Skip to main content

Advertisement

Log in

Review article: The pharmacokinetics and pharmacodynamics of drugs used in inflammatory bowel disease treatment

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Background

The following review is a compilation of the recent advances and knowledge on the behaviour of the most frequently used compounds to treat inflammatory bowel disease in an organism.

Results

It considers clinical aspects of each entity and the pharmacokinetic/pharmacodynamic relationship supported by the use of plasma monitoring, tissue concentrations, and certain aspects derived from pharmacogenetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ordas I, Feagan BG, Sandborn WG (2012) Therapeutic drug monitoring of tumor necrosis factor antagonists in inflammatory bowel disease. Clin Gastroenterol Hepatol 10:1079–1087

    CAS  PubMed  Google Scholar 

  2. Schneider RE, Babb J, Bishop H, Mitchard M (1976) Plasma levels of propranolol in treated patients with coeliac disease and patients with Crohn’s disease. Br Med J 2:794–795

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Kendall MJ, Quarterman CP, Bishop H, Schneider RE (1979) Effect of inflammatory disease on plasma oxprenolol concentrations. Br Med J 2:465–468

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Scotto KW (2003) Transcriptional regulation of ABC drug transporters. Oncogene 22:7496–7511

    CAS  PubMed  Google Scholar 

  5. Schinkel AH, Jonker JW (2003) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 55:3–29

    CAS  PubMed  Google Scholar 

  6. Mikkaichi T, Suzuki T, Tanemoto M, Ito S, Abe T (2004) The organic anion transporter (OATP) family. Drug Metab Pharmacokinet 19:171–179

    CAS  PubMed  Google Scholar 

  7. Kim RB (2003) Organic anion-transporting polypeptide (OATP) transporter family and drug disposition. Eur J Clin Invest 33(Suppl 2):1–5

    PubMed  Google Scholar 

  8. Petrovic V, Teng S, Piquette-Miller M (2007) Regulation of drug transporters during infection and inflammation. Mol Interv 7:99–111

    CAS  PubMed  Google Scholar 

  9. Slaviero KA, Clarke SJ, Rivory LP (2003) Inflammatory response: an unrecognized source of variability in the pharmacokinetics and pharmacodynamics of cancer chemotherapy. Lancet Oncol 4:224–232

    CAS  PubMed  Google Scholar 

  10. Aitken AE, Richardson TA, Morgan ET (2006) Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol 46:123–149

    CAS  PubMed  Google Scholar 

  11. Renton KW (2005) Regulation of drug metabolism and disposition during inflammation and infection. Expert Opin Drug Metab Toxicol 1:629–640

    CAS  PubMed  Google Scholar 

  12. Robertson GR, Liddle C, Clarke SJ (2008) Inflammation and altered drug clearance in cancer: transcriptional repression of a human CYP3A4 transgene in tumor-bearing mice. Clin Pharmacol Ther 83:894–897

    CAS  PubMed  Google Scholar 

  13. Nolin TD, Naud J, Leblond FA, Pichette V (2008) The emerging impact of kidney disease on drug metabolism and transport. Clin Pharmacol Ther 83:898–903

    CAS  PubMed  Google Scholar 

  14. Yacyshyn B, Maksymowych W, Bowen-Yacyshyn MB (1999) Differences in P-glycoprotein-170 expression and activity between Crohn’s disease and ulcerative colitis. Hum Immunol 60(8):677–687

    CAS  PubMed  Google Scholar 

  15. Evans WE, McLeod HL (2003) Pharmacogenomics: drug disposition, drug targets, and side effects. N Engl J Med 348:538–549

    CAS  PubMed  Google Scholar 

  16. Azad Khan AK, Piris J, Truelove SC (1977) An experiment to determine the active therapeutic moiety of sulphasalazine. Lancet 2:892–895

    CAS  PubMed  Google Scholar 

  17. van Hees PA, Bakker JH, van Tongeren JH (1980) Effect of sulphapyridine, 5-aminosalicylic acid, and placebo in patients with idiopathic proctitis: a study to determine the active therapeutic moiety of sulphasalazine. Gut 21:632–635

    PubMed Central  PubMed  Google Scholar 

  18. Klotz U, Maier K, Fischer C, Heinkel K (1980) Therapeutic efficacy of sulfasalazine and its metabolites in patients with ulcerative colitis and Crohn’s disease. N Engl J Med 303:1499–1502

    CAS  PubMed  Google Scholar 

  19. Dignass A, Lindsay JO, Sturm A, Windsor A, Colombel JF, Allez M et al (2012) Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 2: current management. J Crohn Colitis 6(10):991–1030

    Google Scholar 

  20. Myers B, Evans DNW, Rhodes J, Evans BK, Hughes BR, Lee MG et al (1987) Metabolism and urinary excretion of 5-aminosalicylic acid in healthy volunteers when given intravenously or released for absorption at different sites in the gastrointestinal tract. Gut 28:196–200

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Bondesen S, Hegnhøj J, Larsen F, Hansen SH, Hansen CP, Rasmussen SN (1991) Pharmacokinetics of 5-aminosalicylic acid in man following administration of intravenous bolus and per os slow-release formulation. Dig Dis Sci 36:1735–1740

    CAS  PubMed  Google Scholar 

  22. Allgayer H, Ahnfelt NO, Kruis W et al (1989) Colonic N-acetylation of 5-aminosalicylic acid in inflammatory bowel disease. Gastroenterology 97:38–41

    CAS  PubMed  Google Scholar 

  23. Klotz U (1985) Clinical pharmacokinetics of sulphasalazine, its metabolites and other prodrugs of 5-aminosalicylic acid. Clin Pharmacokinet 10:285–302

    CAS  PubMed  Google Scholar 

  24. Klotz U, Maier KE (1987) Pharmacology and pharmacokinetics of 5-aminosalicylic acid. Dig Dis Sci 32:46S–50S

    CAS  PubMed  Google Scholar 

  25. Meese CO, Fischer C, Klotz U (1984) Is N-acetylation of 5-aminosalicylic acid reversible in man? Br J Clin Pharmacol 18:612–615

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Vree TB, Dammers E, Exler PS, Sörgel F, Maes RA (2000) Saturable active tubular reabsorption in the renal clearance of mesalazine in human volunteers. Clin Drug Invest 20:35–42

    CAS  Google Scholar 

  27. Goebell H, Klotz U, Nehlsen B, Layer P (1993) Oroileal transit of slow release 5-aminosalicylic acid. Gut 34:669–675

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Layer PH, Goebell H, Keller J, Dignass A, Klotz U (1995) Delivery and fate of oral mesalamine microgranules within the human small intestine. Gastroenterology 108:1427–1433

    CAS  PubMed  Google Scholar 

  29. Zhou SY, Fleisher D, Pao LH, Li C, Winward B, Zimmermann EM (1999) Intestinal metabolism and transport of 5-aminosalicylate. Drug Metab Dispos 27:479–485

    CAS  PubMed  Google Scholar 

  30. Liang E, Proudfoot J, Yazdanian M (2000) Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in Caco-2 cell monolayers. Pharm Res 17:1168-1174

  31. Hussain FN, Ajjan RA, Riley SA (2000) Dose loading with delayed release mesalazine: a study of tissue drug concentrations and standard pharmacokinetic parameters. Br J Clin Pharmacol 49:323–330

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Frieri G, Pimpo MT, Andreoli A, Annese V, Comberlato M, Corrao G et al (1999) Prevention of post-operative recurrence of Crohn’s disease requires adequate mucosal concentration of mesalazine. Aliment Pharmacol Ther 13:557–582

