Skip to main content

Advertisement

Log in

Pharmacokinetics of CYP2C9, CYP2C19, and CYP2D6 substrates in healthy Chinese and European subjects

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this analysis is to compare the pharmacokinetics of drug substrates in healthy Chinese and European subjects of aligned CYP2C9, CYP2C19, or CYP2D6 enzyme activity, providing further insight into drivers of interethnic differences in pharmacokinetics.

Methods

Following identification of appropriate drug substrates, a comprehensive and structured literature search was conducted to identify single-dose pharmacokinetic data in healthy Chinese or European subjects with reported CYP2C9, CYP2C19, or CYP2D6 activity (genotype or phenotype). The ratio of drug AUC in the Chinese and European subjects classified with aligned enzyme activity was calculated (ethnicity ratio (ER)).

Results

For 22/25 drugs identified, the ERs calculated indicated no or only limited interethnic differences in exposure (<twofold) in Chinese and European subjects with aligned polymorphic enzyme activity. The interethnic differences observed can reflect differences across populations in additional determinants of pharmacokinetics, although the notable between study variation and change over time in methods used to assign enzyme activity may also be contributing factors. There was no association between drug substrate fraction metabolized (fm) for CYP2C9, CYP2C19, or CYP2D6 and the ERs calculated.

Conclusion

The spectrum of pharmacokinetic determinants for each drug substrate and their differences across ethnic groups must be considered on a case-by-case basis in addition to metabolism by CYP2C9, CYP2C19, or CYP2D6. This analysis has also highlighted the challenges which arise when comparing published datasets if consistent methods to assign polymorphic enzyme activity have not been used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bertilsson L (1995) Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin Pharmacokinet 29(3):192–209. https://doi.org/10.2165/00003088-199529030-00005

    Article  CAS  PubMed  Google Scholar 

  2. Bjornsson TD, Wagner JA, Donahue SR, Harper D, Karim A, Khouri MS, Murphy WR, Roman K, Schneck D, Sonnichsen DS, Stalker DJ, Wise SD, Dombey S, Loew C (2003) A review and assessment of potential sources of ethnic differences in drug responsiveness. J Clin Pharmacol 43(9):943–967. https://doi.org/10.1177/0091270003256065

    Article  CAS  PubMed  Google Scholar 

  3. Johnson JA (1997) Influence of race or ethnicity on pharmacokinetics of drugs. J Pharm Sci 86(12):1328–1333. https://doi.org/10.1021/js9702168

    Article  CAS  PubMed  Google Scholar 

  4. Kim K, Johnson JA, Derendorf H (2004) Differences in drug pharmacokinetics between East Asians and Caucasians and the role of genetic polymorphisms. J Clin Pharmacol 44(10):1083–1105. https://doi.org/10.1177/0091270004268128

    Article  CAS  PubMed  Google Scholar 

  5. Phan VH, Tan C, Rittau A, Xu H, McLachlan AJ, Clarke SJ (2011) An update on ethnic differences in drug metabolism and toxicity from anti-cancer drugs. Expert Opin Drug Metab Toxicol 7(11):1395–1410. https://doi.org/10.1517/17425255.2011.624513

    Article  CAS  PubMed  Google Scholar 

  6. Ramamoorthy A, Pacanowski MA, Bull J, Zhang L (2015) Racial/ethnic differences in drug disposition and response: review of recently approved drugs. Clin Pharmacol Ther 97(3):263–273. https://doi.org/10.1002/cpt.61

    Article  CAS  PubMed  Google Scholar 

  7. Tsai D, Jamal JA, Davis JS, Lipman J, Roberts JA (2014) Interethnic differences in pharmacokinetics of antibacterials. Clin Pharmacokinet 54:243–260

    Article  Google Scholar 

  8. Huang SM, Temple R (2008) Is this the drug or dose for you? Impact and consideration of ethnic factors in global drug development, regulatory review, and clinical practice. Clin Pharmacol Ther 84(3):287–294. https://doi.org/10.1038/clpt.2008.144

    Article  PubMed  Google Scholar 

  9. Barter ZE, Tucker GT, Rowland-Yeo K (2013) Differences in cytochrome P450-mediated pharmacokinetics between Chinese and Caucasian populations predicted by mechanistic physiologically based pharmacokinetic modelling. Clin Pharmacokinet 52(12):1085–1100. https://doi.org/10.1007/s40262-013-0089-y

