European Journal of Clinical Pharmacology

, Volume 71, Issue 9, pp 1091–1097 | Cite as

Effect of CYP3A5 and ABCB1 polymorphisms on the interaction between tacrolimus and itraconazole in patients with connective tissue disease

  • Masaru Togashi
  • Takenori Niioka
  • Atsushi KomatsudaEmail author
  • Mizuho Nara
  • Shin Okuyama
  • Ayumi Omokawa
  • Maiko Abumiya
  • Hideki Wakui
  • Naoto Takahashi
  • Masatomo Miura
Pharmacokinetics and Disposition



The aim of this study was to investigate the effect of itraconazole (ITCZ), a potent inhibitor of CYP3A4 and P-glycoprotein, on the blood concentration 12 h after tacrolimus administration (C 12h) in relation to CYP3A5 6986A>G and ABCB1 3435C>T genotype status in patients with connective tissue disease (CTD).


Eighty-one CTD patients taking tacrolimus (Prograf®) once daily at night (2100 hours) were enrolled in this study. Whole blood samples were collected 12 h after tacrolimus administration at steady state.


The dose-adjusted tacrolimus C 12h with or without ITCZ co-administration was significantly higher in patients with CYP3A5*3/*3 than in those with the CYP3A5*1 allele [CYP3A5 *1/*1 vs. *1/*3 vs. *3/*3 = 1.67 vs. 2.70 vs. 4.83 ng/mL/mg (P = 0.003) and 0.68 vs. 0.97 vs. 2.20 ng/mL/mg (P < 0.001), respectively], but differences were not observed for ABCB1 genotypes. However, there was no difference in the increase rate of the dose-adjusted C 12h of tacrolimus between CYP3A5 or ABCB1 genotypes (P = 0.378 and 0.259). On the other hand, reduction of the estimated glomerular filtration rate exhibited a correlation with the C 12h of tacrolimus after ITCZ co-administration (r = −0.482, P = 0.009).


In CYP3A5*3/*3 patients, because the metabolic pathway for tacrolimus occurs only through CYP3A4, the combination with ITCZ seems to lead to a higher risk of acute renal dysfunction. Therefore, we suggest that the target blood tacrolimus concentration be set as low as possible through dose-adjustment for patients with the CYP3A5*3/*3 allele.


Itraconazole Tacrolimus CYP3A5 polymorphism Drug-drug interaction Connective tissue disease 



This work was supported by a grant (No. 26460189) from the Japan Society for the Promotion of Science, Tokyo, Japan.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

228_2015_1901_MOESM1_ESM.docx (27 kb)
ESM 1 Figure 1 Study profile. Diagram shows patient disposition in treatment groups with and without co-administration of itraconazole. (DOCX 26 kb)
228_2015_1901_MOESM2_ESM.docx (50 kb)
ESM 2 Table 2 Median blood concentration and dose of tacrolimus with or without itraconazole. (DOCX 50 kb)