    Google Scholar 

  33. Frieri G, Giacomelli R, Pimpo M, Palumbo G, Passacantando A, Pantaleoni G et al (2000) Mucosal 5-aminosalicylic acid concentration inversely correlates with severity of colonic inflammation in patients with ulcerative colitis. Gut 47:410–414

    CAS  PubMed Central  PubMed  Google Scholar 

  34. van Bodegraven AA, Boer RO, Lourens J, Tuynman HA, Sindram JW (1996) Distribution of mesalazine enemas in active and quiescent ulcerative colitis. Aliment Pharmacol Ther 10:327–332

    PubMed  Google Scholar 

  35. Campieri M, Corbelli C, Gionchetti P, Brignola C, Belluzzi A, Di Febo G et al (1992) Spread and distribution of 5-ASA colonic foam and 5-ASA enema in patients with ulcerative colitis. Dig Dis Sci 37:1890–1897

    CAS  PubMed  Google Scholar 

  36. Schoonjans R, de Vos M, Schelfhout A-M, Praet M, Elewaut A (1996) Distribution and concentration of 5-aminosalicylic acid in rectosigmoid biopsy specimen after rectal administration. Dis Colon Rectum 39:788–793

    CAS  PubMed  Google Scholar 

  37. Almer S, Norlander B, Ström M, Osterwald H (1991) Steady-state pharmacokinetics of a new 4-gram 5-aminosalicylic acid retention enema in patients with ulcerative colitis in remission. Scand J Gastroenterol 26:327–335

    CAS  PubMed  Google Scholar 

  38. Jacobsen BA, Abildgaard K, Rasmussen HH, Christensen LA, Fallingborg J, Hansen SH (1991) Availability of mesalazine (5-aminosalicylic acid) from enemas and suppositories during steady-state conditions. Scand J Gastroenterol 26:374–378

    CAS  PubMed  Google Scholar 

  39. Fretland AJ, Doll MA, Leff MA, Hein DW (2001) Functional characterization of nucleotide polymorphisms in the coding region of N-acetyltransferase 1. Pharmacogenetics 11(6):511–520

    CAS  PubMed  Google Scholar 

  40. Fretland AJ, Leff MA, Doll MA, Hein DW (2001) Functional characterization of human N-acetyltransferase 2 (NAT2) single nucleotide polymorphisms. Pharmacogenetics 11(3):207–215

    CAS  PubMed  Google Scholar 

  41. Ohtani T, Hiroi A, Sakurane M, Furukawa F (2003) Slow acetylator genotypes as a possible risk factor for infectious mononucleosis-like syndrome induced by salazosulfapyridine. Br J Dermatol 148(5):1035–1039

    CAS  PubMed  Google Scholar 

  42. Tanaka E, Taniguchi A, Urano W, Nakajima H, Matsuda Y, Kitamura Y et al (2002) Adverse effects of sulfasalazine in patients with rheumatoid arthritis are associated with diplotype configuration at the N-acetyltransferase 2 gene. J Rheumatol 29(12):2492–2499

    CAS  PubMed  Google Scholar 

  43. Ricart E, Taylor WR, Loftus EV, O’Kane D, Weinshilboum RM, Tremaine WJ et al (2002) N-acetyltransferase 1 and 2 genotypes do not predict response or toxicity to treatment with mesalamine and sulfasalazine in patients with ulcerative colitis. Am J Gastroenterol 97(7):1763–1768

    CAS  PubMed  Google Scholar 

  44. Dignass A, Van Assche G, Lindsay JO, Lémann M, Söderholm J, Colombel JF et al (2010) The second European evidence-based consensus on the diagnosis and management of Crohn’s disease: current management. J Crohns Colitis 4(1):28–62

    CAS  PubMed  Google Scholar 

  45. Seow CH, Benchimol EI, Steinhart AH, Griffiths AM, Otley AR (2009) Budesonide for Crohn’s disease. Expert Opin Drug Metab Toxicol 5:971–979

    CAS  PubMed  Google Scholar 

  46. Campieri M, Adamo S, Valpiani D, D’Arienzo A, D’Albasio G, Pitzalis M et al (2003) Oral beclometasone dipropionate in the treatment of extensive and left-sided active ulcerative colitis: a multicenter randomised study. Aliment Pharmacol Ther 17:1471–1480

    CAS  PubMed  Google Scholar 

  47. Manguso F, Balzano A (2007) Meta-analysis: the efficacy of rectal beclomethasone dipropionate vs. 5-aminosalicylic acid in mild to moderate distal ulcerative colitis. Aliment Pharmacol Ther 26:21–29

    CAS  PubMed  Google Scholar 

  48. Derendorf H, Möllmann H, Barth J, Möllmann C, Tunn S, Krieg M (1991) Pharmacokinetics and oral bioavailability of hydrocortisone. J Clin Pharmacol 31:473–476

    CAS  PubMed  Google Scholar 

  49. Ryrfeldt Å, Edsbäcker S, Pauwels R (1984) Kinetics of the epimeric glucocorticoid budesonide. Clin Pharmacol Ther 35:525–530

    CAS  PubMed  Google Scholar 

  50. Ryrfeldt A, Andersson P, Edsbäcker S, Tönnesson M, Davies D, Pauwels R (1982) Pharmacokinetics and metabolism of budesonide, a selective glucocorticoid. Eur J Respir Dis Suppl 122:86–95

    CAS  PubMed  Google Scholar 

  51. Tanner A, Bochner F, Caffin J, Halliday J, Powell L (1979) Dose-dependent prednisolone kinetics. Clin Pharmacol Ther 25:571–578

    CAS  PubMed  Google Scholar 

  52. Barth J, Damoiseaux M, Möllmann H, Brandis KH, Hochhaus G, Derendorf H (1992) Pharmacokinetics and pharmacodynamics of prednisolone after intravenous and oral administration. Int J Clin Pharmacol Ther Toxicol 30:317–324

    CAS  PubMed  Google Scholar 

  53. Pickup ME, Lowe JR, Leatham RA, Rhind VM, Wright V, Downie WW (1977) Dose dependent pharmacokinetics of prednisolone. Eur J Clin Pharmacol 12:213–219

    CAS  PubMed  Google Scholar 

  54. Legler UF (1988) The pharmacokinetics of glucocorticoids. ISI Atlas Sci Pharmacol 345-350.

  55. Wald JA, Law RM, Ludwig EA, Sloan RR, Middleton E Jr, Jusko WJ (1992) Evaluation of dose-related pharmacokinetics and pharmacodynamics of prednisolone in man. J Pharmacokinet Biopharm 20:567–589

    CAS  PubMed  Google Scholar 

  56. Thiesen A, Thomson ABR (1996) Review article: older systemic and newer topical glucocorticosteroids and the gastrointestinal tract. Aliment Pharmacol Ther 10:487–496

    CAS  PubMed  Google Scholar 

  57. Davis M, Williams R, Chakraborty J, English J, Marks V, Ideo G et al (1978) Prednisone or prednisolone for the treatment of chronic active hepatitis? A comparison of plasma availability. Br J Clin Pharmacol 5:501–505

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Bergrem H, Grøttum P, Rugstad HE (1983) Pharmacokinetics and protein binding of prednisolone after oral and intravenous administration. Eur J Clin Pharmacol 24:415–419

    CAS  PubMed  Google Scholar 

  59. Brogden RN, Budesonide MTD (1992) An updated review of its pharmacological properties and therapeutic efficacy in asthma and rhinitis. Drugs 44:375–407

