Skip to main content
Log in

Impact of age, gender and CYP2C9/2C19 genotypes on dose-adjusted steady-state serum concentrations of valproic acid—a large-scale study based on naturalistic therapeutic drug monitoring data

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Valproic acid (VPA) has an extensive interindividual pharmacokinetic variability. Published data regarding the impact of gender, age, and CYP2C9/2C19 genetics on VPA variability are conflicting, and the purpose of present study is to clarify the effect of these factors on dose-adjusted steady-state serum VPA concentration (C:D ratio) in a large, naturalistic patient material.

Methods

In patients who had been subjected to cytochrome P450 (CYP) genotyping and therapeutic drug monitoring of VPA, information about serum concentrations, dose, gender, age, and CYP2C9/2C19 genotypes was retrospectively collected from a routine TDM database during the period 2008-2012. The effects of age, gender, and CYP2C9/CYP2C19 genotypes on C:D ratios of VPA were investigated by multivariate analyses (mixed model) including sampling time as covariate.

Results

In total, 857 serum concentrations from 252 patients were included. A significant gender effect was observed with a 1.3-fold higher estimated C:D ratio in females than in males, i.e., geometric means 0.34 vs. 0.27 μM/mg/day, respectively (p < 0.001). A similar and significant difference in estimated geometric means was found between patients >65 vs. ≤65 years, i.e., 0.36 vs. 0.26 μM/mg/day (p < 0.001), respectively. Finally, no association between the various CYP2C9/2C19 variant genotypes and C:D ratio of VPA was observed (p > 0.1).

Conclusion

The present study shows that age and gender significantly influence VPA serum concentration. In order to obtain similar drug exposure, our findings suggest that older female patients would generally require 30–50 % lower dosing of VPA compared to younger males. Moreover, we conclude that CYP2C9/2C19 genotype is not relevant for variability in VPA exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lambert PA, Carraz G, Borselli S, Carbel S (1966) Neuropsychotropic action of a new anti-epileptic agent: depamide. Ann Med Psychol (Paris) 124:707–710

    CAS  Google Scholar 

  2. Cipriani A, Reid K, Young AH, Macritchie K, Geddes J (2013) Valproic acid, valproate and divalproex in the maintenance treatment of bipolar disorder. Cochrane Database Syst Rev 10, CD003196. doi:10.1002/14651858.CD003196.pub2

    PubMed  Google Scholar 

  3. Blanco-Serrano B, Otero MJ, Santos-Buelga D, Garcia-Sanchez MJ, Serrano J, Dominguez-Gil A (1999) Population estimation of valproic acid clearance in adult patients using routine clinical pharmacokinetic data. Biopharm Drug Dispos 20:233–240

    Article  CAS  PubMed  Google Scholar 

  4. Silva MF, Aires CC, Luis PB, Ruiter JP, IJlst L, Duran M, Wanders RJ, Tavares de Almeida I (2008) Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: a review. J Inherit Metab Dis 31:205–216. doi:10.1007/s10545-008-0841-x

    Article  CAS  PubMed  Google Scholar 

  5. Argikar UA, Remmel RP (2009) Effect of aging on glucuronidation of valproic acid in human liver microsomes and the role of UDP-glucuronosyltransferase UGT1A4, UGT1A8, and UGT1A10. Drug Metab Dispos 37:229–236. doi:10.1124/dmd.108.022426

    Article  CAS  PubMed  Google Scholar 

  6. Ghodke-Puranik Y, Thorn CF, Lamba JK, Leeder JS, Song W, Birnbaum AK, Altman RB, Klein TE (2013) Valproic acid pathway: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics 23:236–241. doi:10.1097/FPC.0b013e32835ea0b2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rettie AE, Boberg M, Rettenmeier AW, Baillie TA (1988) Cytochrome P-450-catalyzed desaturation of valproic acid in vitro. Species differences, induction effects, and mechanistic studies. J Biol Chem 263:13733–13738

    CAS  PubMed  Google Scholar 

  8. Kiang TK, Ho PC, Anari MR, Tong V, Abbott FS, Chang TK (2006) Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic microsomes from individuals with the CYP2C9*1/*1 genotype. Toxicol Sci 94:261–271. doi:10.1093/toxsci/kfl096

    Article  CAS  PubMed  Google Scholar 

  9. Chu XM, Zhang LF, Wang GJ, Zhang SN, Zhou JH, Hao HP (2012) Influence of UDP-glucuronosyltransferase polymorphisms on valproic acid pharmacokinetics in Chinese epilepsy patients. Eur J Clin Pharmacol 68:1395–1401. doi:10.1007/s00228-012-1277-7