  1. 1.
    Lee YH, Woo JH, Choi SJ, Ji JD, Bae SC, Song GG (2010) Tacrolimus for the treatment of active rheumatoid arthritis: a systematic review and meta-analysis of randomized controlled trials. Scand J Rheumatol 39:271–278PubMedCrossRefGoogle Scholar
  2. 2.
    Takeuchi T, Kawai S, Yamamoto K, Harigai M, Ishida K, Miyasaka N (2014) Post-marketing surveillance of the safety and effectiveness of tacrolimus in 3,267 Japanese patients with rheumatoid arthritis. Mod Rheumatol 24:8–16PubMedCrossRefGoogle Scholar
  3. 3.
    Tian SY, Feldman BM, Beyene J, Brown PE, Uleryk EM, Silverman ED (2014) Immunosuppressive therapies for the induction treatment of proliferative lupus nephritis: a systematic review and network meta-analysis. J Rheumatol 41:1998–2007PubMedCrossRefGoogle Scholar
  4. 4.
    Lee YH, Lee HS, Choi SJ, Dai Ji J, Song GG (2011) Efficacy and safety of tacrolimus therapy for lupus nephritis: a systematic review of clinical trials. Lupus 20:636–640PubMedCrossRefGoogle Scholar
  5. 5.
    Scott LJ, McKeage K, Keam SJ, Plosker GL (2003) Tacrolimus: a further update of its use in the management of organ transplantation. Drugs 63:1247–1297PubMedCrossRefGoogle Scholar
  6. 6.
    Takahashi S, Hiromura K, Sakurai N, Matsumoto T, Ikeuchi H, Maeshima A, Kaneko Y, Kuroiwa T, Nojima Y (2011) Efficacy and safety of tacrolimus for induction therapy in patients with active lupus nephritis. Mod Rheumatol 21:282–289PubMedCrossRefGoogle Scholar
  7. 7.
    Lass-Flörl C (2011) Triazole antifungal agents in invasive fungal infections: a comparative review. Drugs 71:2405–2419PubMedCrossRefGoogle Scholar
  8. 8.
    Viscoli C (2009) Antifungal prophylaxis and pre-emptive therapy. Drugs 69:75–78PubMedCrossRefGoogle Scholar
  9. 9.
    Boogaerts M, Maertens J (2001) Clinical experience with itraconazole in systemic fungal infections. Drugs 61:39–47PubMedCrossRefGoogle Scholar
  10. 10.
    Christians U, Jacobsen W, Benet LZ, Lampen A (2002) Mechanisms of clinically relevant drug interactions associated with tacrolimus. Clin Pharmacokinet 41:813–851PubMedCrossRefGoogle Scholar
  11. 11.
    Isoherranen N, Kunze KL, Allen KE, Nelson WL, Thummel KE (2004) Role of itraconazole metabolites in CYP3A4 inhibition. Drug Metab Dispos 32:1121–1131PubMedCrossRefGoogle Scholar
  12. 12.
    Shon JH, Yoon YR, Hong WS, Nguyen PM, Lee SS, Choi YG, Cha IJ, Shin JG (2005) Effect of itraconazole on the pharmacokinetics and pharmacodynamics of fexofenadine in relation to the MDR1 genetic polymorphism. Clin Pharmacol Ther 78:191–201PubMedCrossRefGoogle Scholar
  13. 13.
    Templeton I, Peng CC, Thummel KE, Davis C, Kunze KL, Isoherranen N (2010) Accurate prediction of dose-dependent CYP3A4 inhibition by itraconazole and its metabolites from in vitro inhibition data. Clin Pharmacol Ther 88:499–505PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Nara M, Takahashi N, Miura M, Niioka T, Kagaya H, Fujishima N, Saitoh H, Kameoka Y, Tagawa H, Hirokawa M, Sawada K (2013) Effect of itraconazole on the concentrations of tacrolimus and cyclosporine in the blood of patients receiving allogeneic hematopoietic stem cell transplants. Eur J Clin Pharmacol 69:1321–1329PubMedCrossRefGoogle Scholar
  15. 15.
    Enderby CY, Heckman MG, Thomas CS, Keller CA (2014) Tacrolimus dosage requirements in lung transplant recipients receiving antifungal prophylaxis with voriconazole followed by itraconazole: a preliminary prospective study. Clin Transpl 28:911–915CrossRefGoogle Scholar
  16. 16.
    Kramer MR, Amital A, Fuks L, Shitrit D (2011) Voriconazole and itraconazole in lung transplant recipients receiving tacrolimus (FK 506): efficacy and drug interaction. Clin Transpl 25:163–167CrossRefGoogle Scholar
  17. 17.
    Kunze KL, Nelson WL, Kharasch ED, Thummel KE, Isoherranen N (2006) Stereochemical aspects of itraconazole metabolism in vitro and in vivo. Drug Metab Dispos 34:583–590PubMedCrossRefGoogle Scholar
  18. 18.
    Peng CC, Shi W, Lutz JD, Kunze KL, Liu JO, Nelson WL, Isoherranen N (2012) Stereospecific metabolism of itraconazole by CYP3A4: dioxolane ring scission of azole antifungals. Drug Metab Dispos 40:426–435PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Hesselink DA, Bouamar R, Elens L, van Schaik RH, van Gelder T (2014) The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin Pharmacokinet 53:123–139PubMedCrossRefGoogle Scholar
  20. 20.
    Staatz CE, Goodman LK, Tett SE (2010) Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part II. Clin Pharmacokinet 49:207–221PubMedCrossRefGoogle Scholar
  21. 21.
    Staatz CE, Goodman LK, Tett SE (2010) Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part I. Clin Pharmacokinet 49:141–175PubMedCrossRefGoogle Scholar
