European Journal of Clinical Pharmacology

, Volume 74, Issue 5, pp 583–591 | Cite as

Population pharmacokinetics of lamotrigine co-administered with valproic acid in Chinese epileptic children using nonlinear mixed effects modeling

  • Shansen Xu
  • Limin Liu
  • Yanan Chen
  • Mei Liu
  • Tong Lu
  • Huanxin Wang
  • Shihao Liu
  • Mingming Zhao
  • Limei Zhao
Pharmacokinetics and Disposition
  • 149 Downloads

Abstract

Purpose

The aims of this study were to develop a population pharmacokinetic (PPK) model of lamotrigine (LTG) in Chinese epileptic children by using nonlinear mixed effects modeling (NONMEM) and to investigate the effects of valproic acid (VPA) and genetic polymorphisms of the major metabolizing enzymes (UGT1A4, UGT2B7) on the pharmacokinetics of LTG.

Methods

A total of 182 epileptic children who were treated with LTG as monotherapy or as part of combination therapy were included in this study as the model group, and 61 patients were included as the validation group. The steady-state serum trough concentrations of LTG and VPA were determined using a high-performance liquid chromatography method and fluorescence polarization immunoassay, respectively. Patients were genotyped for three single nucleotide polymorphisms (UGT1A4 142T>G, UGT2B7 −161C>T, and UGT2B7 802C>T). PPK analysis was performed with NONMEM using first-order absorption and elimination. Bootstrap, normalized prediction distribution errors and external evaluations were performed to determine the stability and predictive performance of the model.

Results

For the final model, the oral clearance (CL/F) of LTG was estimated to be 0.705 L/h with inter-individual variability (IIV) of 21.3%. The estimates generated by NONMEM indicated that the LTG CL/F was significantly influenced by patient body weight (increased with an exponent of 0.574) and VPA concentration (decreased with linearity of 0.273 with co-administration). However, no significant effects of UGT1A4 or UGT2B7 polymorphisms on LTG CL/F were noted in this population of Chinese children.

Conclusion

This study confirms the interaction of LTG with VPA, which likely depends on VPA concentration. The LTG PPK model developed in this study could be useful for individualizing LTG dosage regimens in pediatric patients receiving combination therapy, especially therapy that includes VPA.

Keywords

Population pharmacokinetics Lamotrigine Valproic acid UGT polymorphisms Chinese children 

Notes

Acknowledgements

The authors would like to thank Professor Zheng Jiao from Huashan Hospital, Fudan University, China, for his invaluable advice and support. This project was supported by grants from the National Natural Science Foundation of China (No. 81673510 and 81703628).

Compliance with ethical standards

All patients’ guardians were informed about the purpose of the study, and the Shengjing Hospital ethics committee approved the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

228_2018_2414_Fig3_ESM.gif (12 kb)
Figure S1

A plot of lamotrigine concentration (μg/mL) versus time after dose (h). (GIF 12 kb)

228_2018_2414_MOESM1_ESM.tiff (894 kb)
High resolution image (TIFF 894 kb)
228_2018_2414_Fig4_ESM.gif (134 kb)
Figure S2

Effects of UGT1A4 142 T > G, UGT2B7–161C > T, and UGT2B7 802C > T polymorphisms on lamotrigine oral clearance (CL/F). (GIF 133 kb)

228_2018_2414_MOESM2_ESM.tif (62.3 mb)
High resolution image (TIFF 63836 kb)
228_2018_2414_Fig5_ESM.gif (76 kb)
Figure S3

Normalized prediction distribution error (NPDE) analysis of the final model: (A) quantile-quantile plot of the NPDE versus the expected standard normal distribution; (B) histogram of the NPDE with the density of the standard normal distribution overlaid; (C) scatter plot of NPDE versus time after dose (TAD); and (D) scatter plot of NPDE versus population prediction. (GIF 75 kb)

228_2018_2414_MOESM3_ESM.tif (12.7 mb)
High resolution image (TIFF 12956 kb)
228_2018_2414_Fig6_ESM.gif (47 kb)
Figure S4

