Skip to main content
Log in

Effects of vitamin K epoxide reductase complex 1 gene polymorphisms on warfarin control in Japanese patients with left ventricular assist devices (LVAD)

  • Pharmacodynamics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to investigate relationships between times in therapeutic range (TTR) or warfarin sensitivity indexes (WSI) and VKORC1-1639G>A and CYP2C9 polymorphisms in patients with left ventricular assist devices (LVAD).

Methods

Severe heart failure patients who received LVAD from January 1, 2013 to October 31, 2017 were recruited. Relationships between TTR or WSI and VKORC1-1639G>A and CYP2C9 gene polymorphisms were investigated immediately after LVAD implantation (period 1) and immediately prior to hospital discharge (period 2).

Results

Among 54 patients, 31 (72.1%) had VKORC1-1639AA and CYP2C9*1/*1 (AA group) polymorphisms and 12 (27.9%) had VKORC1-1639GA and CYP2C9*1/*1 (GA group) polymorphisms. During period 1, mean prothrombin time-international normalized ratio (PT-INR) values were significantly higher in the AA group than in the GA group (2.21 vs. 2.05, p < 0.0001). Mean WSI values were 1.68-fold greater in the AA group than in the GA group (1.14 vs. 0.68, p < 0.0001). In addition, times below the therapeutic range (TBTR) in the GA group were significantly greater than in the AA group during period 1 (39.8 vs. 28.3%, p = 0.032), and insufficient PT-INR was more frequent in the GA group than in the AA group. However, mean PT-INR values during period 2 did not differ and no significant differences in TTR, TATR, and TBTR values were identified. In subsequent multivariable logistic regression analyses, the VKORC1-1639GA allele was significantly associated with insufficient anticoagulation.

Conclusion

Patients with the VKORC1-1639GA and CYP2C9*1/*1 alleles may receive insufficient anticoagulation therapy during the early stages after implantation of LVAD, and VKORC1-1639G>A and CYP2C9 genotyping may contribute to more appropriate anticoagulant therapy after implantation of LVAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Frazier OH, Rose EA, Oz MC, Dembitsky W, McCarthy P, Radovancevic B, Poirier VL, Dasse KA (2001) Multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. J Thorac Cardiovasc Surg 122:1186–1195

    Article  PubMed  CAS  Google Scholar 

  2. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, Long JW, Ascheim DD, Tierney AR, Levitan RG, Watson JT, Meier P, Ronan NS, Shapiro PA, Lazar RM, Miller LW, Gupta L, Frazier OH, Desvigne-Nickens P, Oz MC, Poirier VL (2001) Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 345:1435–1443

    Article  PubMed  CAS  Google Scholar 

  3. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD, Conte JV, Naka Y, Mancini D, Delgado RM, MacGillivray TE, Farrar DJ, Frazier OH (2007) Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med 357:885–896

    Article  PubMed  CAS  Google Scholar 

  4. Ono M, Sawa Y, Nakatani T, Tominaga R, Matsui Y, Yamazaki K, Saiki Y, Niinami H, Matsumiya G, Arai H (2016) Japanese multicenter outcomes with the HeartMate II left ventricular assist device in patients with small body surface area. Circ J 80:1931–1936

    Article  PubMed  Google Scholar 

  5. Nakatani T, Sase K, Oshiyama H, Akiyama M, Horie M, Nawata K, Nishinaka T, Tanoue Y, Toda K, Tozawa M, Yamazaki S, Yanase M, Ohtsu H, Ishida M, Hiramatsu A, Ishii K, Kitamura S (2017) Japanese registry for Mechanically Assisted Circulatory Support: first report. J Heart Lung Transplant 36:1087–1096

    Article  PubMed  Google Scholar 

  6. Kohno H, Matsumiya G, Sawa Y, Ono M, Saiki Y, Shiose A, Yamazaki K, Matsui Y, Niinami H, Matsuda H, Kitamura S, Nakatani T, Kyo S (2018) The Jarvik 2000 left ventricular assist device as a bridge to transplantation: Japanese registry for Mechanically Assisted Circulatory Support. J Heart Lung Transplant 37:71–78

