Skip to main content
Log in

Impact of genetic and nongenetic factors on interindividual variability in 4β-hydroxycholesterol concentration

European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Individual variability in the endogenous CYP3A metabolite 4β-hydroxycholesterol (4βOHC) is substantial, but to which extent this is determined by genetic and nongenetic factors remains unclear. The aim of the study was to evaluate the explanatory power of candidate genetic variants and key nongenetic factors on individual variability in 4βOHC levels in a large naturalistic patient population.

Methods

We measured 4βOHC concentration in serum samples from 655 patients and used multiple linear regression analysis to estimate the quantitative effects of CYP3A4*22, CYP3A5*3, and POR*28 variant alleles, comedication with CYP3A inducers, inhibitors and substrates, sex, and age on individual 4βOHC levels.

Results

4βOHC concentration ranged >100-fold in the population, and the multiple linear regression model explained about one fourth of the variability (R 2 = 0.23). Only comedication with inducers or inhibitors, sex, and POR genotype were significantly associated with individual variability in 4βOHC level. The estimated quantitative effects on 4βOHC levels were greatest for inducer comedication (+>313%, P < 0.001), inhibitor comedication (−34%, P = 0.021), and female sex (+30%, P < 0.001), while only a modestly elevated 4βOHC level was observed in carriers vs. noncarriers of POR*28 (+11%, P = 0.023).

Conclusions

These findings suggest that the CYP3A4*22, CYP3A5*3, and POR*28 variant alleles are of limited importance for overall individual variability in 4βOHC levels compared to nongenetic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138(1):103–141. doi:10.1016/j.pharmthera.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  2. Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, Hamman MA, Hall SD, Wrighton SA (2002) Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug metabolism and disposition: the biological fate of chemicals 30(8):883–891

    Article  CAS  Google Scholar 

  3. Lunde I, Bremer S, Midtvedt K, Mohebi B, Dahl M, Bergan S, Asberg A, Christensen H (2014) The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur J Clin Pharmacol 70(6):685–693. doi:10.1007/s00228-014-1656-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, Cummins C, Clapham P, Fitzgerald S, Gil L, Girón CG, Gordon L, Hourlier T, Hunt SE, Janacek SH, Johnson N, Juettemann T, Keenan S, Lavidas I, Martin FJ, Maurel T, McLaren W, Murphy DN, Nag R, Nuhn M, Parker A, Patricio M, Pignatelli M, Rahtz M, Riat HS, Sheppard D, Taylor K, Thormann A, Vullo A, Wilder SP, Zadissa A, Birney E, Harrow J, Muffato M, Perry E, Ruffier M, Spudich G, Trevanion SJ, Cunningham F, Aken BL, Zerbino DR, Flicek P (2016) Ensembl 2016. Nucleic Acids Res 44(D1):D710–D716. doi:10.1093/nar/gkv1157

    Article  PubMed  Google Scholar 

  5. Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W (2011) Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. The pharmacogenomics journal 11(4):274–286. doi:10.1038/tpj.2010.28

    Article  PubMed  Google Scholar 

  6. Oneda B, Crettol S, Jaquenoud Sirot E, Bochud M, Ansermot N, Eap CB (2009) The P450 oxidoreductase genotype is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogenet Genomics 19(11):877–883. doi:10.1097/FPC.0b013e32833225e7

    Article  CAS  PubMed  Google Scholar 

  7. Agrawal V, Choi JH, Giacomini KM, Miller WL (2010) Substrate-specific modulation of CYP3A4 activity by genetic variants of cytochrome P450 oxidoreductase. Pharmacogenet Genomics 20(10):611–618. doi:10.1097/FPC.0b013e32833e0cb5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Jonge H, Metalidis C, Naesens M, Lambrechts D, Kuypers DR (2011) The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics 12(9):1281–1291. doi:10.2217/pgs.11.77

    Article  PubMed  Google Scholar 

  9. Elens L, Nieuweboer AJ, Clarke SJ, Charles KA, de Graan AJ, Haufroid V, van Gelder T, Mathijssen RH, van Schaik RH (2013) Impact of POR*28 on the clinical pharmacokinetics of CYP3A phenotyping probes midazolam and erythromycin. Pharmacogenet Genomics 23(3):148–155. doi:10.1097/FPC.0b013e32835dc113

    Article  CAS  PubMed  Google Scholar 

  10. Morgan ET (1997) Regulation of cytochromes P450 during inflammation and infection. Drug Metab Rev 29(4):1129–1188. doi:10.3109/03602539709002246

