Skip to main content
Log in

Factors that influence the pharmacokinetics of lamotrigine in Japanese patients with epilepsy

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Lamotrigine (LTG) is used to treat epilepsy. The variability of LTG pharmacokinetics among individuals may be attributed to polymorphisms in the genes of uridine diphosphate glucuronosyltransferases (UGTs) 1A4 and UGT2B7 and/or combination with other drugs. In this study, we evaluated the association between LTG concentrations and patient characteristics such as genetic polymorphisms and the co-administration of antiepileptic drugs.

Methods

We recruited 122 patients with epilepsy. LTG concentrations were measured in blood samples from each patient under steady-state condition. We assessed the influence of multiple factors on LTG concentrations and derived a formula for predicting LTG concentrations using multiple linear regression analysis.

Results

We derived a formula to predict LTG concentrations that considers the daily dose of LTG, body weight, valproic acid concentration, phenytoin co-administration, and the co-administration of phenobarbital and/or carbamazepine as well as UGT1A4 142T>G and UGT2B7 -161C>T polymorphisms (adjusted coefficients of determination R 2 = 0.734). Furthermore, we used this formula to reveal a strong positive correlation between measured and predicted LTG concentrations (r 2 = 0.76, p < 0.001).

Conclusion

We derived a formula that will be useful in clinical practice for predicting LTG concentrations in patients with epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Morris RG, Black AB, Harris AL, Batty AB, Sallustio BC (1998) Lamotrigine and therapeutic drug monitoring: retrospective survey following the introduction of a routine service. Br J Clin Pharmacol 46:547–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Johannessen SI, Tomson T (2006) Pharmacokinetic variability of newer antiepileptic drugs: when is monitoring needed? Clin Pharmacokinet 45:1061–1075

    Article  CAS  PubMed  Google Scholar 

  3. Neels HM, Sierens AC, Naelaerts K, Scharpé SL, Hatfield GM, Lambert WE (2004) Therapeutic drug monitoring of old and newer anti-epileptic drugs. Clin Chem Lab Med 42:1228–1255

    Article  CAS  PubMed  Google Scholar 

  4. Johannessen SI, Battino D, Berry DJ, Bialer M, Krämer G, Tomson T, Patsalos PN (2003) Therapeutic drug monitoring of the newer antiepileptic drugs. Ther Drug Monit 25:347–363

    Article  CAS  PubMed  Google Scholar 

  5. Rowland A, Elliot DJ, Williams JA, Mackenzie PI, Dickinson RG, Miners JO (2006) In vitro characterization of lamotrigine N2-glucuronidation and the lamotrigine-valproic acid interaction. Drug Metab Dispos 34:1055–1062

    CAS  PubMed  Google Scholar 

  6. Saeki M, Saito Y, Jinno H, Sai K, Hachisuka A, Kaniwa N, Ozawa S, Kawamoto M, Kamatani N, Shirao K, Minami H, Ohtsu A, Yoshida T, Saijo N, Komamura K, Kotake T, Morishita H, Kamakura S, Kitakaze M, Tomoike H, Sawada J (2005) Genetic variations and haplotypes of UGT1A4 in a Japanese population. Drug Metab Pharmacokinet 20:144–151

    Article  PubMed  Google Scholar 

  7. Gulcebi MI, Ozkaynakcı A, Goren MZ, Aker RG, Ozkara C, Onat FY (2011) The relationship between UGT1A4 polymorphism and serum concentration of lamotrigine in patients with epilepsy. Epilepsy Res 95:1–8

    Article  CAS  PubMed  Google Scholar 

  8. Ishii Y, Hansen AJ, Mackenzie PI (2000) Octamer transcription factor-1 enhances hepatic nuclear factor-1alpha-mediated activation of the human UDP glucuronosyltransferase 2B7 promoter. Mol Pharmacol 57:940–947