    Article  PubMed  Google Scholar 

  7. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Miller MA, Baldwin JT, Young JB (2014) Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transplant 33:555–564

    Article  PubMed  Google Scholar 

  8. Shahreyar M, Bob-Manuel T, Khouzam RN, Bashir MW, Sulaiman S, Akinseye O, Sharma A, Carter A, Latham S, Bhandari S, Jahangir A (2018) Trends, predictors and outcomes of ischemic stroke and intracranial hemorrhage in patients with a left ventricular assist device. Ann Transl Med 6:5

    Article  PubMed  PubMed Central  Google Scholar 

  9. John R, Panch S, Hrabe J, Wei P, Solovey A, Joyce L, Hebbel R (2009) Activation of endothelial and coagulation systems in left ventricular assist device recipients. Ann Thorac Surg 88:1171–1179

    Article  PubMed  Google Scholar 

  10. Eckman PM, John R (2012) Bleeding and thrombosis in patients with continuous-flow ventricular assist devices. Circulation 125:3038–3047

    Article  PubMed  Google Scholar 

  11. Boyle AJ, Russell SD, Teuteberg JJ, Slaughter MS, Moazami N, Pagani FD, Frazier OH, Heatley G, Farrar DJ, John R (2009) Low thromboembolism and pump thrombosis with the HeartMate II left ventricular assist device: analysis of outpatient anti-coagulation. J Heart Lung Transplant 28:881–887

    Article  PubMed  Google Scholar 

  12. Ahn H, Granfeldt H, Hubbert L, Peterzen B (2013) Long-term left ventricular support in patients with a mechanical aortic valve. Scand Cardiovasc J 47:236–239

    Article  PubMed  CAS  Google Scholar 

  13. French JB, Pamboukian SV, George JF, Smallfield GB, Tallaj JA, Brown RN, Smallfield MC, Kirklin JK, Holman WL, Peter S (2013) Gastrointestinal bleeding in patients with ventricular assist devices is highest immediately after implantation. ASAIO J 59:480–485

    Article  PubMed  Google Scholar 

  14. Topkara VK, Knotts RJ, Jennings DL, Garan AR, Levin AP, Breskin A, Castagna F, Cagliostro B, Yuzefpolskaya M, Takeda K, Takayama H, Uriel N, Mancini DM, Eisenberger A, Naka Y, Colombo PC, Jorde UP (2016) Effect of CYP2C9 and VKORC1 gene variants on warfarin response in patients with continuous-flow left ventricular assist devices. ASAIO J 62:558–564

    Article  PubMed  CAS  Google Scholar 

  15. Aquilante CL, Langaee TY, Lopez LM, Yarandi HN, Tromberg JS, Mohuczy D, Gaston KL, Waddell CD, Chirico MJ, Johnson JA (2006) Influence of coagulation factor, vitamin K epoxide reductase complex subunit 1, and cytochrome P450 2C9 gene polymorphisms on warfarin dose requirements. Clin Pharmacol Ther 79:291–302

    Article  PubMed  CAS  Google Scholar 

  16. Lee SC, Ng SS, Oldenburg J, Chong PY, Rost S, Guo JY, Yap HL, Rankin SC, Khor HB, Yeo TC, Ng KS, Soong R, Goh BC (2006) Interethnic variability of warfarin maintenance requirement is explained by VKORC1 genotype in an Asian population. Clin Pharmacol Ther 79:197–205

    Article  PubMed  CAS  Google Scholar 

  17. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, Wood P, Kesteven P, Daly AK, Kamali F (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106:2329–2333