    Article  CAS  PubMed  Google Scholar 

  10. Inoue S, Howgate EM, Rowland-Yeo K, Shimada T, Yamazaki H, Tucker GT, Rostami-Hodjegan A (2006) Prediction of in vivo drug clearance from in vitro data. II: potential inter-ethnic differences. Xenobiotica 36(6):499–513. https://doi.org/10.1080/00498250600683262

    Article  CAS  PubMed  Google Scholar 

  11. Touma JA, McLachlan AJ, Gross AS (2017) The role of ethnicity in personalized dosing of small molecule tyrosine kinase inhibitors used in oncology. Translational Cancer Research (In press)

  12. Kurose K, Sugiyama E, Saito Y (2012) Population differences in major functional polymorphisms of pharmacokinetics/pharmacodynamics-related genes in Eastern Asians and Europeans: implications in the clinical trials for novel drug development. Drug Metab Pharmacokinet 27(1):9–54. https://doi.org/10.2133/dmpk.DMPK-11-RV-111

    Article  CAS  PubMed  Google Scholar 

  13. Gaedigk A, Sangkuhl K, Whirl-Carrillo M, Klein T, Leeder JS (2017) Prediction of CYP2D6 phenotype from genotype across world populations. Genet Med 19(1):69–76. https://doi.org/10.1038/gim.2016.80

    Article  PubMed  Google Scholar 

  14. Sugiyama Y, Maeda K, Toshimoto K (2017) Is ethnic variability in the exposure to rosuvastatin explained only by genetic polymorphisms in OATP1B1 and BCRP or should the contribution of intrinsic ethnic differences in OATP1B1 be considered? J Pharm Sci 106(9):2227–2230. https://doi.org/10.1016/j.xphs.2017.04.074

    Article  CAS  PubMed  Google Scholar 

  15. HF W, Hristeva N, Chang J, Liang X, Li R, Frassetto L, Benet LZ (2017) Rosuvastatin pharmacokinetics in Asian and White subjects wild type for both OATP1B1 and BCRP under control and inhibited conditions. J Pharm Sci 106:2751–2757

    Article  Google Scholar 

  16. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, Altman RB, Klein TE (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92(4):414–417. https://doi.org/10.1038/clpt.2012.96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Table of Pharmacogenomic Biomarkers in Drug Labeling. FDA. http://www.fda.gov/ Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.htm. Accessed 18 Feb 2015

  18. Kirchheiner J, Brockmoller J (2005) Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther 77(1):1–16. https://doi.org/10.1016/j.clpt.2004.08.009

    Article  CAS  PubMed  Google Scholar 

  19. Desta Z, Zhao X, Shin JG, Flockhart DA (2002) Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 41(12):913–958. https://doi.org/10.2165/00003088-200241120-00002

    Article  CAS  PubMed  Google Scholar 

  20. China National Knowledge Infrastructure. http://www.cnki.net/ Accessed 3 Jul 2017

  21. Gaedigk A, Simon SD, Pearce RE, Bradford LD, Kennedy MJ, Leeder JS (2008) The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther 83(2):234–242. https://doi.org/10.1038/sj.clpt.6100406

    Article  CAS  PubMed  Google Scholar 

  22. Gandelman K, Fung GL, Messig M, Laskey R (2012) Systemic exposure to atorvastatin between Asian and Caucasian subjects: a combined analysis of 22 studies. Am J Ther 19(3):164–173. https://doi.org/10.1097/MJT.0b013e3181f28fb5

    Article  PubMed  Google Scholar 

  23. Venkatakrishnan K, Obach RS, Rostami-Hodjegan A (2007) Mechanism-based inactivation of human cytochrome P450 enzymes: strategies for diagnosis and drug-drug interaction risk assessment. Xenobiotica 37(10-11):1225–1256. https://doi.org/10.1080/00498250701670945

    Article  CAS  PubMed  Google Scholar 

  24. Zhou SF, Zhou ZW, Huang M (2010) Polymorphisms of human cytochrome P450 2C9 and the functional relevance. Toxicology 278(2):165–188. https://doi.org/10.1016/j.tox.2009.08.013

    Article  CAS  PubMed  Google Scholar 

  25. Feng S, Cleary Y, Parrott N, Hu P, Weber C, Wang Y, Yin OQ, Shi J (2015) Evaluating a physiologically based pharmacokinetic model for prediction of omeprazole clearance and assessing ethnic sensitivity in CYP2C19 metabolic pathway. Eur J Clin Pharmacol 71(5):617–624. https://doi.org/10.1007/s00228-015-1834-y