    CAS  PubMed  Google Scholar 

  9. Singkham N, Towanabut S, Lertkachatarn S, Punyawudho B (2013) Influence of the UGT2B7 -161C>T polymorphism on the population pharmacokinetics of lamotrigine in Thai patients. Eur J Clin Pharmacol 69:1285–1291

    Article  CAS  PubMed  Google Scholar 

  10. Yamamoto Y, Takahashi Y, Imai K, Ikeda H, Takahashi M, Nakai M, Inoue Y, Kagawa Y (2015) Influence of uridine diphosphate glucuronosyltransferase inducers and inhibitors on the plasma lamotrigine concentration in pediatric patients with refractory epilepsy. Drug Metab Pharmacokinet 30:214–220

    Article  CAS  PubMed  Google Scholar 

  11. Kanner AM, Frey M (2000) Adding valproate to lamotrigine: a study of their pharmacokinetic interaction. Neurology 55:588–591

    Article  CAS  PubMed  Google Scholar 

  12. May TW, Rambeck B, Jürgens U (1996) Serum concentrations of lamotrigine in epileptic patients: the influence of dose and comedication. Ther Drug Monit 18:523–531

    Article  CAS  PubMed  Google Scholar 

  13. Liu L, Zhao L, Wang Q, Qiu F, Wu X, Ma Y (2015) Influence of valproic acid concentration and polymorphism of UGT1A4*3, UGT2B7 -161C>T and UGT2B7*2 on serum concentration of lamotrigine in Chinese epileptic children. Eur J Clin Pharmacol 71:1341–1347

    Article  CAS  PubMed  Google Scholar 

  14. Rickham PP (1964) Human experimentation. Code of ethics of the World Medical Association. Declaration of Helsinki. Br Med J 2:177

    Article  CAS  PubMed  Google Scholar 

  15. Saeki M, Saito Y, Jinno H, Tanaka-Kagawa T, Ohno A, Ozawa S, Ueno K, Kamakura S, Kamatani N, Komamura K, Kitakaze M, Sawada J (2004) Single nucleotide polymorphisms and haplotype frequencies of UGT2B4 and UGT2B7 in a Japanese population. Drug Metab Dispos 32:1048–1054

    CAS  PubMed  Google Scholar 

  16. Saito K, Moriya H, Sawaguchi T, Hayakawa T, Nakahara S, Goto A, Arimura Y, Imai K, Kurosawa N, Owada E, Miyamoto A (2006) Haplotype analysis of UDP-glucuronocyltransferase 2B7 gene (UGT2B7) polymorphisms in healthy Japanese subjects. Clin Biochem 39:303–308

    Article  CAS  PubMed  Google Scholar 

  17. Blanca Sánchez M, Herranz JL, Leno C, Arteaga R, Oterino A, Valdizán EM, Nicolas JM, Adín J, Shushtarian M, Armijo JA (2010) UGT2B7 -161C>T polymorphism is associated with lamotrigine concentration-to-dose ratio in a multivariate study. Ther Drug Monit 32:177–184

    PubMed  Google Scholar 

  18. Strassburg CP, Strassburg A, Kneip S, Barut A, Tukey RH, Rodeck B, Manns MP (2002) Developmental aspects of human hepatic drug glucuronidation in young children and adults. Gut 50:259–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miyagi SJ, Collier AC (2007) Pediatric development of glucuronidation: the ontogeny of hepatic UGT1A4. Drug Metab Dispos 35:1587–1592

    Article  CAS  PubMed  Google Scholar 

  20. Wegner I, Wilhelm AJ, Sander JW, Lindhout D (2013) The impact of age on lamotrigine and oxcarbazepine kinetics: a historical cohort study. Epilepsy Behav 29:217–221

    Article  PubMed  Google Scholar 

  21. Naik GS, Kodagali R, Mathew BS, Thomas M, Prabha R, Mathew V, Fleming DH (2015) Therapeutic drug monitoring of levetiracetam and lamotrigine: is there a need? Ther Drug Monit 37:437–444