    CAS  PubMed  Google Scholar 

  60. Spencer CM, Budesonide MTD (1995) A review of its pharmacological properties and therapeutic efficacy in inflammatory bowel disease. Drugs 50:854–872

    CAS  PubMed  Google Scholar 

  61. Frey BM, Frey FJ (1990) Clinical pharmacokinetics of prednisone and prednisolone. Clin Pharmacokinet 19:126–146

    CAS  PubMed  Google Scholar 

  62. Rose JQ, Yurchak AM, Jusko WJ (1981) Dose-dependent pharmacokinetics of prednisone and prednisolone in man. J Pharmakokine Biopharm 9:389–417

    CAS  Google Scholar 

  63. Pickup ME (1979) Clinical pharmacokinetics of prednisone and prednisolone. Clin Pharmacokinet 4:111–128

    CAS  PubMed  Google Scholar 

  64. Möllmann H, Rohdewald P, Barth J, Möllmann C, Verho M, Derendorf H (1988) Comparative pharmacokinetics of methylprednisolone phosphate and hemisuccinate in high doses. Pharm Res 5:509–513

    PubMed  Google Scholar 

  65. Möllmann H, Rohdewald P, Barth J, Verho M, Derendorf H (1989) Pharmacokinetics and dose linearity testing of methylprednisolone phosphate. Biopharm Drug Dispos 10:453–464

    PubMed  Google Scholar 

  66. Rohatagi S, Barth J, Möllmann H, Hochhaus G, Soldner A, Möllmann C et al (1997) Pharmacokinetics of methylprednisolone and prednisolone after single and multiple oral administration. J Clin Pharmacol 37(10):916–925

    CAS  PubMed  Google Scholar 

  67. Derendorf H, Möllmann H, Rohdewald P, Rehder J, Schmidt EW (1985) Kinetics of methylprednisolone and its hemisuccinate ester. Clin Pharmacol Ther 37:502–507

    CAS  PubMed  Google Scholar 

  68. Möllmann H, Barth J, Möllmann C, Tunn S, Krieg M, Derendorf H (1991) Pharmacokinetics and rectal bioavailability of hydrocortisone acetate. J Pharm Sci 80:835–836

    PubMed  Google Scholar 

  69. Jönsson G, Åström A, Andersson P (1995) Budesonide is metabolized by cytochrome P4503A (CYP3A) enzymes in human liver. Drug Metabol Dispos 23:137–142

    Google Scholar 

  70. Lichtenstein GR (2001) Approach to corticosteroid-dependent and corticosteroid-refractory Crohn’s disease. Inflamm Bowel Dis 7(Suppl 1):S23–S29

    PubMed  Google Scholar 

  71. Brunner M, Vogelsang H, Greinwald R, Kletter K, Kvaternik H, Schrolnberger C et al (2005) Colonic spread and serum pharmacokinetics of budesonide foam in patients with mildly to moderately active ulcerative colitis. Aliment Pharmacol Ther 22:463–470

    CAS  PubMed  Google Scholar 

  72. Sandborn WJ, Danese S, D’Haens G, Moro L, Jones R, Bagin R et al (2015) Induction of clinical and colonoscopic remission of mild-to-moderate ulcerative colitis with budesonide MMX 9 mg: pooled analysis of two phase 3 studies. Aliment Pharmacol Ther 41(5):409–418

    CAS  PubMed  Google Scholar 

  73. Hamedani R, Feldman RD, Feagan GB (1997) Review article: drug development in inflammatory bowel disease: budesonide—a model of targeted therapy. Aliment Pharmacol Ther 11(Suppl 3):98–108

    CAS  PubMed  Google Scholar 

  74. Edsbäcker S, Wollmer P, Nilsson M (1993) Pharmacokinetics and gastrointestinal transit of budesonide controlled ileal release (CIR) capsules [abstract]. Gastroenterology 104(4 Suppl):A695

    Google Scholar 

  75. Edsbäcker S, Bengtsson B, Larsson P, Lundin P, Nilsson A, Ulmius J et al (2003) A pharmacoscintigraphic evaluation of oral budesonide given as controlled-release (Entocort) capsule. Aliment Pharmacol Ther 17:525–636

    PubMed  Google Scholar 

  76. Peña AS, Kolkman JJ, Greinwald R, Tauschel HD, Nelis FG, Viergever P et al (2004) Pharmacokinetics after single and multiple oral dosing of budesonide pH-modified-release capsules in patients with distal ulcerative colitis. In: Dignass A, Gross V, Buhr HJ, James OFW (eds) Topical steroids in gastroenterology and hepatology. Kluwer Academic, Dordrecht, pp 30–35

    Google Scholar 

  77. Turner D, Walsh CM, Steinhart AH, Griffiths AM (2007) Response to corticosteroids in severe ulcerative colitis: a systematic review of the literature and a meta-regression. Clin Gastroenterol Hepatol 5:103–110

    CAS  PubMed  Google Scholar 

  78. Ardizzone S, Maconi G, Russo A, Imbesi V, Colombo E, Bianchi PG (2006) Randomised controlled trial of azathioprine and 5-aminosalicylic acid for treatment of steroid dependent ulcerative colitis. Gut 55(1):47–53

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Flood L, Löfberg R, Stierna P, Wikström AC (2001) Glucocorticoid receptor mRNA in patients with ulcerative colitis: a study of responders and nonresponders to glucocorticosteroid therapy. Inflamm Bowel Dis 7(3):202–209

    CAS  PubMed  Google Scholar 

  80. Honda M, Orii F, Ayabe T, Imai S, Ashida T, Obara T et al (2000) Expression of glucocorticoid receptor beta in lymphocytes of patients with glucocorticoid-resistant ulcerative colitis. Gastroenterology 118(5):859–866

    CAS  PubMed  Google Scholar 

  81. Bantel H, Schmitz ML, Raible A, Gregor M, Schulze-Osthoff K (2002) Critical role of NF-kappaB and stress-activated protein kinases in steroid unresponsiveness. FASEB J 16(13):1832–1834

    CAS  PubMed  Google Scholar 

  82. Farrell RJ, Kelleher D (2003) Glucocorticoid resistance in inflammatory bowel disease. J Endocrinol 178(3):339–346

    CAS  PubMed  Google Scholar 

  83. Dilger K, Schwab M, Fromm MF (2004) Identification of budesonide and prednisone as substrates of the intestinal drug efflux pump P-glycoprotein. Inflamm Bowel Dis 10(5):578–583

    PubMed  Google Scholar 

  84. Ho GT, Nimmo ER, Tenesa A, Fennell J, Drummond H, Mowat C et al (2005) Allelic variations of the multidrug resistance gene determine susceptibility and disease behavior in ulcerative colitis. Gastroenterology 128(2):288–296

    CAS  PubMed  Google Scholar 

  85. Palmieri O, Latiano A, Valvano R, D’Incà R, Vecchi M, Sturniolo GC et al (2005) Multidrug resistance 1 gene polymorphisms are not associated with inflammatory bowel disease and response to therapy in Italian patients. Aliment Pharmacol Ther 22(11-12):1129–1138

    CAS  PubMed  Google Scholar 

  86. Annese V, Latiano A, Rossi L, Lombardi G, Dallapiccola B, Serafini S et al (2005) Erythrocytes-mediated delivery of dexamethasone in steroid-dependent IBD patients—a pilot uncontrolled study. Am J Gastroenterol 100(6):1370–1375