    Article  CAS  PubMed  Google Scholar 

  11. Yang X, Zhang B, Molony C, Chudin E, Hao K, Zhu J, Gaedigk A, Suver C, Zhong H, Leeder JS, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich RG, Slatter JG, Schadt EE, Kasarskis A, Lum PY (2010) Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res 20(8):1020–1036. doi:10.1101/gr.103341.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bodin K, Bretillon L, Aden Y, Bertilsson L, Broome U, Einarsson C, Diczfalusy U (2001) Antiepileptic drugs increase plasma levels of 4beta-hydroxycholesterol in humans: evidence for involvement of cytochrome p450 3A4. J Biol Chem 276(42):38685–38689. doi:10.1074/jbc.M105127200

    Article  CAS  PubMed  Google Scholar 

  13. Diczfalusy U, Miura J, Roh HK, Mirghani RA, Sayi J, Larsson H, Bodin KG, Allqvist A, Jande M, Kim JW, Aklillu E, Gustafsson LL, Bertilsson L (2008) 4Beta-hydroxycholesterol is a new endogenous CYP3A marker: relationship to CYP3A5 genotype, quinine 3-hydroxylation and sex in Koreans, Swedes and Tanzanians. Pharmacogenet Genomics 18(3):201–208. doi:10.1097/FPC.0b013e3282f50ee9

    Article  CAS  PubMed  Google Scholar 

  14. Gebeyehu E, Engidawork E, Bijnsdorp A, Aminy A, Diczfalusy U, Aklillu E (2011) Sex and CYP3A5 genotype influence total CYP3A activity: high CYP3A activity and a unique distribution of CYP3A5 variant alleles in Ethiopians. The pharmacogenomics journal 11(2):130–137. doi:10.1038/tpj.2010.16

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki Y, Itoh H, Fujioka T, Sato F, Kawasaki K, Sato Y, Sato Y, Ohno K, Mimata H, Kishino S (2014) Association of plasma concentration of 4beta-hydroxycholesterol with CYP3A5 polymorphism and plasma concentration of indoxyl sulfate in stable kidney transplant recipients. Drug metabolism and disposition: the biological fate of chemicals 42(1):105–110. doi:10.1124/dmd.113.054171

    Article  CAS  Google Scholar 

  16. Ishida T, Naito T, Sato H, Kawakami J (2016) Relationship between the plasma fentanyl and serum 4beta-hydroxycholesterol based on CYP3A5 genotype and gender in patients with cancer pain. Drug metabolism and pharmacokinetics 31(3):242–248. doi:10.1016/j.dmpk.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  17. Mangold JB, Wu F, Rebello S (2016) Compelling relationship of CYP3A induction to levels of the putative biomarker 4beta-hydroxycholesterol and changes in midazolam exposure. Clinical pharmacology in drug development 5(4):245–249. doi:10.1002/cpdd.265

    Article  CAS  PubMed  Google Scholar 

  18. Goodenough AK, Onorato JM, Ouyang Z, Chang S, Rodrigues AD, Kasichayanula S, Huang SP, Turley W, Burrell R, Bifano M, Jemal M, LaCreta F, Tymiak A, Wang-Iverson D (2011) Quantification of 4-beta-hydroxycholesterol in human plasma using automated sample preparation and LC-ESI-MS/MS analysis. Chem Res Toxicol 24(9):1575–1585. doi:10.1021/tx2001898

    Article  CAS  PubMed  Google Scholar 

  19. Josephson F, Bertilsson L, Bottiger Y, Flamholc L, Gisslen M, Ormaasen V, Sonnerborg A, Diczfalusy U (2008) CYP3A induction and inhibition by different antiretroviral regimens reflected by changes in plasma 4beta-hydroxycholesterol levels. Eur J Clin Pharmacol 64(8):775–781. doi:10.1007/s00228-008-0492-8

    Article  CAS  PubMed  Google Scholar 

  20. Lutjohann D, Marinova M, Schneider B, Oldenburg J, von Bergmann K, Bieber T, Bjorkhem I, Diczfalusy U (2009) 4beta-hydroxycholesterol as a marker of CYP3A4 inhibition in vivo—effects of itraconazole in man. Int J Clin Pharmacol Ther 47(12):709–715

    Article  CAS  PubMed  Google Scholar 

  21. Tomalik-Scharte D, Lutjohann D, Doroshyenko O, Frank D, Jetter A, Fuhr U (2009) Plasma 4beta-hydroxycholesterol: an endogenous CYP3A metric? Clin Pharmacol Ther 86(2):147–153. doi:10.1038/clpt.2009.72

