Skip to main content

Advertisement

Log in

CYP1A2 genotype affects carbamazepine pharmacokinetics in children with epilepsy

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to investigate the effect of two of the most important functional CYP1A2 variations −3860G > A and −163C > A on carbamazepine pharmacokinetics in Serbian pediatric epileptic patients.

Methods

The study involved 40 Serbian pediatric epileptic patients on steady-state carbamazepine treatment. Genotyping for −3860G > A and −163C > A was carried out using PCR-RFLP method, and carbamazepine plasma concentrations were determined by high pressure liquid chromatography (HPLC) method. For pharmacokinetic analysis, NONMEM software with implementation of ADVAN 1 subroutine was used.

Results

CYP1A2 polymorphism −163C > A was found at the frequency of 65.0 %, while −3860G > A was not detected. The correlation between weight-adjusted carbamazepine dose and carbamazepine concentration after dose adjustment was significant only in carriers of −163C/C and C/A genotypes (r = 0.68, p = 0.0004). The equation that described population clearance (CL) was CL (l/h) = 0.176 + 0.0484 * SEX + 0.019 * CYP1A2 + 0.000156 * DD, where SEX has a value of 1 if male and 0 if female, CYP1A2 has a value of 1 if −163A/A and 0 if −163C/C or C/A, and DD is the total carbamazepine daily dose (mg/day).

Conclusions

CYP1A2 −163A/A genotype influence carbamazepine pharmacokinetics. In addition to sex and total carbamazepine daily dose, −163C > A CYP1A2 polymorphism should be considered as a predictor of carbamazepine clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Thorn CF, Leckband SG, Kelsoe J, Leeder JS, Muller DJ, Klein TE, Altman RB (2011) PharmGKB summary: carbamazepine pathway. Pharmacogenet Genomics 21(12):906–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tolou-Ghamari Z, Zare M, Habibabadi JM, Najafi MR (2013) A quick review of carbamazepine pharmacokinetics in epilepsy from 1953 to 2012. Res Med Sci 18(1):81–85

    Google Scholar 

  3. Laxer KD, Trinka E, Hirsch LJ, Cendes F, Langfitt J, Delanty N, Resnick T, Benbadis SR (2014) The consequences of refractory epilepsy and its treatment. Epilepsy Behav 37C:59–70

    Article  Google Scholar 

  4. Löscher W, Klotz U, Zimprich F, Schmidt D (2009) The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 50(1):1–23

    Article  PubMed  Google Scholar 

  5. Bertilsson L, Tomson T (1986) Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine-10,11-epoxide. An update. Clin Pharmacokinet 11(3):177–198

    Article  CAS  PubMed  Google Scholar 

  6. Pearce RE, Uetrecht JP, Leeder JS (2005) Pathways of carbamazepine bioactivation in vitro: II. The role of human cytochrome P450 enzymes in the formation of 2-hydroxyiminostilbene. Drug Metab Dispos 33(12):1819–1826

    CAS  PubMed  Google Scholar 

  7. Pearce RE, Vakkalagadda GR, Leeder JS (2002) Pathways of carbamazepine bioactivation in vitro I. Characterization of human cytochromes P450 responsible for the formation of 2- and 3-hydroxylated metabolites. Drug Metab Dispos 30(11):1170–1179

    Article  CAS  PubMed  Google Scholar 

  8. Pearce RE, Lu W, Wang Y, Uetrecht JP, Correia MA, Leeder JS (2008) Pathways of carbamazepine bioactivation in vitro. III. The role of human cytochrome P450 enzymes in the formation of 2,3-dihydroxycarbamazepine. Drug Metab Dispos 36(8):1637–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Parker AC, Pritchard P, Preston T, Choonara I (1998) Induction of CYP1A2 activity by carbamazepine in children using the caffeine breath test. Br J Clin Pharmacol 45(2):176–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lucas RA, Gilfillan DJ, Bergstrom RF (1998) A pharmacokinetic interaction between carbamazepine and olanzapine: observations on possible mechanism. Eur J Clin Pharmacol 54(8):639–643