    Article  CAS  PubMed  Google Scholar 

  26. Myrand SP, Sekiguchi K, Man MZ, Lin X, Tzeng RY, Teng CH, Hee B, Garrett M, Kikkawa H, Lin CY, Eddy SM, Dostalik J, Mount J, Azuma J, Fujio Y, Jang IJ, Shin SG, Bleavins MR, Williams JA, Paulauskis JD, Wilner KD (2008) Pharmacokinetics/genotype associations for major cytochrome P450 enzymes in native and first- and third-generation Japanese populations: comparison with Korean, Chinese, and Caucasian populations. Clin Pharmacol Ther 84(3):347–361. https://doi.org/10.1038/sj.clpt.6100482

    Article  CAS  PubMed  Google Scholar 

  27. Andersson T, Regårdh CG, Lou YC, Zhang Y, Dahl ML, Bertilsson L (1992) Polymorphic hydroxylation of S-mephenytoin and omeprazole metabolism in Caucasian and Chinese subjects. Pharmacogenetics 2(1):25–31. https://doi.org/10.1097/00008571-199202000-00005

    Article  CAS  PubMed  Google Scholar 

  28. Fricke-Galindo I, Cespedes-Garro C, Rodrigues-Soares F, Naranjo ME, Delgado A, de Andres F, Lopez-Lopez M, Penas-Lledo E, LL A (2016) Interethnic variation of CYP2C19 alleles, ‘predicted’ phenotypes and ‘measured’ metabolic phenotypes across world populations. Pharmacogenomics J 16(2):113–123. https://doi.org/10.1038/tpj.2015.70

    Article  CAS  PubMed  Google Scholar 

  29. Hasunuma T, Tohkin M, Kaniwa N, Jang IJ, Yimin C, Kaneko M, Saito Y, Takeuchi M, Watanabe H, Yamazoe Y, Uyama Y, Kawai S (2016) Absence of ethnic differences in the pharmacokinetics of moxifloxacin, simvastatin, and meloxicam among three East Asian populations and Caucasians. Br J Clin Pharmacol 81(6):1078–1090. https://doi.org/10.1111/bcp.12884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eichelbaum M, Gross AS (1996) Stereochemical aspects of drug action and disposition. Adv Drug Res 28:1–64

    CAS  Google Scholar 

  31. Liu R, Gong C, Tao L, Yang W, Zheng X, Ma P, Ding L (2015) Influence of genetic polymorphisms on the pharmacokinetics of celecoxib and its two main metabolites in healthy Chinese subjects. Eur J Pharm Sci 79:13–19. https://doi.org/10.1016/j.ejps.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  32. Prieto-Perez R, Ochoa D, Cabaleiro T, Roman M, Sanchez-Rojas SD, Talegon M, Abad-Santos F (2013) Evaluation of the relationship between polymorphisms in CYP2C8 and CYP2C9 and the pharmacokinetics of celecoxib. J Clin Pharmacol 53(12):1261–1267. https://doi.org/10.1002/jcph.169

    Article  CAS  PubMed  Google Scholar 

  33. Yin OQP, Tomlinson B, Chow MSS (2005) CYP2C9, but not CYP2C19, polymorphisms affect the pharmacokinetics and pharmacodynamics of glyburide in Chinese subjects. Clin Pharmacol Ther 78(4):370–377. https://doi.org/10.1016/j.clpt.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  34. Zhang YF, Chen XY, Guo YJ, Si DY, Zhou H, Zhong DF (2005) Impact of cytochrome P450 CYP2C9 variant allele CYP2C9 * 3 on the pharmacokinetics of glibenclamide and lornoxicam in Chinese subjects. Yao xue xue bao = Acta pharmaceutica Sinica 40(9):796–799

    PubMed  Google Scholar 

  35. Niemi M, Cascorbi I, Timm R, Kroemer HK, Neuvonen PJ, Kivisto KT (2002) Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clin Pharmacol Ther 72(3):326–332. https://doi.org/10.1067/mcp.2002.127495

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Si D, Chen X, Lin N, Guo Y, Zhou H, Zhong D (2007) Influence of CYP2C9 and CYP2C19 genetic polymorphisms on pharmacokinetics of gliclazide MR in Chinese subjects. Br J Clin Pharmacol 64(1):67–74. https://doi.org/10.1111/j.1365-2125.2007.02846.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu H, Williams KM, Liauw WS, Murray M, Day RO, McLachlan AJ (2008) Effects of St John’s Wort and CYP2C9 genotype on the pharmacokinetics and pharmacodynamics of gliclazide. Br J Pharmacol 153(7):1579–1586. https://doi.org/10.1038/sj.bjp.0707685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen K (2005) Relation of P450 2C9 genetic polymorphisms to pharmacokinetics of sulfonylurea hypoglycemic agent in Chinese healthy volunteers. PhD thesis, Ocean University of China