    CAS  PubMed  Google Scholar 

  87. Annese V, Latiano A, Rossi L, Bossa F, Damonte G, Dallapiccola B et al (2006) The polymorphism of multi-drug resistance 1 gene (MDR1) does not influence the pharmacokinetics of dexamethasone loaded into autologous erythrocytes of patients with inflammatory bowel disease. Eur Rev Med Pharmacol Sci 10(1):27–31

    CAS  PubMed  Google Scholar 

  88. Willoughby JM, Beckett J, Kumar PJ, Dawson AM (1971) Controlled trial of azathioprine in Crohn’s disease. Lancet 2:944–947

    CAS  PubMed  Google Scholar 

  89. Candy S, Wright J, Gerber M, Adams G, Gerig M, Goodman R (1995) A controlled double blind study of azathioprine in the management of Crohn’s disease. Gut 37:674–678

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Present DH, Korelitz BI, Wisch N, Glass JL, Sachar DB, Pasternack BS (1980) Treatment of Crohn’s disease with 6-mercaptopurine. A long-term, randomized, double-blind study. N Engl J Med 302:981–987

    CAS  PubMed  Google Scholar 

  91. Pearson DC, May GR, Fick GH, Sutherland LR (1995) Azathioprine and 6-mercaptopurine in Crohn disease. A meta-analysis. Ann Intern Med 123:132–142

    CAS  PubMed  Google Scholar 

  92. Rosenberg JL, Wall AJ, Levin B, Binder HJ, Kirsner JB (1975) A controlled trial of azathioprine in the management of chronic ulcerative colitis. Gastroenterology 69:96–99

    CAS  PubMed  Google Scholar 

  93. Hawthorne AB, Logan RF, Hawkey CJ, Foster PN, Axon AT, Swarbrick ET et al (1992) Randomised controlled trial of azathioprine withdrawal in ulcerative colitis. BMJ 305:20–22

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Markowitz J, Rosa J, Grancher K, Aiges H, Daum F (1990) Long-term 6-mercaptopurine treatment in adolescents with Crohn’s disease. Gastroenterology 99:1347–1351

    CAS  PubMed  Google Scholar 

  95. Sandborn WJ (1998) Azathioprine: state of the art in inflammatory bowel disease. Scand J Gastroenterol 225(Suppl):92–99

    CAS  Google Scholar 

  96. Chalmers AH (1974) Studies on the mechanism of formation of 5-mercapto-1-methyl-4-nitroimidazole, a metabolite of the immunosuppressive drug azathioprine. Biochem Pharmacol 23:1891–1901

    CAS  PubMed  Google Scholar 

  97. Chabner BA, Allegra CJ, Curt GA et al (1996) Antineoplastic agents. In: Hardman JG, Limbird LE (eds) Goodman & Gilman’s the pharmacological basis of therapeutics, 9th edn. McGraw-Hill, New York, pp 1233–1287

    Google Scholar 

  98. Tidd DM, Paterson AR (1974) A biochemical mechanism for the delayed cytotoxic reaction of 6-mercaptopurine. Cancer Res 34:738–746

    CAS  PubMed  Google Scholar 

  99. Blaker PA, Arenas-Hernandez M, Smith MA, Shobowale-Bakre EA, Fairbanks L, Irving PM et al (2013) Mechanism of allopurinol induced TPMT inhibition. Biochem Pharmacol 86(4):539–547

    CAS  PubMed  Google Scholar 

  100. Present DH (1989) 6-Mercaptopurine and other immunosuppressive agents in the treatment of Crohn’s disease and ulcerative colitis. Gastroenterol Clin North Am 18(1):57–71

    CAS  PubMed  Google Scholar 

  101. Lennard L (1992) The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 43(4):329–339

    CAS  PubMed  Google Scholar 

  102. Sandborn WJ, Van Os EC, Zins BJ, Tremaine WJ, Mays DC, Lipsky JJ (1995) An intravenous loading dose of azathioprine decreases the time to response in patients with Crohn’s disease. Gastroenterology 109:1808–1817

    CAS  PubMed  Google Scholar 

  103. Lennard L, Lilleyman JS, Van Loon J, Weinshilboum RM (1990) Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 336:225–229

    CAS  PubMed  Google Scholar 

  104. Lilleyman JS, Lennard L (1994) Mercaptopurine metabolism and risk of relapse in childhood lymphoblastic leukaemia. Lancet 343:1188–1190

    CAS  PubMed  Google Scholar 

  105. Weinshilboum RM, Raymond FA, Pazmino PA (1978) Human erythrocyte thiopurine methyltransferase: radiochemical microassay and biochemical properties. Clin Chim Acta 85:323–333

    CAS  PubMed  Google Scholar 

  106. Pettersson BAS, Albertioni F, Soderhall S, Peterson C (2002) Differences between children and adults in thiopurine methyltransferase activity and metabolite formation during thiopurine therapy: possible role of concomitant methotrexate. Ther Drug Monit 24:351–358

    CAS  PubMed  Google Scholar 

  107. Evans WE, Hon YY, Bomgaars L, Coutre S, Holdsworth M, Janco R et al (2001) Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J Clin Oncol 19:2293–2301

    CAS  PubMed  Google Scholar 

  108. Evans WE, Horner M, Chu YQ, Kalwinsky D, Roberts WM (1991) Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. J Pediatr 119:985–989

    CAS  PubMed  Google Scholar 

  109. Derijks LJ, Gilissen LP, Engels LG, Bos LP, Bus PJ, Lohman JJ et al (2004) Pharmacokinetics of 6-mercaptopurine in patients with inflammatory bowel disease: implications for therapy. Ther Drug Monit 26(3):311–318

    CAS  PubMed  Google Scholar 

  110. Gilissen LP, Derijks LJ, Bos LP, Verhoeven HM, Bus PJ, Hooymans PM et al (2004) Some cases demonstrating the clinical usefulness of therapeutic drug monitoring in thiopurine-treated inflammatory bowel disease patients. Eur J Gastroenterol Hepatol 16(7):705–710

    CAS  PubMed  Google Scholar 

  111. Colombel JF, Ferrari N, Debuysere H, Marteau P, Gendre JP, Bonaz B et al (2000) Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology 118(6):1025–1030

    CAS  PubMed  Google Scholar 

  112. Szumlanski CL, Weinshilboum RM (1995) Sulphasalazine inhibition of thiopurine methyltransferase: possible mechanism for interaction with 6-mercaptopurine and azathioprine. Br J Clin Pharmacol 39(4):456–459

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Pettersson B, Almer S, Albertioni F, Söderhäll S, Peterson C (2002) Differences between children and adults in thiopurine methyltransferase activity and metabolite formation during thiopurine therapy: possible role of concomitant methotrexate. Ther Drug Monit 24(3):351–358

    CAS  PubMed  Google Scholar 

  114. Krynetski EY, Tai HL, Yates CR, Fessing MY, Loennechen T, Schuetz JD et al (1996) Genetic polymorphism of thiopurine S-methyltransferase: clinical importance and molecular mechanisms. Pharmacogenetics 6:279–290

    CAS  PubMed  Google Scholar 

  115. Krynetski EY, Evans WE (2000) Genetic polymorphism of thiopurine S-methyltransferase: molecular mechanisms and clinical importance. Pharmacology 61:136–146

    CAS  PubMed  Google Scholar 

  116. Weinshilboum R (2001) Thiopurine pharmacogenetics: clinical and molecular studies of thiopurine methyltransferase. Drug Metab Dispos 29:601–615