Goodness-of-fit plots of the final model for the validation group: (A) observed versus individual predicted concentrations; (B) observed versus population predicted concentrations; (C) conditional weighted residuals (CWRES) versus population predicted concentrations; and (D) CWRES versus time after dose. The red lines in the upper and lower panels represent loess smooth lines and linear fit lines, respectively. (GIF 46 kb)

228_2018_2414_MOESM4_ESM.tif (554 kb)
High resolution image (TIFF 554 kb)
228_2018_2414_MOESM5_ESM.docx (18 kb)
Table S1 Results of hypothesis testing in the model development process (DOCX 17 kb)

References

  1. 1.
    Pellock JM (1997) Lamotrigine. Lamotrigine J Child Neurol 12(Suppl 1):S1.  https://doi.org/10.1177/0883073897012001011 PubMedGoogle Scholar
  2. 2.
    Johannessen SI, Battino D, Berry DJ, Bialer M, Kramer G, Tomson T, Patsalos PN (2003) Therapeutic drug monitoring of the newer antiepileptic drugs. Ther Drug Monit 25(3):347–363.  https://doi.org/10.1097/00007691-200306000-00016 CrossRefPubMedGoogle Scholar
  3. 3.
    Johannessen SI, Tomson T (2006) Pharmacokinetic variability of newer antiepileptic drugs: when is monitoring needed? Clin Pharmacokinet 45(11):1061–1075.  https://doi.org/10.2165/00003088-200645110-00002 CrossRefPubMedGoogle Scholar
  4. 4.
    Rowland A, Elliot DJ, Williams JA, Mackenzie PI, Dickinson RG, Miners JO (2006) In vitro characterization of lamotrigine N2-glucuronidation and the lamotrigine-valproic acid interaction. Drug Metab Dispos 34(6):1055–1062.  https://doi.org/10.1124/dmd.106.009340 PubMedGoogle Scholar
  5. 5.
    Garnett WR (1997) Lamotrigine: pharmacokinetics. J Child Neurol 12(Suppl 1):S10–S15.  https://doi.org/10.1177/0883073897012001041 CrossRefPubMedGoogle Scholar
  6. 6.
    Zhou J, Argikar UA, Remmel RP (2011) Functional analysis of UGT1A4(P24T) and UGT1A4(L48V) variant enzymes. Pharmacogenomics 12(12):1671–1679.  https://doi.org/10.2217/pgs.11.105 CrossRefPubMedGoogle Scholar
  7. 7.
    Blanca SM, Herranz JL, Leno C, Arteaga R, Oterino A, Valdizan EM, Nicolas JM, Adin J, Shushtarian M, Armijo JA (2010) UGT2B7–161C>T polymorphism is associated with lamotrigine concentration-to-dose ratio in a multivariate study. Ther Drug Monit 32(2):177–184Google Scholar
  8. 8.
    Chang Y, Yang L-Y, Zhang M-C, Liu S-Y (2014) Correlation of the UGT1A4 gene polymorphism with serum concentration and therapeutic efficacy of lamotrigine in Han Chinese of Northern China. Eur J Clin Pharmacol 70(8):941–946.  https://doi.org/10.1007/s00228-014-1690-1 CrossRefPubMedGoogle Scholar
  9. 9.
    Liu L, Zhao L, Wang Q, Qiu F, Wu X, Ma Y (2015) Influence of valproic acid concentration and polymorphism of UGT1A4*3, UGT2B7 -161C > T and UGT2B7*2 on serum concentration of lamotrigine in Chinese epileptic children. Eur J Clin Pharmacol 71(11):1341–1347.  https://doi.org/10.1007/s00228-015-1925-9 CrossRefPubMedGoogle Scholar
  10. 10.
    Gulcebi MI, Ozkaynakci A, Goren MZ, Aker RG, Ozkara C, Onat FY (2011) The relationship between UGT1A4 polymorphism and serum concentration of lamotrigine in patients with epilepsy. Epilepsy Res 95(1–2):1–8.  https://doi.org/10.1016/j.eplepsyres.2011.01.016 CrossRefPubMedGoogle Scholar
  11. 11.