  39. Wang R, Chen K, Wen SY, Li J, Wang SQ (2005) Relationship of the P450 2C9 genetic polymorphisms in Chinese healthy volunteers and pharmacokinetic of tolbutamide. Chin. J Clin Pharmacol 21:255–259

    Google Scholar 

  40. Hu GX, Pan PP, Wang ZS, Yang LP, Dai DP, Wang SH, Zhu GH, Qiu XJ, Xu T, Luo J, Lian QQ, Ge RS, Cai JP (2015) In vitro and in vivo characterization of 13 CYP2C9 allelic variants found in Chinese Han population. Drug Metab Dispos 43(4):561–569. https://doi.org/10.1124/dmd.114.061200

    Article  CAS  PubMed  Google Scholar 

  41. Jetter A, Kinzig-Schippers M, Skott A, Lazar A, Tomalik-Scharte D, Kirchheiner J, Walchner-Bonjean M, Hering U, Jakob V, Rodamer M, Jabrane W, Kasel D, Brockmoller J, Fuhr U, Sorgel F (2004) Cytochrome P450 2C9 phenotyping using low-dose tolbutamide. Eur J Clin Pharmacol 60(3):165–171. https://doi.org/10.1007/s00228-004-0754-z

    Article  CAS  PubMed  Google Scholar 

  42. Lee CR, Pieper JA, Hinderliter AL, Blaisdell JA, Goldstein JA (2002) Evaluation of cytochrome P450 2C9 metabolic activity with tolbutamide in CYP2C9*1 heterozygotes. Clin Pharmacol Ther 72(5):562–571. https://doi.org/10.1067/mcp.2002.127913

    Article  CAS  PubMed  Google Scholar 

  43. Diabeta (glyburide): US prescribing information. FDA. http://www.accessdata.fda.gov/ drugsatfda_docs/label/2013/017532Orig1s034lbl.pdf. Accessed 7 Feb 2015

  44. Amaryl (glimepiride): US prescribing informaion. FDA. http://www.accessdata.fda.gov/ drugsatfda_docs/label/2013/020496s027lbl.pdf. Accessed 15 Jan 2015

  45. Shiba T, Kajinuma H, Suzuki K, Hagura R, Kawai A, Katagiri H, Sando H, Shirakawa W, Kosaka K, Kuzuya N (1986) Serum gliclazide concentration in diabetic patients. Relationship between gliclazide dose and serum concentration. Diabetes Res Clin Pract 2(5):301–306. https://doi.org/10.1016/S0168-8227(86)80007-9

    Article  CAS  PubMed  Google Scholar 

  46. Jiang T, Rong Z, Xu Y, Chen B, Xie Y, Chen C, Lu Y, Shen Y, Li H, Sun J, Chen H (2013) Pharmacokinetics and bioavailability comparison of generic and branded citalopram 20 mg tablets: an open-label, randomized-sequence, two-period crossover study in healthy Chinese CYP2C19 extensive metabolizers. Clin Drug Investig 33(1):1–9. https://doi.org/10.1007/s40261-012-0010-8

    Article  CAS  PubMed  Google Scholar 

  47. Yu BN, Chen GL, He N, Ouyang DS, Chen XP, Liu ZQ, Zhou HH (2003) Pharmacokinetics of citalopram in relation to genetic polymorphism of CYP2C19. Drug Metab Dispos 31(10):1255–1259. https://doi.org/10.1124/dmd.31.10.1255

    Article  CAS  PubMed  Google Scholar 

  48. Fudio S, Borobia AM, Piñana E, Ramírez E, Tabarés B, Guerra P, Carcas A, Frías J (2010) Evaluation of the influence of sex and CYP2C19 and CYP2D6 polymorphisms in the disposition of citalopram. Eur J Pharmacol 626(2-3):200–204. https://doi.org/10.1016/j.ejphar.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  49. Caraco Y, Tateishi T, Wood AJ (1995) Interethnic difference in omeprazole’s inhibition of diazepam metabolism. Clin Pharmacol Ther 58(1):62–72. https://doi.org/10.1016/0009-9236(95)90073-X

    Article  CAS  PubMed  Google Scholar 

  50. Zhang YA, Reviriego J, Lou YQ, Sjoqvist F, Bertilsson L (1990) Diazepam metabolism in native Chinese poor and extensive hydroxylators of S-mephenytoin: interethnic differences in comparison with white subjects. Clin Pharmacol Ther 48(5):496–502. https://doi.org/10.1038/clpt.1990.185