    CAS  PubMed  Google Scholar 

  117. Lindqvist M, Haglund S, Almer S, Peterson C, Taipalensu J, Hertervig E et al (2004) Identification of two novel sequence variants affecting thiopurine methyltransferase enzyme activity. Pharmacogenetics 14(4):261–265

    CAS  PubMed  Google Scholar 

  118. Roberts RL, Gearry RB, Bland MV, Sies CW, George PM, Burt M et al (2008) Trinucleotide repeat variants in the promoter of the thiopurine S-methyltransferase gene of patients exhibiting ultra-high enzyme activity. Pharmacogenet Genomics 18:434–438

    CAS  PubMed  Google Scholar 

  119. Wong DR, Derijks LJ, den Dulk MO, Gemmeke EH, Hooymans PM (2007) The role of xanthine oxidase in thiopurine metabolism: a case report. Ther Drug Monit 29:845–848

    PubMed  Google Scholar 

  120. Smith MA, Marinaki AM, Arenas M, Shobowale-Bakre M, Lewis CM, Ansari A et al (2009) Novel pharmacogenetic markers for treatment outcome in azathioprine-treated inflammatory bowel disease. Aliment Pharmacol Ther 30:375–384

    CAS  PubMed  Google Scholar 

  121. Marinaki AM, Ansari A, Duley JA, Arenas M, Sumi S, Lewis CM et al (2004) Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics 14:181–187

    CAS  PubMed  Google Scholar 

  122. Derijks LJ, Wong DR (2010) Pharmacogenetics of thiopurines in inflammatory bowel disease. Curr Pharm Des 16:145–154

    CAS  PubMed  Google Scholar 

  123. Cuffari C, Theoret Y, Latour S, Seidman G (1996) 6-Mercaptopurine metabolism in Crohn’s disease: correlation with efficacy and toxicity. Gut 39:401–406

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Lowry PW, Franklin CL, Weaver AL, Pike MG, Mays DC, Tremaine WJ et al (2001) Measurement of thiopurine methyltransferase activity and azathioprine metabolites in patients with inflammatory bowel disease. Gut 49:665–670

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Reuther LO, Sonne J, Larsen NE, Larsen B, Christensen S, Rasmussen SN et al (2003) Pharmacological monitoring of azathioprine therapy. Scand J Gastroenterol 38:972–977

    CAS  PubMed  Google Scholar 

  126. Dubinsky MC, Lamothe S, Yang HY, Targan SR, Sinnett D, Théorêt Y et al (2000) Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology 118:705–713

    CAS  PubMed  Google Scholar 

  127. Osterman MT, Kundu R, Lichtenstein GR, Lewis JD (2006) Association of 6-thioguanine nucleotide levels and inflammatory bowel disease activity: a meta-analysis. Gastroenterology 130:1047–1053

    CAS  PubMed  Google Scholar 

  128. Wright S, Sanders DS, Lobo AJ, Lennard L (2004) Clinical significance of azathioprine active metabolite concentrations in inflammatory bowel disease. Gut 53:1123–1128

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Ansari A, Arenas M, Greenfield SM, Morris D, Lindsay J, Gilshenan K et al (2008) Prospective evaluation of the pharmacogenetics of azathioprine in the treatment of inflammatory bowel disease. Aliment Pharmacol Ther 28:973–983

    CAS  PubMed  Google Scholar 

  130. Dubinsky MC, Yang H, Hassard PV, Seidman EG, Kam LY, Abreu MT et al (2002) 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease. Gastroenterology 122:904–915

    CAS  PubMed  Google Scholar 

  131. Gardiner SJ, Gearry RB, Burt MJ, Ding SL, Barclay ML (2008) Severe hepatotoxicity with high 6-methylmercaptopurine nucleotide concentrations after thiopurine dose escalation due to low 6-thioguanine nucleotides. Eur J Gastroenterol Hepatol 20:1238–1242

    CAS  PubMed  Google Scholar 

  132. Roblin X, Biroulet LP, Phelip JM, Nancey S, Flourie B (2008) A 6-thioguanine nucleotide threshold level of 400 pmol/8 x 10 erythrocytes predicts azathioprine refractoriness in patients with inflammatory bowel disease and normal TPMT activity. Am J Gastroenterol 103:3115–3122

    CAS  PubMed  Google Scholar 

  133. Mantzaris GJ, Roussos A, Kalantzis C, Koilakou S, Raptis N, Kalantzis N (2007) How adherent to treatment with azathioprine are patients with Crohn’s disease in long-term remission? Inflamm Bowel Dis 13:446–450

    PubMed  Google Scholar 

  134. Gearry RB, Barclay ML (2005) Azathioprine and 6-mercaptopurine pharmacogenetics and metabolite monitoring in inflammatory bowel disease. J Gastroenterol Hepatol 20:1149–1157

    CAS  PubMed  Google Scholar 

  135. Gonzalez-Lama Y, Bermejo F, Lopez-San-roman A, Garcia-Sanchez V, Esteve M, Cabriada JL et al (2011) Thiopurine methyl-transferase activity and azathioprine metabolite concentrations do not predict clinical out-come in thiopurine-treated inflammatory bowel disease patients. Aliment Pharmacol Ther 34:544–554

    CAS  PubMed  Google Scholar 

  136. van Asseldonk DP, de Boer NK, van Bodegraven AA (2011) Thiopurine metabolite measurement—not for everyone. Aliment Pharmacol Ther 34(8):1038–1039

    PubMed  Google Scholar 

  137. Siegel CA, Sands BE (2005) Review article: practical management of inflammatory bowel disease patients taking immunomodulators. Aliment Pharmacol Ther 22:1–16

    CAS  PubMed  Google Scholar 

  138. Castiglione F, Del Vecchio Blanco G, Rispo A, Mazzacca G (2000) Prevention of pancreatitis by weekly amylase assay in patients with Crohn’s disease treated with azathioprine. Am J Gastroenterol 95:2394–2395

    CAS  PubMed  Google Scholar 

  139. de Boer NK, Wong DR, Jharap B, de Graaf P, Hooymans PM, Mulder CJ et al (2007) Dose-dependent influence of 5-aminosalicylates on thiopurine metabolism. Am J Gastroenterol 102:2747–2753

    PubMed  Google Scholar 

  140. Smith MA, Blaker P, Marinaki AM, Anderson SH, Irving PM, Sanderson JD (2012) Optimising outcome on thiopurines in inflammatory bowel disease by co-prescription of allopurinol. J Crohn's Colitis 6:905–912

    Google Scholar 

  141. Sparrow MP, Hande SA, Friedman S, Lim WC, Reddy SI, Cao D et al (2005) Allopurinol safely and effectively optimizes tioguanine metabolites in inflammatory bowel disease patients not responding to azathioprine and mercaptopurine. Aliment Pharmacol Ther 22(5):441–446

    CAS  PubMed  Google Scholar 

  142. Sparrow MP, Hande SA, Friedman S, Cao D, Hanauer SB (2007) Effect of allopurinol on clinical outcomes in inflammatory bowel disease nonresponders to azathioprine or 6-mercaptopurine. Clin Gastroenterol Hepatol 5(2):209–214

    CAS  PubMed  Google Scholar 

  143. Seinen ML, van Asseldonk DP, de Boer NK, Losekoot N, Smid K, Mulder CJ et al (2013) The effect of allopurinol and low-dose thiopurine combination therapy on the activity of three pivotal thiopurine metabolizing enzymes: results from a prospective pharmacological study. J Crohns Colitis 7(10):812–819