    Article  CAS  PubMed  Google Scholar 

  11. Oscarson M, Zanger UM, Rifki OF, Klein K, Eichelbaum M, Meyer UA (2006) Transcriptional profiling of genes induced in the livers of patients treated with carbamazepine. Clin Pharmacol Ther 80(5):440–456

    Article  CAS  PubMed  Google Scholar 

  12. Magnusson MO, Dahl ML, Cederberg J, Karlsson MO, Sandstrom R (2008) Pharmacodynamics of carbamazepine-mediated induction of CYP3A4, CYP1A2, and Pgp as assessed by probe substrates midazolam, caffeine, and digoxin. Clin Pharmacol Ther 84(1):52–62

    Article  CAS  PubMed  Google Scholar 

  13. Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–141

    Article  CAS  PubMed  Google Scholar 

  14. Sachse C, Brockmoller J, Bauer S, Roots I (1999) Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 47(4):445–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Djordjevic N, Ghotbi R, Jankovic S, Aklillu E (2010) Induction of CYP1A2 by heavy coffee consumption is associated with the CYP1A2 − 163C > A polymorphism. Eur J Clin Pharmacol 66:697–703

    Article  CAS  PubMed  Google Scholar 

  16. Jankovic SM, Jovanovic D, Milovanovic JR (2008) Pharmacokinetic modeling of carbamazepine based on clinical data from Serbian epileptic patients. Methods Find Exp Clin Pharmacol 30(9):707–713

    Article  CAS  PubMed  Google Scholar 

  17. Bertilsson L, Hojer B, Tybring G, Osterloh J, Rane A (1980) Autoinduction of carbamazepine metabolism in children examined by a stable isotope technique. Clin Pharmacol Ther 27(1):83–88

    Article  CAS  PubMed  Google Scholar 

  18. Rane A, Hojer B, Wilson JT (1976) Kinetics of carbamazepine and its 10,11-epoxide metabolite in children. Clin Pharmacol Ther 19(3):276–283

    Article  CAS  PubMed  Google Scholar 

  19. Perucca E (1995) Pharmacological problems in the management of epilepsy in children. Seizure 4(2):139–143

    Article  CAS  PubMed  Google Scholar 

  20. Sweetman S (ed) (2009) Martindale: the complete drug reference 36. Pharmaceutical Press, London

  21. Blanco JG, Harrison PL, Evans WE, Relling MV (2000) Human cytochrome P450 maximal activities in pediatric versus adult liver. Drug Metab Dispos 28(4):379–382

    CAS  PubMed  Google Scholar 

  22. Benedetti MS, Whomsley R, Canning M (2007) Drug metabolism in the paediatric population and in the elderly. Drug Discov Today 12(15–16):599–610

    Article  CAS  PubMed  Google Scholar 

  23. Diczfalusy U, Nylén H, Elander P, Bertilsson L (2010) 4b-hydroxycholesterol, an endogenous marker of CYP3A4/5 activity in humans. Br J Clin Pharmacol 71(2):183–189

    Article  Google Scholar 

  24. Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M, Kamataki T (1999) Genetic polymorphism in the 5’-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem 125(4):803–808

    Article  CAS  PubMed  Google Scholar 

  25. Milovanovic JR, Jankovic SM (2011) Factors influencing carbamazepine pharmacokinetics in children and adults: population pharmacokinetic analysis. Int J Pharmacol Ther 49(7):428–439

    Article  CAS  Google Scholar 

  26. Dahlin MG, Beck OM, Amark PE (2006) Plasma levels of antiepileptic drugs in children on the ketogenic diet. Pediatr Neurol 35(1):6–10