    Article  CAS  PubMed  Google Scholar 

  22. Reimers A, Sjursen W, Helde G, Brodtkorb E (2014) Frequencies of UGT1A4*2 (P24T) and *3 (L48V) and their effects on serum concentrations of lamotrigine. Eur J Drug Metab Pharmacokinet

  23. Wang Q, Liang M, Dong Y, Yun W, Qiu F, Zhao L, Guo Y (2015) Effects of UGT1A4 genetic polymorphisms on serum lamotrigine concentrations in Chinese children with epilepsy. Drug Metab Pharmacokinet 30:209–213

    Article  CAS  PubMed  Google Scholar 

  24. Takekuma Y, Takenaka T, Kiyokawa M, Yamazaki K, Okamoto H, Kitabatake A, Tsutsui H, Sugawara M (2006) Contribution of polymorphisms in UDP-glucuronosyltransferase and CYP2D6 to the individual variation in disposition of carvedilol. J Pharm Pharm Sci 9:101–112

    CAS  PubMed  Google Scholar 

  25. Takekuma Y, Takenaka T, Kiyokawa M, Yamazaki K, Okamoto H, Kitabatake A, Tsutsui H, Sugawara M (2007) Evaluation of effects of polymorphism for metabolic enzymes on pharmacokinetics of carvedilol by population pharmacokinetic analysis. Biol Pharm Bull 30:537–542

    Article  CAS  PubMed  Google Scholar 

  26. Anderson GD (1998) A mechanistic approach to antiepileptic drug interactions. Ann Pharmacother 32:554–563

    Article  CAS  PubMed  Google Scholar 

  27. Patsalos PN, Perucca E (2003) Clinically important drug interactions in epilepsy: general features and interactions between antiepileptic drugs. Lancet Neurol 2:347–356

    Article  CAS  PubMed  Google Scholar 

  28. Yamamoto Y, Inoue Y, Matsuda K, Takahashi Y, Kagawa Y (2012) Influence of concomitant antiepileptic drugs on plasma lamotrigine concentration in adult Japanese epilepsy patients. Biol Pharm Bull 35:487–493

    Article  CAS  PubMed  Google Scholar 

  29. Patsalos PN (2013) Drug interactions with the newer antiepileptic drugs (AEDs)—part 1: pharmacokinetic and pharmacodynamic interactions between AEDs. Clin Pharmacokinet 52:927–966

    Article  CAS  PubMed  Google Scholar 

  30. Johannessen Landmark C, Patsalos PN (2010) Drug interactions involving the new second- and third-generation antiepileptic drugs. Expert Rev Neurother 10:119–140

    Article  CAS  PubMed  Google Scholar 

  31. Perucca E, Cloyd J, Critchley D, Fuseau E (2008) Rufinamide: clinical pharmacokinetics and concentration-response relationships in patients with epilepsy. Epilepsia 49:1123–1141

    Article  CAS  PubMed  Google Scholar 

  32. Reimers A, Skogvoll E, Sund JK, Spigset O (2005) Drug interactions between lamotrigine and psychoactive drugs: evidence from a therapeutic drug monitoring service. J Clin Psychopharmacol 25:342–348

    Article  CAS  PubMed  Google Scholar 

  33. Sidhu J, Job S, Singh S, Philipson R (2006) The pharmacokinetic and pharmacodynamic consequences of the co-administration of lamotrigine and a combined oral contraceptive in healthy female subjects. Br J Clin Pharmacol 61:191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sabers A, Buchholt JM, Uldall P, Hansen EL (2001) Lamotrigine plasma levels reduced by oral contraceptives. Epilepsy Res 47:151–154

    Article  CAS  PubMed  Google Scholar 

  35. Paragliola RM, Prete A, Kaplan PW, Corsello SM, Salvatori R (2015) Treatment of hypopituitarism in patients receiving antiepileptic drugs. Lancet Diabetes Endocrinol 3:132–140