    CAS  PubMed  Google Scholar 

  144. McGuire JJ, Hsieh P, Bertino JR (1984) Enzymatic synthesis of polyglutamate derivatives of 7-hydroxymethotrexate. Biochem Pharmacol 33:1355–1361

    CAS  PubMed  Google Scholar 

  145. Sholar PW, Baram J, Seither R, Allegra CJ (1988) Inhibition of folate-dependent enzymes by 7-OH-methotrexate. Biochem Pharmacol 37:3531–3534

    CAS  PubMed  Google Scholar 

  146. Schmiegelow K (2009) Advances in individual prediction of methotrexate toxicity: a review. Br J Haematol 146:489–503

    CAS  PubMed  Google Scholar 

  147. Grim J, Chladek J, Martinkova J (2003) Pharmacokinetics and pharmacodynamics of methotrexate in non-neoplastic diseases. Clin Pharmacokinet 42:139–151

    CAS  PubMed  Google Scholar 

  148. Hendel J, Nyfors A (1984) Nonlinear renal elimination kinetics of methotrexate due to saturation of renal tubular reabsorption. Eur J Clin Pharmacol 26:121–124

    CAS  PubMed  Google Scholar 

  149. Oren R, Moshkowitz M, Odes S, Becker S, Keter D, Pomeranz I et al (1997) Methotrexate in chronic active Crohn’s disease: a double-blind, randomized, Israeli multicenter trial. Am J Gastroenterol 92(12):2203–2209

    CAS  PubMed  Google Scholar 

  150. Lémann M, Chamiot-Prieur C, Mesnard B, Halphen M, Messing B, Rambaud JC et al (1996) Methotrexate for the treatment of refractory Crohn’s disease. Aliment Pharmacol Ther 10(3):309–314

    PubMed  Google Scholar 

  151. Feagan BG, Fedorak RN, Irvine EJ, Wild G, Sutherland L, Steinhart AH et al (2000) A comparison of methotrexate with placebo for the maintenance of remission in Crohn’s disease. North American Crohn’s Study Group Investigators. N Engl J Med 342(22):1627–1632

    CAS  PubMed  Google Scholar 

  152. Moshkowitz M, Oren R, Tishler M, Konikoff FM, Graff E, Brill S et al (1997) The absorption of low-dose methotrexate in patients with inflammatory bowel disease. Aliment Pharmacol Ther 11(3):569–573

    CAS  PubMed  Google Scholar 

  153. Wan SH, Huffman DH, Azarnoff DL, Stephens R, Hoogstraten B (1974) Effect of route of administration and effusions on methotrexate pharmacokinetics. Cancer Res 34(12):3487–3491

    CAS  PubMed  Google Scholar 

  154. Egan LJ, Sandborn WJ, Tremaine WJ, Leighton JA, Mays DC, Pike MG et al (1999) A randomized dose-response and pharmacokinetic study of methotrexate for refractory inflammatory Crohn’s disease and ulcerative colitis. Aliment Pharmacol Ther 13(12):1597–1604

    CAS  PubMed  Google Scholar 

  155. Seideman P, Beck O, Eksborg S, Wennberg M (1993) The pharmacokinetics of methotrexate and its 7-hydroxy metabolite in patients with rheumatoid arthritis. Br J Clin Pharmacol 35(4):409–412

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Angelis-Stoforidis P, Vajda FJ, Christophidis N (1999) Methotrexate polyglutamate levels in circulating erythrocytes and polymorphs correlate with clinical efficacy in rheumatoid arthritis. Clin Exp Rheumatol 17(3):313–320

    CAS  PubMed  Google Scholar 

  157. Brooks AJ, Begg EJ, Zhang M, Frampton CM, Barclay ML (2007) Red blood cell methotrexate polyglutamate concentrations in inflammatory bowel disease. Ther Drug Monit 29(5):619–625

    CAS  PubMed  Google Scholar 

  158. Ranganathan P (2008) An update on methotrexate pharmacogenetics in rheumatoid arthritis. Pharmacogenomics 9(4):439–451

    CAS  PubMed  Google Scholar 

  159. Herrlinger KR, Cummings JR, Barnardo MC, Schwab M, Ahmad T, Jewell DP (2005) The pharmacogenetics of methotrexate in inflammatory bowel disease. Pharmacogenet Genomics 15(10):705–711

    CAS  PubMed  Google Scholar 

  160. Soon S, Ansari A, Marinaki T, Arenas M, Magdalinou K, Sanderson J (2004) C677T and A1298C methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms does not predict toxicity or efficacy of methotrexate in patients with inflammatory bowel disease. Gastroenterology 126:A210

    Google Scholar 

  161. Schwahn B, Rozen R (2001) Polymorphisms in the methylenetetrahydrofolate reductase gene: clinical consequences. Am J Pharmacogenomics 1:189–201

    CAS  PubMed  Google Scholar 

  162. Berkun Y, Levartovsky D, Rubinow A, Orbach H, Aarnar S, Grenader T et al (2001) Methotrexate related adverse effects in patients with rheumatoid arthritis are associated with the A1298C polymorphism of the MTHFR gene. Ann Rheum Dis 63:1227–1231

    Google Scholar 

  163. Hughes LB, Beasley TM, Patel H, Tiwari HK, Morgan SL, Baggott JE et al (2006) Racial or ethnic differences in allele frequencies of single-nucleotide polymorphisms in the methylenetetrahydrofolate reductase gene and their influence on response to methotrexate in rheumatoid arthritis. Ann Rheum Dis 65:1213–1218

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Dervieux T, Furst D, Lein DO, Capps R, Smith K, Walsh M et al (2004) Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum 50:2766–2774

    CAS  PubMed  Google Scholar 

  165. Weisman MH, Furst DE, Park GS, Kremer IM, Smith KM, Wallace DJ et al (2006) Risk genotypes in folate-dependent enzymes and their association with methotrexate-related side effects in rheumatoid arthritis. Arthritis Rheum 54:607–612

    CAS  PubMed  Google Scholar 

  166. Feagan BG, Fedorak RN, Irvine EJ, Wild G, Sutherland L, Steinhart AH et al (2000) A comparison of methotrexate with placebo for the maintenance of remission in Crohn’s disease. North American Crohn’s Study Group Investigators. N Engl J Med 342:1627–1632

    CAS  PubMed  Google Scholar 

  167. Feagan BG, Alfadhli A (2004) Methotrexate in inflammatory bowel disease. Gastroenterol Clin North Am 33:407–420

    PubMed  Google Scholar 

  168. Seinen ML, Ponsioen CY, de Boer NK, Oldenburg B, Bouma G, Mulder CJ et al (2013) Sustained clinical benefit and tolerability of methotrexate monotherapy after thiopurine therapy in patients with Crohn’s disease. Clin Gastroenterol Hepatol 11(6):667–672

    CAS  PubMed  Google Scholar 

  169. Ptachcinski RJ, Venkataramanan R, Rosenthal JT, Burckart GJ, Taylor RJ, Hakala TR (1985) Cyclosporine kinetics in renal transplantation. Clin Pharmacol Ther 38(3):296–300

    CAS  PubMed  Google Scholar 

  170. Lindholm A, Kahan BD (1993) Influence of cyclosporine pharmacokinetics, trough concentrations, and AUC monitoring on outcome after kidney transplantation. Clin Pharmacol Ther 54(2):205–218