    Article  CAS  PubMed  Google Scholar 

  51. Adedoyin A, Prakash C, O'Shea D, Blair IA, Wilkinson GR (1994) Stereoselective disposition of hexobarbital and its metabolites: relationship to the S-mephenytoin polymorphism in Caucasian and Chinese subjects. Pharmacogenetics 4(1):27–38

    Article  CAS  PubMed  Google Scholar 

  52. Qiao HL, YR H, Tian X, Jia LJ, Gao N, Zhang LR, Guo YZ (2006) Pharmacokinetics of three proton pump inhibitors in Chinese subjects in relation to the CYP2C19 genotype. Eur J Clin Pharmacol 62(2):107–112. https://doi.org/10.1007/s00228-005-0063-1

    Article  CAS  PubMed  Google Scholar 

  53. Lin CJ, Yang JC, Uang YS, Chern HD, Wang TH (2003) Time-dependent amplified pharmacokinetic and pharmacodynamic responses of rabeprazole in cytochrome P450 2C19 poor metabolizers. Pharmacotherapy 23(6):711–719. https://doi.org/10.1592/phco.23.6.711.32177

    Article  CAS  PubMed  Google Scholar 

  54. Hu YM, Xu JM, Mei Q, Xu XH, Xu SY (2005) Pharmacodynamic effects and kinetic disposition of rabeprazole in relation to CYP2C19 genotype in healthy Chinese subjects. Acta Pharmacol Sin 26:384–388

    Article  Google Scholar 

  55. Roman M, Ochoa D, Sanchez-Rojas SD, Talegon M, Prieto-Perez R, Rivas A, Abad-Santos F, Cabaleiro T (2014) Evaluation of the relationship between polymorphisms in CYP2C19 and the pharmacokinetics of omeprazole, pantoprazole and rabeprazole. Pharmacogenomics 15(15):1893–1901. https://doi.org/10.2217/pgs.14.141

    Article  CAS  PubMed  Google Scholar 

  56. Hu YR, Qiao HL, Kan QC (2004) Pharmacokinetics of lansoprazole in Chinese healthy subjects in relation to CYP2C19 genotypes. Acta Pharmacol Sin 25:986–990

    Google Scholar 

  57. Zeng XH, Shi L, Guan H, He BX, Zhang Y, Liu JH (2013) Pharmacokinetics of lansoprazole and its metabolites between Chinese CYP2C19 EMs and PMs subjects. Chin. J Clin Pharmacol 29:269–272

    CAS  Google Scholar 

  58. Hunfeld NG, Mathot RA, Touw DJ, Van Schaik RH, Mulder PG, Franck PF, Kuipers EJ, Geus WP (2008) Effect of CYP2C19*2 and *17 mutations on pharmacodynamics and kinetics of proton pump inhibitors in Caucasians. Br J Clin Pharmacol 65(5):752–760. https://doi.org/10.1111/j.1365-2125.2007.03094.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hu XP, Xu JM, Hu YM, Mei Q, Xu XH (2007) Effects of CYP2C19 genetic polymorphism on the pharmacokinetics and pharmacodynamics of omeprazole in Chinese people. J Clin Phar Ther 32(5):517–524. https://doi.org/10.1111/j.1365-2710.2007.00851.x

    Article  CAS  Google Scholar 

  60. Wang LS, Zhou G, Zhu B, Wu J, Wang JG, Abd El-Aty AM, Li T, Liu J, Yang TL, Wang D, Zhong XY, Zhou HH (2004) St John’s Wort induces both cytochrome P450 3A4-catalyzed sulfoxidation and 2C19-dependent hydroxylation of omeprazole. Clin Pharmacol Ther 75(3):191–197. https://doi.org/10.1016/j.clpt.2003.09.014

    Article  CAS  PubMed  Google Scholar 

  61. Baldwin RM, Ohlsson S, Pedersen RS, Mwinyi J, Ingelman-Sundberg M, Eliasson E, Bertilsson L (2008) Increased omeprazole metabolism in carriers of the CYP2C19*17 allele; a pharmacokinetic study in healthy volunteers. Br J Clin Pharmacol 65(5):767–774. https://doi.org/10.1111/j.1365-2125.2008.03104.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li Y, Tian X, Qiao HL, Jia LJ (2008) Pharmacokinetics of pantoprazole in Chinese healthy subjects in relation to CYP2C19 genotypes. Chin. Pharm J 43:1495–1499