    Singkham N, Towanabut S, Lertkachatarn S, Punyawudho B (2013) Influence of the UGT2B7 -161C>T polymorphism on the population pharmacokinetics of lamotrigine in Thai patients. Eur J Clin Pharmacol 69(6):1285–1291.  https://doi.org/10.1007/s00228-012-1449-5 CrossRefPubMedGoogle Scholar
  12. 12.
    Brzakovic BB, Vezmar KS, Vucicevic KM, Miljkovic BR, Martinovic ZJ, Pokrajac MV, Prostran MS (2012) Impact of age, weight and concomitant treatment on lamotrigine pharmacokinetics. J Clin Pharm Ther 37(6):693–697.  https://doi.org/10.1111/j.1365-2710.2012.01351.x CrossRefPubMedGoogle Scholar
  13. 13.
    Milovanovic JR, Jankovic SM (2009) Population pharmacokinetics of lamotrigine in patients with epilepsy. Int J Clin Pharmacol Ther 47(12):752–760.  https://doi.org/10.5414/CPP47752 CrossRefPubMedGoogle Scholar
  14. 14.
    Punyawudho B, Ramsay RE, Macias FM, Rowan AJ, Collins JF, Brundage RC, Birnbaum AK (2008) Population pharmacokinetics of lamotrigine in elderly patients. J Clin Pharmacol 48(4):455–463.  https://doi.org/10.1177/0091270007313391 CrossRefPubMedGoogle Scholar
  15. 15.
    Milosheska D, Lorber B, Vovk T, Kastelic M, Dolžan V, Grabnar I (2016) Pharmacokinetics of lamotrigine and its metabolite N-2-glucuronide: influence of polymorphism of UDP-glucuronosyltransferases and drug transporters. Br J Clin Pharmacol 82(2):399–411.  https://doi.org/10.1111/bcp.12984 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Grasela TH, Fiedler-Kelly J, Cox E, Womble GP, Risner ME, Chen C (1999) Population pharmacokinetics of lamotrigine adjunctive therapy in adults with epilepsy. J Clin Pharmacol 39(4):373–384.  https://doi.org/10.1177/00912709922007949 CrossRefPubMedGoogle Scholar
  17. 17.
    Moeller JJ, Rahey SR, Sadler RM (2009) Lamotrigine-valproic acid combination therapy for medically refractory epilepsy. Epilepsia 50(3):475–479.  https://doi.org/10.1111/j.1528-1167.2008.01866.x CrossRefPubMedGoogle Scholar
  18. 18.
    Kanner AM, Frey M (2000) Adding valproate to lamotrigine: a study of their pharmacokinetic interaction. Neurology 55(4):588–591.  https://doi.org/10.1212/WNL.55.4.588 CrossRefPubMedGoogle Scholar
  19. 19.
    Weintraub D, Buchsbaum R, Resor SJ, Hirsch LJ (2005) Effect of antiepileptic drug comedication on lamotrigine clearance. Arch Neurol 62(9):1432–1436.  https://doi.org/10.1001/archneur.62.9.1432 CrossRefPubMedGoogle Scholar
  20. 20.
    Chung JY, Cho JY, KS Y, Kim JR, Lim KS, Sohn DR, Shin SG, Jang IJ (2008) Pharmacokinetic and pharmacodynamic interaction of lorazepam and valproic acid in relation to UGT2B7 genetic polymorphism in healthy subjects. Clin Pharmacol Ther 83(4):595–600.  https://doi.org/10.1038/sj.clpt.6100324 CrossRefPubMedGoogle Scholar
  21. 21.
    Biton V (2006) Pharmacokinetics, toxicology and safety of lamotrigine in epilepsy. Expert Opin Drug Metab Toxicol 2(6):1009–1018.  https://doi.org/10.1517/17425255.2.6.1009 CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang Z-B, Ji S-M, Han Y, Zang L-L, Wang Y-H, Lu W, Wang L, Wu Y (2017) Population pharmacokinetic models of lamotrigine in different age groups of Chinese children with epilepsy. Eur J Clin Pharmacol 73(4):445–453.  https://doi.org/10.1007/s00228-016-2190-2 CrossRefPubMedGoogle Scholar