    CAS  PubMed  Google Scholar 

  171. Brynskov J, Freund L, Campanini MC, Kampmann JP (1992) Cyclosporin pharmacokinetics after intravenous and oral administration in patients with Crohn’s disease. Scand J Gastroenterol 27:961–967

    CAS  PubMed  Google Scholar 

  172. Wallemacq PE, Lhoest G, Latinne D, De Bruyère M (1989) Isolation, characterization and in vitro activity of human cyclosporin A metabolites. Transplant Proc 21:906–910

    CAS  PubMed  Google Scholar 

  173. Quesniaux VF (1990) Pharmacology of cyclosporine (Sandimmune). III. Immunochemistry and monitoring. Pharmacol Rev 41:249–258

    CAS  PubMed  Google Scholar 

  174. Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T (1993) Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem 268(9):6077–6080

    CAS  PubMed  Google Scholar 

  175. Lown KS, Mayo RR, Leichtman AB, Hsiao HL, Turgeon DK, Schmiedlin-Ren P et al (1997) Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin Pharmacol Ther 62:248–260

    CAS  PubMed  Google Scholar 

  176. Sandborn WJ, Strong RM, Forland SC, Chase RE, Cutler RE (1991) The pharmacokinetics and colonic tissue concentrations of cyclosporine after i.v., oral, and enema administration. J Clin Pharmacol 31(1):76–80

    CAS  PubMed  Google Scholar 

  177. Brynskov J, Freund L, Rasmussen SN, Lauritsen K, de Muckadell OS, Williams N et al (1989) A placebo-controlled, double-blind, randomized trial of cyclosporine therapy in active chronic Crohn’s disease. N Engl J Med 321:845–850

    CAS  PubMed  Google Scholar 

  178. Lichtiger S, Present DH (1990) Preliminary report: cyclosporin in treatment of severe active ulcerative colitis. Lancet 336:16–19

    CAS  PubMed  Google Scholar 

  179. Kornbluth A, Lichtiger S, Present D, Hanauer S (1994) Long-term results of oral cyclosporin in patients with severe ulcerative colitis: a double-blind randomized multicenter trial. Gastroenterology 106:A714

    Google Scholar 

  180. Arts J, D’Haens G, Zeegers M, Van Assche G, Hiele M, D’Hoore A et al (2004) Long-term outcome of treatment with intravenous cyclosporin in patients with severe ulcerative colitis. Inflamm Bowel Dis 10:73–78

    PubMed  Google Scholar 

  181. Moskovitz DN, Van Assche G, Maenhout B, Arts J, Ferrante M, Vermeire S et al (2006) Incidence of colectomy during long-term follow-up after cyclosporine-induced remission of severe ulcerative colitis. Clin Gastroenterol Hepatol 4:760–765

    CAS  PubMed  Google Scholar 

  182. Utecht KN, Hiles JJ, Kolesar J (2006) Effects of genetic polymorphisms on the pharmacokinetics of calcineurin inhibitors. Am J Health Syst Pharm 63:2340–2348

    CAS  PubMed  Google Scholar 

  183. Jiang Z, Wang Y, Xu P, Liu R, Zhao X, Chen F (2008) Meta-analysis of the effect of MDR1 C3435T polymorphism on cyclosporine pharmacokinetics. Basic Clin Pharmacol Toxicol 103:433–444

    CAS  PubMed  Google Scholar 

  184. Mardigyan V, Giannetti N, Cecere R, Besner JG, Cantarovich M (2005) Best single time points to predict the area-under-the-curve in long-term heart transplant patients taking mycophenolate mofetil in combination with cyclosporine or tacrolimus. J Heart Lung Transplant 24:1614–1618

    PubMed  Google Scholar 

  185. Keown P, Landsberg D, Halloran P, Shoker A, Rush D, Jeffery J et al (1996) A randomized, prospective multicenter pharmacoepidemiologic study of cyclosporine microemulsion in stable renal graft recipients. Transplantation 62:1744–1752

    CAS  PubMed  Google Scholar 

  186. Cantarovich M, Barkun JS, Tchervenkov JI, Besner JG, Aspeslet L, Metrakos P (1998) Comparison of neural dose monitoring with cyclosporine trough levels versus 2-hr postdose levels in stable liver transplant patients. Transplantation 66:1621–1627

    CAS  PubMed  Google Scholar 

  187. Cantarovich M, Besner JG, Barkun JS, Elstein E, Loertscher R (1998) Two-hour cyclosporine level determination is the appropriate tool to monitor neoral therapy. Clin Transplant 12:243–249

    CAS  PubMed  Google Scholar 

  188. Mahalati K, Kahan BD (2000) Pharmacological surrogates of allograft outcome. Ann Transplant 5:14–23

    CAS  PubMed  Google Scholar 

  189. Present DH, Lichtiger S (1994) Efficacy of cyclosporine in treatment of fistula of Crohn’s disease. Dig Dis Sci 39:374–380

    CAS  PubMed  Google Scholar 

  190. Plosker GL, Foster RH (2000) Tacrolimus: a further update of its pharmacology and therapeutic use in the management of organ transplantation. Drugs 59:323–389

    CAS  PubMed  Google Scholar 

  191. Filler G, Grygas R, Mai I, Stolpe HJ, Greiner C, Bauer S et al (1997) Pharmacokinetics of tacrolimus (FK 506) in children and adolescents with renal transplants. Nephrol Dial Transplant 12:1668–1671

    CAS  PubMed  Google Scholar 

  192. Dirks NL, Huth B, Yates CR, Meibohm B (2004) Pharmacokinetics of immunosuppressants: a perspective on ethnic differences. Int J Clin Pharmacol Ther 42(12):701–718

    CAS  PubMed  Google Scholar 

  193. Nagase K, Iwasaki K, Nozaki K, Noda K (1994) Distribution and protein binding of FK506, a potent immunosuppressive macrolide lactone, in human blood and its uptake by erythrocytes. J Pharm Pharmacol 46:113–117

    CAS  PubMed  Google Scholar 

  194. Venkataramanan R, Swaminathan A, Prasad T, Jain A, Zuckerman S, Warty V et al (1995) Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet 29:404–430

    CAS  PubMed  Google Scholar 

  195. Kelly P, Kahan BD (2002) Review: metabolism of immunosuppressant drugs. Curr Drug Metab 3:275–287

    CAS  PubMed  Google Scholar 

  196. Möller A, Iwasaki K, Kawamura A, Teramura Y, Shiraga T, Hata T et al (1999) The disposition of 14C-labelled tacrolimus after intravenous and oral administration in healthy human subjects. Drug Metab Dispos 27:633–666

    PubMed  Google Scholar 

  197. Spencer CM, Goa KL, Gillis JC (1997) Tacrolimus: an update of its pharmacology and clinical efficacy in the management of organ transplantation. Drugs 54:925–975

    CAS  PubMed  Google Scholar 

  198. Ogata H, Matsui T, Nakamura M, Iida M, Takazoe M, Suzuki Y et al (2006) A randomised dose finding study of oral tacrolimus (FK506) therapy in refractory ulcerative colitis. Gut 55:1255–1262

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Sandborn WJ, Present DH, Isaacs KL, Wolf DC, Greenberg E, Hanauer SB et al (2003) Tacrolimus for the treatment of fistulas in patients with Crohn’s disease: a randomized, placebo-controlled trial. Gastroenterology 125:380–388

    CAS  PubMed  Google Scholar 

  200. Webster A, Woodroffe RC, Taylor RS, Chapman JR, Craig JC (2005) Tacrolimus versus cyclosporin as primary immunosuppression for kidney transplant recipients. Cochrane Database Syst Rev 4, CD003961