    CAS  Google Scholar 

  63. Hunfeld NG, Touw DJ, Mathot RA, Mulder PGH, Van Schaik RH, Kuipers EJ, Kooiman JC, Geus WP (2010) A comparison of the acid-inhibitory effects of esomeprazole and pantoprazole in relation to pharmacokinetics and CYP2C19 polymorphism. Aliment Pharmacol Ther 31(1):150–159. https://doi.org/10.1111/j.1365-2036.2009.04150.x

    Article  CAS  PubMed  Google Scholar 

  64. Prevacid (lansoprazole): US prescribing information. FDA. http://www.accessdata.fda.gov/ drugsatfda_docs/label/2014/021428s028lbl020406s081lbl.pdf. Accessed 6 Feb 2015

  65. Prilosec (omeprazole): US prescribing informaion. FDA. http://www.accessdata.fda.gov/ drugsatfda_docs/label/2014/022056s017lbl019810s101lbl.pdf. Accessed 25 Jun 2015

  66. Aciphex (rabeprazole sodium): US prescribing informaion. FDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/1999/20973lbl.pdf. Accessed 9 Aug 2017

  67. Overo KF (1978) Preliminary studies of the kinetics of citalopram in man. Eur J Clin Pharmacol 14(1):69–73. https://doi.org/10.1007/BF00560260

    Article  CAS  PubMed  Google Scholar 

  68. Zhang XH, Yu P, NF G, Yin JL, Jiang WD (1993) Relationship between amitriptyline metabolism and polymorphic debrisoquine hydroxylation in native Chinese volunteers. Yao xue xue bao = Acta pharmaceutica Sinica 28(2):85–91

    CAS  PubMed  Google Scholar 

  69. Balant Gorgia AE, Schulz P, Dayer P (1982) Role of oxidation polymorphism on blood and urine concentrations of amitriptyline and its metabolites in man. Arch Psychiatr Nervenkr 232(3):215–222. https://doi.org/10.1007/BF02141782

    Article  CAS  PubMed  Google Scholar 

  70. Cui YM, Teng CH, Pan AX, Yuen E, Yeo KP, Zhou Y, Zhao X, Long AJ, Bangs ME, Wise SD (2007) Atomoxetine pharmacokinetics in healthy Chinese subjects and effect of the CYP2D6*10 allele. Br J Clin Pharmacol 64(4):445–449. https://doi.org/10.1111/j.1365-2125.2007.02912.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Matsui A, Azuma J, Witcher JW, Long AJ, Sauer JM, Smith BP, Desante KA, Read HA, Takahashi M, Nakano M (2012) Pharmacokinetics, safety, and tolerability of atomoxetine and effect of CYP2D6*10/*10 genotype in healthy Japanese men. J Clin Pharmacol 52(3):388–403. https://doi.org/10.1177/0091270011398657

    Article  CAS  PubMed  Google Scholar 

  72. Caraco Y, Sheller J, Wood AJJ (1999) Impact of ethnic origin and quinidine coadministration on codeine’s disposition and pharmacodynamic effects. J Pharmacol Exp Ther 290(1):413–422

    CAS  PubMed  Google Scholar 

  73. Yue QY, Svensson JO, Sjoqvist F, Sawe J (1991) A comparison of the pharmacokinetics of codeine and its metabolites in healthy Chinese and Caucasian extensive hydroxylators of debrisoquine. Br J Clin Pharmacol 31(6):643–647. https://doi.org/10.1111/j.1365-2125.1991.tb05586.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rudorfer MV, Lane EA, Chang WH (1984) Desipramine pharmacokinetics in Chinese and Caucasian volunteers. Br J Clin Pharmacol 17(4):433–440. https://doi.org/10.1111/j.1365-2125.1984.tb02368.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hu M, Yang YL, Fok BS, Chan SW, Chu TT, Poon EW, Yin OQ, Lee VH, Tomlinson B (2012) Effects of CYP2D6*10, CYP3A5*3, CYP1A2*1F, and ABCB1 C3435T polymorphisms on the pharmacokinetics of flecainide in healthy Chinese subjects. Drug Metabol Drug Interact 27(1):33–39. https://doi.org/10.1515/dmdi-2011-0032

    Article  CAS  PubMed  Google Scholar 

  76. Gross AS, Mikus G, Fischer C, Eichelbaum M (1991) Polymorphic flecainide disposition under conditions of uncontrolled urine flow and pH. Eur J Clin Pharmacol 40(2):155–162