  23. 23.
    Brzaković B, Vučićević K, Kovačević SV, Miljković B, Prostran M, Martinović Ž, Pokrajac M (2014) Pharmacokinetics of lamotrigine in paediatric and young adult epileptic patients—nonlinear mixed effects modelling approach. Eur J Clin Pharmacol 70(2):179–185.  https://doi.org/10.1007/s00228-013-1606-5 CrossRefPubMedGoogle Scholar
  24. 24.
    Mallaysamy S, Johnson MG, Rao PGM, Rajakannan T, Bathala L, Arumugam K, van Hasselt JGC, Ramakrishna D (2013) Population pharmacokinetics of lamotrigine in Indian epileptic patients. Eur J Clin Pharmacol 69(1):43–52.  https://doi.org/10.1007/s00228-012-1311-9 CrossRefPubMedGoogle Scholar
  25. 25.
    Chan V, Morris RG, Ilett KF, Tett SE (2001) Population pharmacokinetics of lamotrigine. Ther Drug Monit 23(6):630–635.  https://doi.org/10.1097/00007691-200112000-00006 CrossRefPubMedGoogle Scholar
  26. 26.
    Chen C (2000) Validation of a population pharmacokinetic model for adjunctive lamotrigine therapy in children. Br J Clin Pharmacol 50(2):135–145.  https://doi.org/10.1046/j.1365-2125.2000.00237.x CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hakooz N, Alzubiedi S, Yousef AM, Arafat T, Dajani R, Ababneh N, Ismail S (2012) UDP-glucuronosyltransferase 1A4 (UGT1A4) polymorphisms in a Jordanian population. Mol Biol Rep 39(7):7763–7768.  https://doi.org/10.1007/s11033-012-1615-y CrossRefPubMedGoogle Scholar
  28. 28.
    Saito K, Moriya H, Sawaguchi T, Hayakawa T, Nakahara S, Goto A, Arimura Y, Imai K, Kurosawa N, Owada E, Miyamoto A (2006) Haplotype analysis of UDP-glucuronocyltransferase 2B7 gene (UGT2B7) polymorphisms in healthy Japanese subjects. Clin Biochem 39(3):303–308.  https://doi.org/10.1016/j.clinbiochem.2006.01.002 CrossRefPubMedGoogle Scholar
  29. 29.
    Keizer RJ, Karlsson MO, Hooker A (2013) Modeling and simulation workbench for NONMEM: tutorial on Pirana, PsN, and Xpose. CPT Pharmacometrics Syst Pharmacol 2(6):e50.  https://doi.org/10.1038/psp.2013.24 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    He DK, Wang L, Qin J, Zhang S, Lu W, Li L, Zhang JM, Bao WQ, Song XQ, Liu HT (2012) Population pharmacokinetics of lamotrigine in Chinese children with epilepsy. Acta Pharmacol Sin 33(11):1417–1423.  https://doi.org/10.1038/aps.2012.118 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ding J, Wang Y, Lin W, Wang C, Zhao L, Li X, Zhao Z, Miao L, Jiao Z (2015) A population pharmacokinetic model of valproic acid in pediatric patients with epilepsy: a non-linear pharmacokinetic model based on protein-binding saturation. Clin Pharmacokinet 54(3):305–317.  https://doi.org/10.1007/s40262-014-0212-8 CrossRefPubMedGoogle Scholar
  32. 32.
    Staatz CE, Duffull SB, Kiberd B, Fraser AD, Tett SE (2005) Population pharmacokinetics of mycophenolic acid during the first week after renal transplantation. Eur J Clin Pharmacol 61(7):507–516.  https://doi.org/10.1007/s00228-005-0927-4 CrossRefPubMedGoogle Scholar
  33. 33.
    Tunblad K, Lindbom L, McFadyen L, Jonsson EN, Marshall S, Karlsson MO (2008) The use of clinical irrelevance criteria in covariate model building with application to dofetilide pharmacokinetic data. J Pharmacokinet Pharmacodyn 35(5):503–526.  https://doi.org/10.1007/s10928-008-9099-z CrossRefPubMedGoogle Scholar