    Article  CAS  PubMed  Google Scholar 

  22. Gjestad C, Huynh DK, Haslemo T, Molden E (2016) 4beta-hydroxycholesterol correlates with dose but not steady-state concentration of carbamazepine: indication of intestinal CYP3A in biomarker formation? Br J Clin Pharmacol 81(2):269–276. doi:10.1111/bcp.12833

    Article  CAS  PubMed  Google Scholar 

  23. Niemi M, Kivisto KT, Diczfalusy U, Bodin K, Bertilsson L, Fromm MF, Eichelbaum M (2006) Effect of SLCO1B1 polymorphism on induction of CYP3A4 by rifampicin. Pharmacogenet Genomics 16(8):565–568. doi:10.1097/01.fpc.0000215070.52212.0e

    Article  CAS  PubMed  Google Scholar 

  24. Diczfalusy U, Kanebratt KP, Bredberg E, Andersson TB, Bottiger Y, Bertilsson L (2009) 4beta-hydroxycholesterol as an endogenous marker for CYP3A4/5 activity. Stability and half-life of elimination after induction with rifampicin. Br J Clin Pharmacol 67(1):38–43. doi:10.1111/j.1365-2125.2008.03309.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Flockhart D (2007) Drug interactions: cytochrome P450 drug interaction table. Indiana University School of Medicine. http://medicine.iupui.edu/clinpharm/ddis/main-table/. Accessed 21 Oct 2016

  26. Leil TA, Kasichayanula S, Boulton DW, LaCreta F (2014) Evaluation of 4beta-hydroxycholesterol as a clinical biomarker of CYP3A4 drug interactions using a Bayesian mechanism-based pharmacometric model. CPT: pharmacometrics & systems pharmacology 3:e120. doi:10.1038/psp.2014.18

    CAS  Google Scholar 

  27. Jiang X, Dutreix C, Jarugula V, Rebello S, Won CS, Sun H (2016) An exposure-response modeling approach to examine the relationship between potency of CYP3A inducer and plasma 4beta-hydroxycholesterol in healthy subjects. Clinical pharmacology in drug development. doi:10.1002/cpdd.267

    Google Scholar 

  28. Bjorkhem-Bergman L, Backstrom T, Nylen H, Ronquist-Nii Y, Bredberg E, Andersson TB, Bertilsson L, Diczfalusy U (2013) Comparison of endogenous 4beta-hydroxycholesterol with midazolam as markers for CYP3A4 induction by rifampicin. Drug metabolism and disposition: the biological fate of chemicals 41(8):1488–1493. doi:10.1124/dmd.113.052316

    Article  Google Scholar 

  29. Kasichayanula S, Boulton DW, Luo WL, Rodrigues AD, Yang Z, Goodenough A, Lee M, Jemal M, LaCreta F (2014) Validation of 4beta-hydroxycholesterol and evaluation of other endogenous biomarkers for the assessment of CYP3A activity in healthy subjects. Br J Clin Pharmacol 78(5):1122–1134. doi:10.1111/bcp.12425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kashuba AD, Nafziger AN, Kearns GL, Leeder JS, Gotschall R, Rocci ML Jr, Kulawy RW, Beck DJ, Bertino JS Jr (1998) Effect of fluvoxamine therapy on the activities of CYP1A2, CYP2D6, and CYP3A as determined by phenotyping. Clin Pharmacol Ther 64(3):257–268. doi:10.1016/s0009-9236(98)90174-6

    Article  CAS  PubMed  Google Scholar 

  31. Hemeryck A, Belpaire FM (2002) Selective serotonin reuptake inhibitors and cytochrome P-450 mediated drug-drug interactions: an update. Curr Drug Metab 3(1):13–37

    Article  CAS  PubMed  Google Scholar 

  32. Jones DR, Gorski JC, Hamman MA, Mayhew BS, Rider S, Hall SD (1999) Diltiazem inhibition of cytochrome P-450 3A activity is due to metabolite intermediate complex formation. J Pharmacol Exp Ther 290(3):1116–1125

    CAS  PubMed  Google Scholar 

  33. Bodin K, Andersson U, Rystedt E, Ellis E, Norlin M, Pikuleva I, Eggertsen G, Bjorkhem I, Diczfalusy U (2002) Metabolism of 4 beta -hydroxycholesterol in humans. J Biol Chem 277(35):31534–31540. doi:10.1074/jbc.M201712200