    CAS  PubMed  Google Scholar 

  77. Gross AS, Mikus G, Fischer C, Hertrampf R, Gundert-Remy U, Eichelbaum M (1989) Stereoselective disposition of flecainide in relation to the sparteine/debrisoquine metaboliser phenotype. Br J Clin Pharmacol 28(5):555–566. https://doi.org/10.1111/j.1365-2125.1989.tb03542.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hage K, Buhl K, Fischer C, Knebel NG (1995) Estimation of the absolute bioavailability of flecainide using stable isotope technique. Eur J Clin Pharmacol 48(1):51–55

    Article  CAS  PubMed  Google Scholar 

  79. ZH X, Huang SL, Zhou HH (1996) Inhibition of imipramine N-demethylation by fluvoxamine in Chinese young men. Acta Pharmacol Sin 17:399–402

    Google Scholar 

  80. Skjelbo E, Brosen K, Hallas J, Gram LF (1991) The mephenytoin oxidation polymorphism is partially responsible for the N-demethylation of imipramine. Clin Pharmacol Ther 49(1):18–23. https://doi.org/10.1038/clpt.1991.4

    Article  CAS  PubMed  Google Scholar 

  81. Huang JD, Chuang SK, Cheng CL, Lai ML (1999) Pharmacokinetics of metoprolol enantiomers in Chinese subjects of major CYP2D6 genotypes. Clin Pharmacol Ther 65(4):402–407. https://doi.org/10.1016/S0009-9236(99)70134-7

    Article  CAS  PubMed  Google Scholar 

  82. Preskorn SH, Greenblatt DJ, Flockhart D, Luo Y, Perloff ES, Harmatz JS, Baker B, Klick-Davis A, Desta Z, Burt T (2007) Comparison of duloxetine, escitalopram, and sertraline effects on cytochrome P450 2D6 function in healthy volunteers. J Clin Psychopharmacol 27(1):28–34. https://doi.org/10.1097/00004714-200702000-00005

    Article  CAS  PubMed  Google Scholar 

  83. Hamelin BA, Bouayad A, Methot J, Jobin J, Desgagnes P, Poirier P, Allaire J, Dumesnil J, Turgeon J (2000) Significant interaction between the nonprescription antihistamine diphenhydramine and the CYP2D6 substrate metoprolol in healthy men with high or low CYP2D6 activity. Clin Pharmacol Ther 67(5):466–477. https://doi.org/10.1067/mcp.2000.106464

    Article  CAS  PubMed  Google Scholar 

  84. Yue QY, Zhong ZH, Tybring G, Dalen P, Dahl ML, Bertilsson L, Sjoqvist F (1998) Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes. Clin Pharmacol Ther 64(4):384–390. https://doi.org/10.1016/S0009-9236(98)90069-8

    Article  CAS  PubMed  Google Scholar 

  85. Dalen P, Dahl ML, Ruiz MLB, Nordin J, Bertilsson L (1998) 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther 63(4):444–452. https://doi.org/10.1016/S0009-9236(98)90040-6

    Article  CAS  PubMed  Google Scholar 

  86. Kuang TY, Lou YC, Tao P (1994) Pharmacokinetics of propafenone and its relationship with debrisoquin and mephenytoin metabolism polymorphisms in healthy Chinese volunteers. Chinese. J Pharmacol Toxicol 8:13–18

    CAS  Google Scholar 

  87. Vozeh S, Haefeli W, Ha HR, Vlcek J, Follath F (1990) Nonlinear kinetics of propafenone metabolites in healthy man. Eur J Clin Pharmacol 38(5):509–513. https://doi.org/10.1007/BF02336693

    Article  CAS  PubMed  Google Scholar 

  88. Zhou HH, Wood AJ (1990) Differences in stereoselective disposition of propranolol do not explain sensitivity differences between White and Chinese subjects: correlation between the clearance of (−)- and (+)-propranolol. Clin Pharmacol Ther 47(6):719–723. https://doi.org/10.1038/clpt.1990.98

    Article  CAS  PubMed  Google Scholar 

  89. Xiang Q, Zhao X, Zhou Y, Duan JL, Cui YM (2010) Effect of CYP2D6, CYP3A5, and MDR1 genetic polymorphisms on the pharmacokinetics of risperidone and its active moiety. J Clin Pharmacol 50(6):659–666. https://doi.org/10.1177/0091270009347867

    Article  CAS  PubMed  Google Scholar 

  90. Novalbos J, Lopez-Rodriguez R, Roman M, Gallego-Sandin S, Ochoa D, Abad-Santos F (2010) Effects of CYP2D6 genotype on the pharmacokinetics, pharmacodynamics, and safety of risperidone in healthy volunteers. J Clin Psychopharmacol 30(5):504–511. https://doi.org/10.1097/JCP.0b013e3181ee84c7