    Article  CAS  PubMed  Google Scholar 

  36. Sharma C, Dubey R, Kumar H, Saha N (2005) Food reduces the bioavailability of lamotrigine. Indian J Med Res 121:659–664

    CAS  PubMed  Google Scholar 

  37. Kverneland M, Taubøll E, Selmer KK, Iversen PO, Nakken KO (2015) Modified Atkins diet may reduce serum concentrations of antiepileptic drugs. Acta Neurol Scand 131:187–190

    CAS  PubMed  Google Scholar 

  38. Reinsberger C, Dorn T, Krämer G (2008) Smoking reduces serum levels of lamotrigine. Seizure 17:651–653

    Article  PubMed  Google Scholar 

  39. Shenfield GM (1993) Oral contraceptives. Are drug interactions of clinical significance? Drug Saf 9:21–37

    Article  CAS  PubMed  Google Scholar 

  40. Reimers A (2004) Oral contraceptives can affect the metabolism of other drugs. Tidsskr Nor Laegeforen 124:1785–1787

    PubMed  Google Scholar 

  41. Zaccara G, Perucca E (2014) Interactions between antiepileptic drugs, and between antiepileptic drugs and other drugs. Epileptic Disord 16:409–431

    PubMed  Google Scholar 

  42. Perucca E (2006) Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol 61:246–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Preskorn SH (1997) Clinically relevant pharmacology of selective serotonin reuptake inhibitors. An overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin Pharmacokinet 32(Suppl 1):1–21

    Article  CAS  PubMed  Google Scholar 

  44. Pleym H, Spigset O, Kharasch ED, Dale O (2003) Gender differences in drug effects: implications for anesthesiologists. Acta Anaesthesiol Scand 47:241–259

    Article  CAS  PubMed  Google Scholar 

  45. Jawad S, Yuen WC, Peck AW, Hamilton MJ, Oxley JR, Richens A (1987) Lamotrigine: single-dose pharmacokinetics and initial 1 week experience in refractory epilepsy. Epilepsy Res 1:194–201

    Article  CAS  PubMed  Google Scholar 

  46. Cohen AF, Land GS, Breimer DD, Yuen WC, Winton C, Peck AW (1987) Lamotrigine, a new anticonvulsant: pharmacokinetics in normal humans. Clin Pharmacol Ther 42:535–541

    Article  CAS  PubMed  Google Scholar 

  47. Eriksson AS, Hoppu K, Nergårdh A, Boreus L (1996) Pharmacokinetic interactions between lamotrigine and other antiepileptic drugs in children with intractable epilepsy. Epilepsia 37:769–773

    Article  CAS  PubMed  Google Scholar 

  48. Reimers A (2009) Trends and changes in the clinical use of lamotrigine. Pharmacoepidemiol Drug Saf 18:132–139

    Article  CAS  PubMed  Google Scholar 

  49. Søndergaard Khinchi M, Nielsen KA, Dahl M, Wolf P (2008) Lamotrigine therapeutic thresholds. Seizure 17:391–395

    Article  PubMed  Google Scholar 

  50. Werz MA (2008) Pharmacotherapeutics of epilepsy: use of lamotrigine and expectations for lamotrigine extended release. Ther Clin Risk Manag 4:1035–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rivas N, Buelga DS, Elger CE, Santos-Borbujo J, Otero MJ, Domínguez-Gil A, García MJ (2008) Population pharmacokinetics of lamotrigine with data from therapeutic drug monitoring in German and Spanish patients with epilepsy. Ther Drug Monit 30:483–489

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiko Itoh.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, K., Yamamoto, Y., Suzuki, E. et al. Factors that influence the pharmacokinetics of lamotrigine in Japanese patients with epilepsy. Eur J Clin Pharmacol 72, 555–562 (2016). https://doi.org/10.1007/s00228-016-2008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-016-2008-2

Keywords

Navigation