  22. 22.
    Terrazzino S, Quaglia M, Stratta P, Canonico PL, Genazzani AA (2012) The effect of CYP3A5 6986A>G and ABCB1 3435C>T on tacrolimus dose-adjusted trough levels and acute rejection rates in renal transplant patients: a systematic review and meta-analysis. Pharmacogenet Genomics 22:642–645PubMedCrossRefGoogle Scholar
  23. 23.
    De BK, Jimenez E, De S, Sawyer JC, McMillin GA (2009) Analytical performance characteristics of the Abbott Architect i2000 tacrolimus assay; comparisons with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and Abbott IMx methods. Clin Chim Acta 410:25–30PubMedCrossRefGoogle Scholar
  24. 24.
    Fukuen S, Fukuda T, Maune H, Ikenaga Y, Yamamoto I, Inaba T, Azuma J (2002) Novel detection assay by PCR-RFLP and frequency of the CYP3A5 SNPs, CYP3A5*3 and *6, in a Japanese population. Pharmacogenetics 12:331–334PubMedCrossRefGoogle Scholar
  25. 25.
    Cascorbi I, Gerloff T, Johne A, Meisel C, Hoffmeyer S, Schwab M, Schaeffeler E, Eichelbaum M, Brinkmann U, Roots I (2001) Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther 69:169–174PubMedCrossRefGoogle Scholar
  26. 26.
    Miura M, Satoh S, Kagaya H, Saito M, Numakura K, Tsuchiya N, Habuchi T (2011) Impact of the CYP3A4*1G polymorphism and its combination with CYP3A5 genotypes on tacrolimus pharmacokinetics in renal transplant patients. Pharmacogenomics 12:977–984PubMedCrossRefGoogle Scholar
  27. 27.
    Miura M, Niioka T, Kagaya H, Saito M, Hayakari M, Habuchi T, Satoh S (2011) Pharmacogenetic determinants for interindividual difference of tacrolimus pharmacokinetics 1 year after renal transplantation. J Clin Pharm Ther 36:208–216PubMedCrossRefGoogle Scholar
  28. 28.
    Shirasaka Y, Chang SY, Grubb MF, Peng CC, Thummel KE, Isoherranen N, Rodrigues AD (2013) Effect of CYP3A5 expression on the inhibition of CYP3A-catalyzed drug metabolism: impact on modeling CYP3A-mediated drug-drug interactions. Drug Metab Dispos 41:1566–1574PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Chandel N, Aggarwal PK, Minz M, Sakhuja V, Kohli KK, Jha V (2009) CYP3A5*1/*3 genotype influences the blood concentration of tacrolimus in response to metabolic inhibition by ketoconazole. Pharmacogenet Genomics 19:458–463PubMedCrossRefGoogle Scholar
  30. 30.
    Lin YS, Dowling AL, Quigley SD, Farin FM, Zhang J, Lamba J, Schuetz EG, Thummel KE (2002) Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 62:162–172PubMedCrossRefGoogle Scholar
  31. 31.
    Staatz CE, Tett SE (2004) Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet 43:623–653PubMedCrossRefGoogle Scholar
  32. 32.
    Gorski JC, Vannaprasaht S, Hamman MA, Ambrosius WT, Bruce MA, Haehner-Daniels B, Hall SD (2003) The effect of age, sex, and rifampin administration on intestinal and hepatic cytochrome P450 3A activity. Clin Pharmacol Ther 74:275–287PubMedCrossRefGoogle Scholar
  33. 33.
    Hunt CM, Westerkam WR, Stave GM, Wilson JA (1992) Hepatic cytochrome P-4503A (CYP3A) activity in the elderly. Mech Aging Dev 64:189–199PubMedCrossRefGoogle Scholar
  34. 34.
    Klotz U (2009) Pharmacokinetics and drug metabolism in the elderly. Drug Metab Rev 41:67–76PubMedCrossRefGoogle Scholar
  35. 35.
    Tavira B, Gómez J, Díaz-Corte C, Coronel D, Lopez-Larrea C, Suarez B, Coto E (2015) The donor ABCB1 (MDR-1) C3435T polymorphism is a determinant of the graft glomerular filtration rate among tacrolimus treated kidney transplanted patients. J Hum Genet. doi: 10.1038/jhg.2015.12 PubMedGoogle Scholar
  36. 36.
    Naito T, Mino Y, Aoki Y, Hirano K, Shimoyama K, Ogawa N, Kagawa Y, Kawakami J (2015) ABCB1 genetic variant and its associated tacrolimus pharmacokinetics affect renal function in patients with rheumatoid arthritis. Clin Chim Acta 445:79–84PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Masaru Togashi
    • 1
  • Takenori Niioka
    • 2
  • Atsushi Komatsuda
    • 1
    Email author
  • Mizuho Nara
    • 1
  • Shin Okuyama
    • 3
  • Ayumi Omokawa
    • 4
  • Maiko Abumiya
    • 2
  • Hideki Wakui
    • 5
  • Naoto Takahashi
    • 1
  • Masatomo Miura
    • 2
  1. 1.Department of Hematology, Nephrology, RheumatologyAkita University Graduate School of MedicineAkitaJapan
  2. 2.Department of PharmacyAkita University HospitalAkitaJapan
  3. 3.Center for Kidney Disease and TransplantationAkita University HospitalAkitaJapan
  4. 4.Department of General Internal Medicine and Clinical Laboratory MedicineAkita University Graduate School of MedicineAkitaJapan
  5. 5.Department of Life Science, Graduate School of Engineering and Resource ScienceAkita UniversityAkitaJapan

Personalised recommendations