    Article  PubMed  Google Scholar 

  27. Thorn CF, Aklillu E, Klein TE, Altman RB (2012) PharmGKB summary: very important pharmacogene information for CYP1A2. Pharmacogenet Genomics 22(1):73–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou SF, Chan E, Zhou ZW, Xue CC, Lai X, Duan W (2009) Insights into the structure, function, and regulation of human cytochrome P450 1A2. Curr Drug Metab 10(7):713–729

    Article  CAS  PubMed  Google Scholar 

  29. Ikeya K, Jaiswal AK, Owens RA, Jones JE, Nebert DW, Kimura S (1989) Human CYP1A2: sequence, gene structure, comparison with the mouse and rat orthologous gene, and differences in liver 1A2 mRNA expression. Mol Endocrinol 3(9):1399–1408

    Article  CAS  PubMed  Google Scholar 

  30. Nordmark A, Lundgren S, Ask B, Granath F, Rane A (2002) The effect of the CYP1A2 *1F mutation on CYP1A2 inducibility in pregnant women. Br J Clin Pharmacol 54(5):504–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sachse C, Bhambra U, Smith G, Lightfoot TJ, Barrett JH, Scollay J, Garner RC, Boobis AR, Wolf CR, Gooderham NJ (2003) Polymorphisms in the cytochrome P450 CYP1A2 gene (CYP1A2) in colorectal cancer patients and controls: allele frequencies, linkage disequilibrium and influence on caffeine metabolism. Br J Clin Pharmacol 55(1):68–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ghotbi R, Christensen M, Roh HK, Ingelman-Sundberg M, Aklillu E, Bertilsson L (2007) Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol 63(6):537–546

    Article  CAS  PubMed  Google Scholar 

  33. Chung I, Bresnick E (1997) Identification of positive and negative regulatory elements of the human cytochrome P4501A2 (CYP1A2) gene. Arch Biochem Biophys 338(2):220–226

    Article  CAS  PubMed  Google Scholar 

  34. Wang D, Jiang Z, Shen Z, Wang H, Wang B, Shou W, Zheng H, Chu X, Shi J, Huang W (2011) Functional evaluation of genetic and environmental regulators of p450 mRNA levels. PLoS One 6(10), e24900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou SF, Wang B, Yang LP, Liu JP (2009) Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab Rev 42(2):268–354

    Article  Google Scholar 

  36. Quattrochi LC, Vu T, Tukey RH (1994) The human CYP1A2 gene and induction by 3-methylcholanthrene. A region of DNA that supports AH-receptor binding and promoter-specific induction. J Biol Chem 269(9):6949–6954

    CAS  PubMed  Google Scholar 

  37. Chu-Shore CJ, Thiele EA (2010) New drugs for pediatric epilepsy. Semin Pediatr Neurol 17(4):214–223

    Article  PubMed  Google Scholar 

  38. Shah J (2004) Criteria influencing the clinical uptake of pharmacogenomic strategies. BMJ 328(7454):1482–1486

    Article  PubMed  PubMed Central  Google Scholar 

  39. Veenstra DL, Higashi MK, Phillips KA (2000) Assessing the cost-effectiveness of pharmacogenomics. AAPS PharmSci 2(3):E29

    Article  CAS  PubMed  Google Scholar 

  40. Delgado Iribarnegaray MF, Santo Bueldga D, Garcia Sanchez MJ, Otero MJ, Falcao AC, Dominguez-Gil A (1997) Carbamazepine population pharmacokinetics in children: mixed-effect models. Ther Drug Monit 19(2):132–139

    Article  CAS  PubMed  Google Scholar 

  41. El Desoky ES, Sabarinath SN, Hamdi MM, Bewernitz M, Derendorf H (2012) Population pharmacokinetics of steady-state carbamazepine in Egyptian epilepsy patients. J Clin Pharm Ther 37(3):352–355