    Article  PubMed  CAS  Google Scholar 

  18. Takahashi H, Wilkinson GR, Nutescu EA, Morita T, Ritchie MD, Scordo MG, Pengo V, Barban M, Padrini R, Ieiri I, Otsubo K, Kashima T, Kimura S, Kijima S, Echizen H (2006) Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genomics 16:101–110

    Article  PubMed  CAS  Google Scholar 

  19. Vecsler M, Loebstein R, Almog S, Kurnik D, Goldman B, Halkin H, Gak E (2006) Combined genetic profiles of components and regulators of the vitamin K-dependent gamma-carboxylation system affect individual sensitivity to warfarin. Thromb Haemost 95:205–211

    PubMed  CAS  Google Scholar 

  20. Xie HG, Kim RB, Wood AJ, Stein CM (2001) Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharmacol Toxicol 41:815–850

    Article  PubMed  CAS  Google Scholar 

  21. Rosendaal FR, Cannegieter SC, van der Meer FJ, Briet E (1993) A method to determine the optimal intensity of oral anticoagulant therapy. Thromb Haemost 69:236–239

    Article  PubMed  CAS  Google Scholar 

  22. Halder LC, Richardson LB, Garberich RF, Zimbwa P, Bennett MK (2017) Time in therapeutic range for left ventricular assist device patients anticoagulated with warfarin: a correlation to clinical outcomes. ASAIO J 63:37–40

    Article  PubMed  CAS  Google Scholar 

  23. Halkin H, Shapiro J, Kurnik D, Loebstein R, Shalev V, Kokia E (2003) Increased warfarin doses and decreased international normalized ratio response after nationwide generic switching. Clin Pharmacol Ther 74:215–221

    Article  PubMed  CAS  Google Scholar 

  24. Obayashi K, Nakamura K, Kawana J, Ogata H, Hanada K, Kurabayashi M, Hasegawa A, Yamamoto K, Horiuchi R (2006) VKORC1 gene variations are the major contributors of variation in warfarin dose in Japanese patients. Clin Pharmacol Ther 80:169–178

    Article  PubMed  CAS  Google Scholar 

  25. Kimura R, Miyashita K, Kokubo Y, Akaiwa Y, Otsubo R, Nagatsuka K, Otsuki T, Okayama A, Minematsu K, Naritomi H, Honda S, Tomoike H, Miyata T (2007) Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb Res 120:181–186

    Article  PubMed  CAS  Google Scholar 

  26. Yoshizawa M, Hayashi H, Tashiro Y, Sakawa S, Moriwaki H, Akimoto T, Doi O, Kimura M, Kawarasaki Y, Inoue K, Itoh K (2009) Effect of VKORC1 –1639 G>A polymorphism, body weight, age, and serum albumin alterations on warfarin response in Japanese patients. Thromb Res 124:161–166

    Article  PubMed  CAS  Google Scholar 

  27. Conly J, Stein K (1994) Reduction of vitamin K2 concentrations in human liver associated with the use of broad spectrum antimicrobials. Clin Invest Med 17:531–539

    PubMed  CAS  Google Scholar 

  28. Nakano T, Nakamura T, Nakamura Y, Irie K, Sato K, Matsuo K, Imakyure O, Ogata K, Mishima K, Kamimura H (2017) Effects of teicoplanin on the PT-INR controlled by warfarin in infection patients. Yakugaku Zasshi 137:909–916

    Article  PubMed  CAS  Google Scholar 

  29. Kinoshita S, Wada K, Matsuda S, Kuwahara T, Sunami H, Sato T, Seguchi O, Yanase M, Nakatani T, Takada M (2016) Interaction between warfarin and linezolid in patients with left ventricular assist system in Japan. Intern Med 55:719–724

    Article  PubMed  CAS  Google Scholar 

  30. Kurien S, Hughes KA (2012) Anticoagulation and bleeding in patients with ventricular assist devices: walking the tightrope. AACN Adv Crit Care 23:91–98