    Article  CAS  PubMed  Google Scholar 

  10. FDA approved product label: valproic acid (2016). Accessed 6 june 2016

  11. Perucca E, Grimaldi R, Gatti G, Pirracchio S, Crema F, Frigo GM (1984) Pharmacokinetics of valproic acid in the elderly. Br J Clin Pharmacol 17:665–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bauer LA, Davis R, Wilensky A, Raisys V, Levy RH (1985) Valproic acid clearance: unbound fraction and diurnal variation in young and elderly adults. Clin Pharmacol Ther 37:697–700

    Article  CAS  PubMed  Google Scholar 

  13. Fattore C, Messina S, Battino D, Croci D, Mamoli D, Perucca E (2006) The influence of old age and enzyme inducing comedication on the pharmacokinetics of valproic acid at steady-state: a case-matched evaluation based on therapeutic drug monitoring data. Epilepsy Res 70:153–160. doi:10.1016/j.eplepsyres.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  14. Ibarra M, Vazquez M, Fagiolino P, Derendorf H (2013) Sex related differences on valproic acid pharmacokinetics after oral single dose. J Pharmacokinet Pharmacodyn 40:479–486. doi:10.1007/s10928-013-9323-3

    Article  CAS  PubMed  Google Scholar 

  15. Birnbaum AK, Ahn JE, Brundage RC, Hardie NA, Conway JM, Leppik IE (2007) Population pharmacokinetics of valproic acid concentrations in elderly nursing home residents. Ther Drug Monit 29:571–575. doi:10.1097/FTD.0b013e31811f3296

    Article  CAS  PubMed  Google Scholar 

  16. Rudberg I, Hendset M, Uthus LH, Molden E, Refsum H (2006) Heterozygous mutation in CYP2C19 significantly increases the concentration/dose ratio of racemic citalopram and escitalopram (S-citalopram). Ther Drug Monit 28:102–105

    Article  CAS  PubMed  Google Scholar 

  17. Molden E, Okkenhaug C, Ekker Solberg E (2010) Increased frequency of CYP2C9 variant alleles and homozygous VKORC1*2B carriers in warfarin-treated patients with excessive INR response. Eur J Clin Pharmacol 66:525–530. doi:10.1007/s00228-010-0813-6

    Article  CAS  PubMed  Google Scholar 

  18. Rudberg I, Mohebi B, Hermann M, Refsum H, Molden E (2008) Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin Pharmacol Ther 83:322–327. doi:10.1038/sj.clpt.6100291

    Article  CAS  PubMed  Google Scholar 

  19. World Health Organization: definition of an older or elderly person (2016). Accessed 7 june 2016

  20. Jiang D, Bai X, Zhang Q, Lu W, Wang Y, Li L, Muller M (2009) Effects of CYP2C19 and CYP2C9 genotypes on pharmacokinetic variability of valproic acid in Chinese epileptic patients: nonlinear mixed-effect modeling. Eur J Clin Pharmacol 65:1187–1193. doi:10.1007/s00228-009-0712-x

    Article  CAS  PubMed  Google Scholar 

  21. Tan L, Yu JT, Sun YP, Ou JR, Song JH, Yu Y (2010) The influence of cytochrome oxidase CYP2A6, CYP2B6, and CYP2C9 polymorphisms on the plasma concentrations of valproic acid in epileptic patients. Clin Neurol Neurosurg 112:320–323. doi:10.1016/j.clineuro.2010.01.002

    Article  PubMed  Google Scholar 

  22. Guo Y, Hu C, He X, Qiu F, Zhao L (2012) Effects of UGT1A6, UGT2B7, and CYP2C9 genotypes on plasma concentrations of valproic acid in Chinese children with epilepsy. Drug Metab Pharmacokinet 27:536–542

    Article  CAS  PubMed  Google Scholar 

  23. Amini-Shirazi N, Ghahremani MH, Ahmadkhaniha R, Mandegary A, Dadgar A, Abdollahi M, Shadnia S, Pakdaman H, Kebriaeezadeh A (2010) Influence of CYP2C9 polymorphism on metabolism of valproate and its hepatotoxin metabolite in Iranian patients. Toxicol Mech Methods 20:452–457. doi:10.3109/15376516.2010.497977