    Article  CAS  PubMed  Google Scholar 

  34. Woolsey SJ, Beaton MD, Choi YH, Dresser GK, Gryn SE, Kim RB, Tirona RG (2015) Relationships between endogenous plasma biomarkers of constitutive cytochrome P450 3A activity and single-time-point oral midazolam microdose phenotype in healthy subjects. Basic & clinical pharmacology & toxicology. doi:10.1111/bcpt.12492

    Google Scholar 

  35. Vanhove T, de Jonge H, de Loor H, Annaert P, Diczfalusy U, Kuypers DR (2016) Comparative performance of oral midazolam clearance and plasma 4beta-hydroxycholesterol to explain interindividual variability in tacrolimus clearance. Br J Clin Pharmacol. doi:10.1111/bcp.13083

    PubMed  Google Scholar 

  36. Elens L, Hesselink DA, Bouamar R, Budde K, de Fijter JW, De Meyer M, Mourad M, Kuypers DR, Haufroid V, van Gelder T, van Schaik RH (2014) Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients. Ther Drug Monit 36(1):71–79. doi:10.1097/FTD.0b013e31829da6dd

    CAS  PubMed  Google Scholar 

  37. Gijsen VM, van Schaik RH, Soldin OP, Soldin SJ, Nulman I, Koren G, de Wildt SN (2014) P450 oxidoreductase *28 (POR*28) and tacrolimus disposition in pediatric kidney transplant recipients—a pilot study. Ther Drug Monit 36(2):152–158. doi:10.1097/FTD.0b013e3182a3f282

    Article  CAS  PubMed  Google Scholar 

  38. Elens L, Bouamar R, Hesselink DA, Haufroid V, van der Heiden IP, van Gelder T, van Schaik RH (2011) A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin Chem 57(11):1574–1583. doi:10.1373/clinchem.2011.165613

    Article  CAS  PubMed  Google Scholar 

  39. Elens L, van Schaik RH, Panin N, de Meyer M, Wallemacq P, Lison D, Mourad M, Haufroid V (2011) Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors’ dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics 12(10):1383–1396. doi:10.2217/pgs.11.90

    Article  CAS  PubMed  Google Scholar 

  40. Pallet N, Jannot AS, El Bahri M, Etienne I, Buchler M, de Ligny BH, Choukroun G, Colosio C, Thierry A, Vigneau C, Moulin B, Le Meur Y, Heng AE, Subra JF, Legendre C, Beaune P, Alberti C, Loriot MA, Thervet E (2015) Kidney transplant recipients carrying the CYP3A4*22 allelic variant have reduced tacrolimus clearance and often reach supratherapeutic tacrolimus concentrations. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 15(3):800–805. doi:10.1111/ajt.13059

    Article  CAS  Google Scholar 

  41. Wolbold R, Klein K, Burk O, Nussler AK, Neuhaus P, Eichelbaum M, Schwab M, Zanger UM (2003) Sex is a major determinant of CYP3A4 expression in human liver. Hepatology (Baltimore, Md) 38(4):978–988. doi:10.1053/jhep.2003.50393

    Article  CAS  Google Scholar 

  42. Lamba V, Panetta JC, Strom S, Schuetz EG (2010) Genetic predictors of interindividual variability in hepatic CYP3A4 expression. J Pharmacol Exp Ther 332(3):1088–1099. doi:10.1124/jpet.109.160804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Waxman DJ, Holloway MG (2009) Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol 76(2):215–228. doi:10.1124/mol.109.056705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Greenblatt DJ, von Moltke LL (2008) Gender has a small but statistically significant effect on clearance of CYP3A substrate drugs. J Clin Pharmacol 48(11):1350–1355. doi:10.1177/0091270008323754

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Leiv Sandvik at Oslo Centre for Biostatistics and Epidemiology for valuable input on the statistical analyses.

Authors’ contributions

KH, CG, KMH, TH, EM, and SB have designed the study and performed the research. KH, TH, and EM have analyzed the data. KH has drafted the paper, and all authors have revised the paper critically and approved it for submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristine Hole.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hole, K., Gjestad, C., Heitmann, K. et al. Impact of genetic and nongenetic factors on interindividual variability in 4β-hydroxycholesterol concentration. Eur J Clin Pharmacol 73, 317–324 (2017). https://doi.org/10.1007/s00228-016-2178-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-016-2178-y

Keywords

Navigation