Skip to main content
Log in

A Western diet-induced mouse model reveals a possible mechanism by which metformin decreases obesity

  • Letter to the Editors
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348(Pt 3):607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim J, You YJ (2017) Regulation of organelle function by metformin. IUBMB Life 69(7):459–469. doi:10.1002/iub.1633

  3. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108(8):1167–1174. doi:10.1172/JCI13505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pernicova I, Korbonits M (2014) Metformin--mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 10(3):143–156. doi:10.1038/nrendo.2013.256

    Article  CAS  PubMed  Google Scholar 

  5. Sliwinska A, Drzewoski J (2015) Molecular action of metformin in hepatocytes: an updated insight. Curr Diabetes Rev 11(3):175–181

    Article  CAS  PubMed  Google Scholar 

  6. Kalender A, Selvaraj A, Kim SY, Gulati P, Brule S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, Marette A, Kozma SC, Thomas G (2010) Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 11(5):390–401. doi:10.1016/j.cmet.2010.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stepensky D, Friedman M, Raz I, Hoffman A (2002) Pharmacokinetic-pharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic rats reveals first-pass pharmacodynamic effect. Drug Metab Dispos 30(8):861–868

    Article  CAS  PubMed  Google Scholar 

  8. Bailey CJ, Wilcock C, Scarpello JH (2008) Metformin and the intestine. Diabetologia 51(8):1552–1553. doi:10.1007/s00125-008-1053-5

    Article  CAS  PubMed  Google Scholar 

  9. Buse JB, DeFronzo RA, Rosenstock J, Kim T, Burns C, Skare S, Baron A, Fineman M (2016) The primary glucose-lowering effect of metformin resides in the gut, not the circulation: results from short-term pharmacokinetic and 12-week dose-ranging studies. Diabetes Care 39(2):198–205. doi:10.2337/dc15-0488

    CAS  PubMed  Google Scholar 

  10. Domecq JP, Prutsky G, Leppin A, Sonbol MB, Altayar O, Undavalli C, Wang Z, Elraiyah T, Brito JP, Mauck KF, Lababidi MH, Prokop LJ, Asi N, Wei J, Fidahussein S, Montori VM, Murad MH (2015) Clinical review: drugs commonly associated with weight change: a systematic review and meta-analysis. J Clin Endocrinol Metab 100(2):363–370. doi:10.1210/jc.2014-3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schommers P, Thurau A, Bultmann-Mellin I, Guschlbauer M, Klatt AR, Rozman J, Klingenspor M, Hrabe de Angelis M, Alber J, Gründemann D, Sterner-Kock A, Wiesner RJ (2017) Metformin causes a futile intestinal hepatic cycle which increases energy expenditure and slows down development of a type 2 diabetes-like state. Mol Metab 6(7):737–747. doi: 10.1016/j.molmet.2017.05.002

  12. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150(2):366–376. doi:10.1016/j.cell.2012.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kajimura S, Spiegelman BM, Seale P (2015) Brown and beige fat: physiological roles beyond heat generation. Cell Metab 22(4):546–559. doi:10.1016/j.cmet.2015.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tamucci KA, Namwanje M, Fan L, Qiang L (2017) The dark side of browning. Protein Cell. doi:10.1007/s13238-017-0434-2

  15. Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E, Spiegelman BM (2012) FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26(3):271–281. doi:10.1101/gad.177857.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thyagarajan B, Foster MT (2017) Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Horm Mol Biol Clin Invest. doi:10.1515/hmbci-2017-0016

  17. Jiang C, Xie C, Lv Y, Li J, Krausz KW, Shi J, Brocker CN, Desai D, Amin SG, Bisson WH, Liu Y, Gavrilova O, Patterson AD, Gonzalez FJ (2015) Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun 6:10166. doi:10.1038/ncomms10166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gonzalez FJ, Jiang C, Patterson AD (2016) An intestinal microbiota–farnesoid X receptor axis modulates metabolic disease. Gastroenterology 151(5):845–859. doi:10.1053/j.gastro.2016.08.057

  19. Szabo I, Zoratti M (2017) Now UCP(rotein), now you don't: UCP1 is not mandatory for Thermogenesis. Cell Metab 25(4):761–762. doi:10.1016/j.cmet.2017.03.013

    Article  CAS  PubMed  Google Scholar 

  20. McCreight LJ, Bailey CJ, Pearson ER (2016) Metformin and the gastrointestinal tract. Diabetologia 59(3):426–435. doi:10.1007/s00125-015-3844-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, O'Neill HM, Ford RJ, Palanivel R, O'Brien M, Hardie DG, Macaulay SL, Schertzer JD, Dyck JR, van Denderen BJ, Kemp BE, Steinberg GR (2013) Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 19(12):1649–1654. doi:10.1038/nm.3372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He L, Wondisford FE (2015) Metformin action: concentrations matter. Cell Metab 21(2):159–162. doi:10.1016/j.cmet.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  23. De Vadder F, Kovatcheva-Datchary P, Zitoun C, Duchampt A, Backhed F, Mithieux G (2016) Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab 24(1):151–157. doi:10.1016/j.cmet.2016.06.013

    Article  PubMed  Google Scholar 

  24. Brunkwall L, Orho-Melander M (2017) The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia 60(6):943–951. doi:10.1007/s00125-017-4278-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63(5):727–735. doi:10.1136/gutjnl-2012-303839

  26. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Krogh Pedersen H, Arumugam M, Kristiansen K, Voigt AY, Vestergaard H, Hercog R, Igor Costea P, Kultima JR, Li J, Jorgensen T, Levenez F, Dore J, MetaHIT consortium, Nielsen HB, Brunak S, Raes J, Hansen T, Wang J, Ehrlich SD, Bork P, Pedersen O (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528(7581):262–266. doi:10.1038/nature15766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Albuszies G, Radermacher P, Vogt J, Wachter U, Weber S, Schoaff M, Georgieff M, Barth E (2005) Effect of increased cardiac output on hepatic and intestinal microcirculatory blood flow, oxygenation, and metabolism in hyperdynamic murine septic shock. Crit Care Med 33(10):2332–2338

    Article  PubMed  Google Scholar 

  28. Xie C, Wei W, Zhang T, Dirsch O, Dahmen U (2014) Monitoring of systemic and hepatic hemodynamic parameters in mice. J Vis Exp 92:e51955. doi:10.3791/51955

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank J. Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, F.J., Jiang, C. A Western diet-induced mouse model reveals a possible mechanism by which metformin decreases obesity. Eur J Clin Pharmacol 73, 1337–1339 (2017). https://doi.org/10.1007/s00228-017-2322-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-017-2322-3

Navigation