    Article  CAS  PubMed  Google Scholar 

  24. Chung JY, Cho JY, Yu KS, Kim JR, Lim KS, Sohn DR, Shin SG, Jang IJ (2008) Pharmacokinetic and pharmacodynamic interaction of lorazepam and valproic acid in relation to UGT2B7 genetic polymorphism in healthy subjects. Clin Pharmacol Ther 83:595–600. doi:10.1038/sj.clpt.6100324

    Article  CAS  PubMed  Google Scholar 

  25. Krishnaswamy S, Hao Q, Al-Rohaimi A, Hesse LM, von Moltke LL, Greenblatt DJ, Court MH (2005) UDP glucuronosyltransferase (UGT) 1A6 pharmacogenetics: II. Functional impact of the three most common nonsynonymous UGT1A6 polymorphisms (S7A, T181A, and R184S). J Pharmacol Exp Ther 313:1340–1346. doi:10.1124/jpet.104.081968

    Article  CAS  PubMed  Google Scholar 

  26. Inoue K, Suzuki E, Yazawa R, Yamamoto Y, Takahashi T, Takahashi Y, Imai K, Koyama S, Inoue Y, Tsuji D, Hayashi H, Itoh K (2014) Influence of uridine diphosphate glucuronosyltransferase 2B7 -161C > T polymorphism on the concentration of valproic acid in pediatric epilepsy patients. Ther Drug Monit 36:406–409. doi:10.1097/FTD.0000000000000012

    Article  CAS  PubMed  Google Scholar 

  27. Bock KW, Schrenk D, Forster A, Griese EU, Morike K, Brockmeier D, Eichelbaum M (1994) The influence of environmental and genetic factors on CYP2D6, CYP1A2 and UDP-glucuronosyltransferases in man using sparteine, caffeine, and paracetamol as probes. Pharmacogenetics 4:209–218

    Article  CAS  PubMed  Google Scholar 

  28. Court MH, Duan SX, von Moltke LL, Greenblatt DJ, Patten CJ, Miners JO, Mackenzie PI (2001) Interindividual variability in acetaminophen glucuronidation by human liver microsomes: identification of relevant acetaminophen UDP-glucuronosyltransferase isoforms. J Pharmacol Exp Ther 299:998–1006

    CAS  PubMed  Google Scholar 

  29. ElDesoky ES (2007) Pharmacokinetic-pharmacodynamic crisis in the elderly. Am J Ther 14:488–498. doi:10.1097/01.mjt.0000183719.84390.4d

    Article  PubMed  Google Scholar 

  30. Trifiro G, Spina E (2011) Age-related changes in pharmacodynamics: focus on drugs acting on central nervous and cardiovascular systems. Curr Drug Metab 12:611–620

    Article  CAS  PubMed  Google Scholar 

  31. Corsonello A, Pedone C, Incalzi RA (2010) Age-related pharmacokinetic and pharmacodynamic changes and related risk of adverse drug reactions. Curr Med Chem 17:571–584

    Article  CAS  PubMed  Google Scholar 

  32. Jeong H, Choi S, Song JW, Chen H, Fischer JH (2008) Regulation of UDP-glucuronosyltransferase (UGT) 1A1 by progesterone and its impact on labetalol elimination. Xenobiotica 38:62–75. doi:10.1080/00498250701744633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen H, Yang K, Choi S, Fischer JH, Jeong H (2009) Up-regulation of UDP-glucuronosyltransferase (UGT) 1A4 by 17beta-estradiol: a potential mechanism of increased lamotrigine elimination in pregnancy. Drug Metab Dispos 37:1841–1847. doi:10.1124/dmd.109.026609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jin J, Sklar GE, Min Sen Oh V, Chuen Li S (2008) Factors affecting therapeutic compliance: a review from the patient’s perspective. Ther Clin Risk Manag 4:269–286

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Gudrun Høiseth at the Center for Psychopharmacology for valuable input on the statistical analyses.

Authors’ contributions

RLS, TH, HR, and EM have designed the study. RLS and EM have performed the research. RLS and TH have analyzed the data, and RLS has written the paper. All authors have revised the paper critically and approved it for submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Smith.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Figure 1

(DOCX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, R.L., Haslemo, T., Refsum, H. et al. Impact of age, gender and CYP2C9/2C19 genotypes on dose-adjusted steady-state serum concentrations of valproic acid—a large-scale study based on naturalistic therapeutic drug monitoring data. Eur J Clin Pharmacol 72, 1099–1104 (2016). https://doi.org/10.1007/s00228-016-2087-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-016-2087-0

Keywords

Navigation