    Article  PubMed  Google Scholar 

  42. Altafullah I, Talwar D, Loewenson R, Olson K, Lockman LA (1989) Factors influencing serum levels of carbamazepine and carbamazepine-10,11-epoxide in children. Epilepsy Res 4:72–80

    Article  CAS  PubMed  Google Scholar 

  43. Reith DM, Hooper WD, Parke J, Charles B (2001) Population pharmacokinetic modeling of steady state carbamazepine clearance in children, adolescents, and adults. J Pharmacokinet Pharmacodyn 28(1):79–92

    Article  CAS  PubMed  Google Scholar 

  44. Summers B, Summers RS (1989) Carbamazepine clearance in paediatric epilepsy patients. Influence of body mass, dose, sex and co-medication. Clin Pharmacokinet 17(3):208–216

    Article  CAS  PubMed  Google Scholar 

  45. Kong ST, Lim SH, Chan E, Ho PC (2013) Estimation and comparison of carbamazepine population pharmacokinetics using dried blood spot and plasma concentrations from people with epilepsy: the clinical implication. J Clin Pharmacol 54(2):225–233

    Article  PubMed  Google Scholar 

  46. Carrillo JA, Benitez J (1996) CYP1A2 activity, gender and smoking, as variables influencing the toxicity of caffeine. Br J Clin Pharmacol 41(6):605–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tantcheva-Poor I, Zaigler M, Rietbrock S, Fuhr U (1999) Estimation of cytochrome P-450 CYP1A2 activity in 863 healthy Caucasians using a saliva-based caffeine test. Pharmacogenetics 9(2):131–144

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the Faculty of Medical Sciences, University of Kragujevac, Serbia, JP 07/11, and the Ministry of Science and Technology of the Republic of Serbia, grants No. 175007 and 175056.

Contributions of authors’ statement

• Natasa Djordjevic participated in conception and design of the work, as well as in acquisition, analysis, and interpretation of the data, wrote the paper, approved the submitted version of the paper, and agrees to be accountable for all aspects of the work.

• Dragana Dragas Milovanovic participated in acquisition, analysis, and interpretation of the data, revised the paper critically for important intellectual content, approved the submitted version of the paper, and agrees to be accountable for all aspects of the work.

• Marija Radovanovic participated in acquisition, analysis, and interpretation of the data, revised the paper critically for important intellectual content, approved the submitted version of the paper, and agrees to be accountable for all aspects of the work.

• Ivan Radosavljevic participated in acquisition, analysis, and interpretation of the data, revised the paper critically for important intellectual content, approved the submitted version of the paper, and agrees to be accountable for all aspects of the work.

• Slobodan Obradovic participated in conception and design of the work, as well as in interpretation of the data, revised the paper critically for important intellectual content, approved the submitted version of the paper, and agrees to be accountable for all aspects of the work.

• Mihajlo Jakovljevic participated in analysis and interpretation of the data, revised the paper critically for important intellectual content, approved the submitted version of the paper, and agrees to be accountable for all aspects of the work.

• Dragan Milovanovic participated in acquisition, analysis, and interpretation of the data, revised the paper critically for important intellectual content, approved the submitted version of the paper, and agrees to be accountable for all aspects of the work.

• Jasmina R. Milovanovic participated in conception and design of the work, as well as in acquisition, analysis, and interpretation of the data, revised the paper critically for important intellectual content, approved the submitted version of the paper, and agrees to be accountable for all aspects of the work.

• Slobodan Jankovic participated in analysis and interpretation of the data, revised the paper critically for important intellectual content, approved the submitted version of the paper, and agrees to be accountable for all aspects of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natasa Djordjevic.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djordjevic, N., Milovanovic, D.D., Radovanovic, M. et al. CYP1A2 genotype affects carbamazepine pharmacokinetics in children with epilepsy. Eur J Clin Pharmacol 72, 439–445 (2016). https://doi.org/10.1007/s00228-015-2006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-015-2006-9

Keywords

Navigation