAS  Article  Google Scholar 

  67. Li CL, Pan CY, Lu JM, Zhu Y, Wang JH, Deng XX, Xia FC, Wang HZ, Wang HY (1999) Effect of metformin on patients with impaired glucose tolerance. Diabet Med 16:477–481

    Article  Google Scholar 

  68. Morel Y, Golay A, Perneger T, Lehmann T, Vadas L, Pasik C, Reaven GM (1999) Metformin treatment leads to an increase in basal, but not insulin-stimulated, glucose disposal in obese patients with impaired glucose tolerance. Diabet Med 16:650–655

    CAS  Article  Google Scholar 

  69. Paolisso G, Amato L, Eccellente R et al (1998) Effect of metformin on food intake in obese subjects. Eur J Clin Investig 28(6):441–446

    CAS  Article  Google Scholar 

  70. Fontbonne A, Charles MA, Juhan-Vague I, Bard JM, André P, Isnard F, Cohen JM, Grandmottet P, Vague P, Safar ME, Eschwège E (1996) The effect of metformin on the metabolic abnormalities associated with upper-body fat distribution. BIGPRO Study Group. Diabetes Care 19:920–926

    CAS  Article  Google Scholar 

  71. Pariente A, Mansiaux Y, Jarné A et al (2017) Impact of pioglitazone regulatory withdrawal on antidiabetic drug use and health in diabetic patients [J]. Eur J Clin Pharmacol 73(12):1655–1663

    CAS  Article  Google Scholar 

  72. Nadeau KJ, Ehlers LB, Zeitler PS, Love-Osborne K (2009) Treatment of non-alcoholic fatty liver disease with metformin versus lifestyle intervention in insulin-resistant adolescents. Pediatr Diabetes 10:5–13

    CAS  Article  Google Scholar 

  73. Glueck CJ, Fontaine RN, Wang P, Subbiah MTR, Weber K, Illig E, Streicher P, Sieve-Smith L, Tracy TM, Lang JE, McCullough P (2001) Metformin reduces weight, centripetal obesity, insulin, leptin, and low-density lipoprotein cholesterol in nondiabetic, morbidly obese subjects with body mass index greater than 30. Metab Clin Exp 50:856–861

    CAS  Article  Google Scholar 

  74. Lord J, Wilkin T (2004) Metformin in polycystic ovary syndrome. Curr Opin Obstet Gynecol 16:481–486

    Article  Google Scholar 

  75. Mannucci E, Ognibene A, Cremasco F, Bardini G, Mencucci A, Pierazzuoli E, Ciani S, Messeri G, Rotella CM (2001) Effect of metformin on glucagon-like peptide 1 (GLP-1) and leptin levels in obese nondiabetic subjects. Diabetes Care 24:489–494

    CAS  Article  Google Scholar 

  76. Srinivasan S, Ambler GR, Baur LA, Garnett SP, Tepsa M, Yap F, Ward GM, Cowell CT (2006) Randomized, controlled trial of metformin for obesity and insulin resistance in children and adolescents: improvement in body composition and fasting insulin. J Clin Endocrinol Metab 91:2074–2080

    CAS  Article  Google Scholar 

  77. Desilets AR, Dhakal-Karki S, Dunican KC (2008) Role of metformin for weight management in patients without type 2 diabetes. Ann Pharmacother 42:817–826

    CAS  Article  Google Scholar 

  78. Peirson L, Douketis J, Ciliska D, Fitzpatrick-Lewis D, Ali MU, Raina P (2014) Treatment for overweight and obesity in adult populations: a systematic review and meta-analysis. CMAJ Open 2:E306

    Article  Google Scholar 

  79. Pasquali R, Gambineri A, Biscotti D, Vicennati V, Gagliardi L, Colitta D, Fiorini S, Cognigni GE, Filicori M, Morselli-Labate AM (2000) Effect of long-term treatment with metformin added to hypocaloric diet on body composition, fat distribution, and androgen and insulin levels in abdominally obese women with and without the polycystic ovary syndrome. J Clin Endocrinol Metab 85:2767–2774

    CAS  Article  Google Scholar 

  80. Jarskog LF, Hamer RM, Catellier DJ, Stewart DD, LaVange L, Ray N, Golden LH, Lieberman JA, Stroup TS, Investigators METS (2013) Metformin for weight loss and metabolic control in overweight outpatients with schizophrenia and schizoaffective disorder. Am J Psychiatr 170:1032–1040

    Article  Google Scholar 

  81. Ji L, Zinman B, Patel S, Ji J, Bailes Z, Thiemann S, Seck T (2015) Efficacy and safety of linagliptin co-administered with low-dose metformin once daily versus high-dose metformin twice daily in treatment-Naïve patients with type 2 diabetes: a double-blind randomized trial. Adv Ther 32:201–215

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingyi Zhao or Qingchun Zhao.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Table S1

(DOC 18 kb)

Supplementary Table S2

(DOC 120 kb)

Supplementary Table S3

(DOC 83 kb)

Fig. S1

Study selection for systematic review and network meta-analysis (PNG 187 kb)

High-resolution image (TIF 1404 kb)

Fig. S2

Overall efficacy of metformin vs control on body mass index (BMI) (kg/m2) change. (PNG 1239 kb)

High-resolution image (TIF 7778 kb)

Fig. S3

Overall efficacy of metformin vs control on body mass index (BMI) (percentile) change (PNG 290 kb)

High-resolution image (TIF 3012 kb)

Fig. S4

Overall efficacy of metformin vs control on weight (kg) change (PNG 1185 kb)

High-resolution image (TIF 7433 kb)

Fig. S5

Network of eligible comparisons for body mass index (BMI) (kg/m2) in overweight adolescents (PNG 160 kb)

High-resolution image (TIF 2521 kb)

Fig. S6

Network meta-analysis of body mass index (BMI) (kg/m2) in overweight adolescents. Interventions are reported in decreasing order of efficacy for BMI (kg/m2) according to surface under the cumulative ranking curve (SUCRA). Comparisons between interventions should be read from right to left. For efficacy of intervention, standard mean difference (SMD) < 0 indicates favorable efficacy of the indicated intervention compared with the other interventions (PNG 281 kb)

High-resolution image (TIF 3556 kb)

Fig. S7

Network inconsistency when checking weight change in overweight adults (PNG 118 kb)

High-resolution image (TIF 1071 kb)

Fig. S8

Network funnel plot of weight change in overweight adults (PNG 116 kb)

High-resolution image (TIF 969 kb)

ESM 1

(DOC 65 kb)

ESM 2

(DOC 48 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hui, F., Zhang, Y., Ren, T. et al. Role of metformin in overweight and obese people without diabetes: a systematic review and network meta-analysis. Eur J Clin Pharmacol 75, 437–450 (2019). https://doi.org/10.1007/s00228-018-2593-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-018-2593-3

Keywords

  • Metformin
  • Obesity
  • Adolescent
  • Adults
  • Network meta-analysis