    Article  CAS  PubMed  Google Scholar 

  91. Risperdal (risperidone): US prescribing information. FDA. http://www.accessdata.fda.gov/ drugsatfda_docs/label/2014/020272s073,020588s062,021444s048lbl.pdf. Accessed 18 Jun 2015

  92. Amitriptyline hydrochloride: US prescribing informaion. FDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/085966s095,085969s084,085968s096,085971s075,085967s076,085970s072lbl.pdf. Accessed 7 Aug 2017

  93. Conard GJ, Carlson GL, Frost JW (1984) Plasma concentrations of flecainide acetate, a new antiarrhythmic agent, in humans. Clin Ther 6(5):643–652

    CAS  PubMed  Google Scholar 

  94. Celebrex (celecoxib): US prescribing informaion. FDA. http://www.accessdata.fda.gov/ drugsatfda_docs/label/2011/020998s033,021156s003lbl.pdf. Accessed 17 Apr 2016

  95. Kirchheiner J, Brockmoller J, Meineke I, Bauer S, Rohde W, Meisel C, Roots I (2002) Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin Pharmacol Ther 71(4):286–296. https://doi.org/10.1067/mcp.2002.122476

    Article  CAS  PubMed  Google Scholar 

  96. Niemi M, Backman JT, Neuvonen M, Laitila J, Neuvonen PJ, Kivisto KT (2001) Effects of fluconazole and fluvoxamine on the pharmacokinetics and pharmacodynamics of glimepiride. Clin Pharmacol Ther 69(4):194–200. https://doi.org/10.1067/mcp.2001.114229

    Article  CAS  PubMed  Google Scholar 

  97. Zhang D, Wang X, Yang M, Wang G, Liu H (2011) Effects of CYP2C19 polymorphism on the pharmacokinetics of lansoprazole and its main metabolites in healthy Chinese subjects. Xenobiotica 41(6):511–517. https://doi.org/10.3109/00498254.2011.559556

    Article  CAS  PubMed  Google Scholar 

  98. Meng ZL (2014) Effect of CYP2C19 polymorphism on pharmacokinetics of rabeprazole sodium in human. SouthWest Jiaotong University, MSc Thesis

    Google Scholar 

  99. Sauer JM, Ponsler GD, Mattiuz EL, Long AJ, Witcher JW, Thomasson HR, Desante KA (2003) Disposition and metabolic fate of atomoxetine hydrochloride: the role of CYP2D6 in human disposition and metabolism. Drug Metab Dispos 31(1):98–107. https://doi.org/10.1124/dmd.31.1.98

    Article  CAS  PubMed  Google Scholar 

  100. Codeine sulfate (codeine): US prescribing informaion. FDA. http://www.accessdata.fda.gov/ drugsatfda_docs/label/2013/022402s006lbl.pdf. Accessed 13 Jan 2015

  101. Brosen K, Otton SV, Gram LF (1986) Imipramine demethylation and hydroxylation: impact of the sparteine oxidation phenotype. Clin Pharmacol Ther 40(5):543–549. https://doi.org/10.1038/clpt.1986.221

    Article  CAS  PubMed  Google Scholar 

  102. Rythmol (propafenone): US prescribing informaion. FDA. https://www.accessdata.fda.gov/ drugsatfda_docs/label/2013/019151s012lbl.pdf. Accessed 13 Jan 2015

  103. Zhou HH, Anthony LB, Roden DM, Wood AJJ (1990) Quinidine reduces clearance of (+)-propranolol more than (−)-propranolol through marked reduction in 4-hydroxylation. Clin Pharmacol Ther 47(6):686–693. https://doi.org/10.1038/clpt.1990.94

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. J Sahi and Dr. HF Liu for contributing to discussions while planning this analysis and Professor AJ McLachlan, University of Sydney, for access to gliclazide pharmacokinetic data.

Author information

Authors and Affiliations

Authors

Contributions

All authors (SL, RN, JY, GC, AG) contributed to the design of the analysis, interpretation of results, and writing of the final manuscript. SL and GC performed the literature searches and data analyses.

Corresponding author

Correspondence to Gang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Nand, R.A., Yang, J.S. et al. Pharmacokinetics of CYP2C9, CYP2C19, and CYP2D6 substrates in healthy Chinese and European subjects. Eur J Clin Pharmacol 74, 285–296 (2018). https://doi.org/10.1007/s00228-017-2375-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-017-2375-3

Keywords

Navigation