    Article  PubMed  Google Scholar 

  31. Stulak JM, Lee D, Haft JW, Romano MA, Cowger JA, Park SJ, Aaronson KD, Pagani FD (2014) Gastrointestinal bleeding and subsequent risk of thromboembolic events during support with a left ventricular assist device. J Heart Lung Transplant 33:60–64

    Article  PubMed  Google Scholar 

  32. Letsou GV, Myers TJ, Gregoric ID, Delgado R, Shah N, Robertson K, Radovancevic B, Frazier OH (2003) Continuous axial-flow left ventricular assist device (Jarvik 2000) maintains kidney and liver perfusion for up to 6 months. Ann Thorac Surg 76:1167–1170

    Article  PubMed  Google Scholar 

  33. Russell SD, Rogers JG, Milano CA, Dyke DB, Pagani FD, Aranda JM, Klodell CT Jr, Boyle AJ, John R, Chen L, Massey HT, Farrar DJ, Conte JV (2009) Renal and hepatic function improve in advanced heart failure patients during continuous-flow support with the HeartMate II left ventricular assist device. Circulation 120:2352–2357

    Article  PubMed  Google Scholar 

  34. Slaughter MS (2010) Long-term continuous flow left ventricular assist device support and end-organ function: prospects for destination therapy. J Card Surg 25:490–494

    Article  PubMed  Google Scholar 

  35. Ansell J, Hirsh J, Dalen J, Bussey H, Anderson D, Poller L, Jacobson A, Deykin D, Matchar D (2001) Managing oral anticoagulant therapy. Chest 119:22s–38s

    Article  PubMed  CAS  Google Scholar 

  36. Garcia D, Regan S, Crowther M, Hughes RA, Hylek EM (2005) Warfarin maintenance dosing patterns in clinical practice: implications for safer anticoagulation in the elderly population. Chest 127:2049–2056

    Article  PubMed  CAS  Google Scholar 

  37. Hirsh J, Fuster V, Ansell J, Halperin JL (2003) American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. J Am Coll Cardiol 41:1633–1652

    Article  PubMed  CAS  Google Scholar 

  38. Moyer TP, O'Kane DJ, Baudhuin LM, Wiley CL, Fortini A, Fisher PK, Dupras DM, Chaudhry R, Thapa P, Zinsmeister AR, Heit JA (2009) Warfarin sensitivity genotyping: a review of the literature and summary of patient experience. Mayo Clin Proc 84:1079–1094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Singer DE, Hellkamp AS, Piccini JP, Mahaffey KW, Lokhnygina Y, Pan G, Halperin JL, Becker RC, Breithardt G, Hankey GJ, Hacke W, Nessel CC, Patel MR, Califf RM, Fox KA (2013) Impact of global geographic region on time in therapeutic range on warfarin anticoagulant therapy: data from the ROCKET AF clinical trial. J Am Heart Assoc 2:e000067

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all the patients who participated in this study.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Participated in research design: Nakagita, Wada, Mukai, Uno, Nishino, Matsuda, Takenaka, and Takada.

Conducted experiments and clinical study: Nakagita, Wada, Uno, Nishino, Matsuda, Takenaka, and Takada.

Performed data analysis: Nakagita and Takada.

Wrote or contributed to the writing of the manuscript: Nakagita, Wada, Terakawa, Oita, and Takada.

Corresponding author

Correspondence to Mitsutaka Takada.

Ethics declarations

Ethical approval

This study was approved by the local ethic committee of the National Cerebral and Cardiovascular Center.

Informed consent

An informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

This study was conducted in the Department of Pharmacy, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, Japan

Electronic supplementary material

ESM 1

(DOCX 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakagita, K., Wada, K., Mukai, Y. et al. Effects of vitamin K epoxide reductase complex 1 gene polymorphisms on warfarin control in Japanese patients with left ventricular assist devices (LVAD). Eur J Clin Pharmacol 74, 885–894 (2018). https://doi.org/10.1007/s00228-018-2483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-018-2483-8

Keywords

Navigation