  34. 34.
    van der Meer AF, Marcus MA, Touw DJ, Proost JH, Neef C (2011) Optimal sampling strategy development methodology using maximum a posteriori Bayesian estimation. Ther Drug Monit 33(2):133–146.  https://doi.org/10.1097/FTD.0b013e31820f40f8 PubMedGoogle Scholar
  35. 35.
    Anderson GD (1998) A mechanistic approach to antiepileptic drug interactions. Ann Pharmacother 32(5):554–563.  https://doi.org/10.1345/aph.17332 CrossRefPubMedGoogle Scholar
  36. 36.
    GlaxoSmithKline UK (2017) Summary of product characteristics for Lamictal. Available at http://www.medicines.org.uk/emc/medicine/4228/SPC/Lamictal/#FORM. Accessed 20 September 2017
  37. 37.
    Hussein Z, Posner J (1997) Population pharmacokinetics of lamotrigine monotherapy in patients with epilepsy: retrospective analysis of routine monitoring data. Br J Clin Pharmacol 43(5):457–465.  https://doi.org/10.1046/j.1365-2125.1997.00594.x CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rambeck B, Wolf P (1993) Lamotrigine clinical pharmacokinetics. Clin Pharmacokinet 25(6):433–443.  https://doi.org/10.2165/00003088-199325060-00003 CrossRefPubMedGoogle Scholar
  39. 39.
    Ahn JE, Birnbaum AK, Brundage RC (2005) Inherent correlation between dose and clearance in therapeutic drug monitoring settings: possible misinterpretation in population pharmacokinetic analyses. J Pharmacokinet Pharmacodyn 32(5–6):703–718.  https://doi.org/10.1007/s10928-005-0083-6 CrossRefPubMedGoogle Scholar
  40. 40.
    Gidal BE, Sheth R, Parnell J, Maloney K, Sale M (2003) Evaluation of VPA dose and concentration effects on lamotrigine pharmacokinetics: implications for conversion to lamotrigine monotherapy. Epilepsy Res 57(2–3):85–93.  https://doi.org/10.1016/j.eplepsyres.2003.09.008 CrossRefPubMedGoogle Scholar
  41. 41.
    Gidal BE, Anderson GD, Rutecki PR, Shaw R, Lanning A (2000) Lack of an effect of valproate concentration on lamotrigine pharmacokinetics in developmentally disabled patients with epilepsy. Epilepsy Res 42(1):23–31.  https://doi.org/10.1016/S0920-1211(00)00160-1 CrossRefPubMedGoogle Scholar
  42. 42.
    Magdalou J, Herber R, Bidault R, Siest G (1992) In vitro N-glucuronidation of a novel antiepileptic drug, lamotrigine, by human liver microsomes. J Pharmacol Exp Ther 260(3):1166–1173PubMedGoogle Scholar
  43. 43.
    Inoue K, Yamamoto Y, Suzuki E, Takahashi T, Umemura A, Takahashi Y, Imai K, Inoue Y, Hirai K, Tsuji D, Itoh K (2016) Factors that influence the pharmacokinetics of lamotrigine in Japanese patients with epilepsy. Eur J Clin Pharmacol 72(5):555–562.  https://doi.org/10.1007/s00228-016-2008-2 CrossRefPubMedGoogle Scholar
  44. 44.
    Neumann E, Mehboob H, Ramirez J, Mirkov S, Zhang M, Liu W (2016) Age-dependent hepatic UDP-glucuronosyltransferase gene expression and activity in children. Front Pharmacol 7:437–443CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shansen Xu
    • 1
  • Limin Liu
    • 1
  • Yanan Chen
    • 1
  • Mei Liu
    • 1
  • Tong Lu
    • 1
  • Huanxin Wang
    • 1
  • Shihao Liu
    • 1
  • Mingming Zhao
    • 1
  • Limei Zhao
    • 1
  1. 1.Department of PharmacyShengjing Hospital of China Medical UniversityShenyangPeople’s Republic of China

Personalised recommendations