    PubMed  Google Scholar 

  201. Haddad EM, McAlister VC, Renouf E, Malthaner R, Kjaer MS, Gluud LL (2006) Cyclosporin versus tacrolimus for liver transplanted patients. Cochrane Database Syst Rev 4, CD005161

    PubMed  Google Scholar 

  202. Larriba J, Imperiali N, Groppa R, Giordani C, Algranatti S, Redal MA (2010) Pharmacogenetics of immunosuppressant polymorphism of CYP3A5 in renal transplant recipients. Transplant Proc 42:257–259

    CAS  PubMed  Google Scholar 

  203. Macphee IA, Fredericks S, Tai T, Syrris P, Carter ND, Johnston A et al (2002) Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p450-3A5 and P-glycoprotein correlate with dose requirement. Transplantation 74:1486–1489

    CAS  PubMed  Google Scholar 

  204. Tsuchiya N, Satoh S, Tada H, Li Z, Ohyama C, Sato K et al (2004) Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation 78:1182–1187

    CAS  PubMed  Google Scholar 

  205. Zhao W, Elie V, Roussey G, Brochard K, Niaudet P, Leroy V et al (2009) Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin Pharmacol Ther 86:609–618

    CAS  PubMed  Google Scholar 

  206. Filler G, Lepage N, Delisle B, Mai I (2001) Effect of cyclosporine on mycophenolic acid area under the concentration-time curve in pediatric kidney transplant recipients. Ther Drug Monit 23:514–519

    CAS  PubMed  Google Scholar 

  207. Kuypers DRJ, Claes K, Evenepoel P, Maes B, Coosemans W, Pirenne J et al (2004) Time-related clinical determinants of long-term tacrolimus pharmacokinetics in combination therapy with mycophenolic acid and corticosteroids: a prospective study in one hundred de novo renal transplant recipients. Clin Pharmacokinet 43:741–762

    CAS  PubMed  Google Scholar 

  208. Balbontin FG, Kiberd B, Squires J, Singh D, Fraser A, Belitsky P et al (2003) Tacrolimus monitoring by simplified sparse sampling under the concentration time curve. Transplant Proc 35:2445–2448

    CAS  PubMed  Google Scholar 

  209. Scholten EM, Cremers SCLM, Schoemaker RC, Rowshani AT, van Kan EJ, den Hartigh J et al (2005) AUC-guided dosing of tacrolimus prevents progressive systemic overexposure in renal transplant recipients. Kidney Int 67:2440–2447

    CAS  PubMed  Google Scholar 

  210. Baumgart DC, Macdonald JK, Feagan B (2008) Tacrolimus (FK506) for induction of remission in refractory ulcerative colitis. Cochrane Database Syst Rev 3, CD007216

    PubMed  Google Scholar 

  211. Baumann A (2006) Early development of therapeutic biologics: pharmacokinetics. Curr Drug Metab 7:15–21

    CAS  PubMed  Google Scholar 

  212. Flessner MF, Dedrick RL (1994) Monoclonal antibody delivery to intraperitoneal tumors in rats: effects of route of administration and intraperitoneal solution osmolality. Cancer Res 54:4376–4384

    CAS  PubMed  Google Scholar 

  213. Baxter LT, Jain RK (1991) Transport of fluid and macromolecules in tumors: IV. A microscopic model of the perivascular distribution. Microvasc Res 41:252–272

    CAS  PubMed  Google Scholar 

  214. Garg A, Balthasar JP (2007) Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34:687–709

    CAS  PubMed  Google Scholar 

  215. Waldmann TA, Strober W (1969) Metabolism of immunoglobulins. Prog Allergy 13:1–110

    CAS  PubMed  Google Scholar 

  216. Comber PG, Gomez F, Rossman MD, Schreiber AD (1989) Receptors for the Fc portion of immunoglobulin G (Fc gamma R) on human monocytes and macrophages. Prog Clin Biol Res 297:273–285

    CAS  PubMed  Google Scholar 

  217. Dall’Ozzo S, Tartas S, Paintaud G, Cartron G, Colombat P, Bardos P et al (2004) Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res 64:4664–4669

    PubMed  Google Scholar 

  218. Mellman I, Plutner H (1984) Internalization and degradation of macrophage Fc receptors bound to polyvalent immune complexes. J Cell Biol 98:1170–1177

    CAS  PubMed  Google Scholar 

  219. Press OW, Hansen JA, Farr A, Martin PJ (1988) Endocytosis and degradation of murine anti-human CD3 monoclonal antibodies by normal and malignant T-lymphocytes. Cancer Res 48:2249–2257

    CAS  PubMed  Google Scholar 

  220. Lammerts van Bueren JJ, Bleeker WK, Bøgh HO, Houtkamp M, Schuurman J, van de Winkel JG et al (2006) Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: implications for the mechanisms of action. Cancer Res 66:7630–7638

    CAS  PubMed  Google Scholar 

  221. Duconge J, Fernández-Sánchez E, Macías A, Castillo R, Garcia I, Beausoleil I et al (2002) Monoclonal anti-EGF receptor antibody (ior-R3) pharmacokinetic study in tumor bearing nude mice: role of the receptor-mediated endocytosis on drug clearance. Eur J Drug Metab Pharmacokinet 27:101–105

    CAS  PubMed  Google Scholar 

  222. Coffey GP, Stefanich E, Palmieri S, Eckert R, Padilla-Eagar J, Fielder PJ et al (2004) In vitro internalization, intracellular transport, and clearance of an anti-CD11a antibody (Raptiva) by human T-cells. J Pharmacol Exp Ther 310:896–904

    CAS  PubMed  Google Scholar 

  223. Junghans RP, Anderson CL (1996) The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci U S A 93:5512–5516

    CAS  PubMed Central  PubMed  Google Scholar 

  224. Ghetie V, Ward ES (2000) Multiple roles for the major histocompatibility complex class I- related receptor FcRn. Annu Rev Immunol 18:739–766

    CAS  PubMed  Google Scholar 

  225. Israel EJ, Wilsker DF, Hayes KC, Schoenfeld D, Simister NE (1996) Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology 89:573–578

    CAS  PubMed Central  PubMed  Google Scholar 

  226. DeNardo GL, Bradt BM, Mirick GR, DeNardo S (2003) Human antiglobulin response to foreign antibodies: therapeutic benefit? Cancer Immunol Immunother 52:309–316

    CAS  PubMed  Google Scholar 

  227. Schellekens H (2002) Immunogenicity of therapeutic proteins: clinical implications and future prospects. Clin Ther 24:1720–17440

    CAS  PubMed  Google Scholar 

  228. Schreiber S, Khaliq-Kareemi M, Lawrance IC, Thomsen OØ, Hanauer SB, McColm J, PRECISE 2 Study Investigators et al (2007) Maintenance therapy with certolizumab pegol for Crohn’s disease. N Engl J Med 357(3):239–250

    CAS  PubMed  Google Scholar 

  229. Karmiris K, Paintaud G, Noman M, Magdelaine-Beuzelin C, Ferrante M, Degenne D et al (2009) Influence of trough serum levels and immunogenicity on long-term outcome of adalimumab therapy in Crohn’s disease. Gastroenterology 137(5):1628–1640

    CAS  PubMed  Google Scholar 

  230. Sandborn WJ, Hanauer SB, Rutgeerts P, Fedorak RN, Lukas M, MacIntosh DG et al (2007) Adalimumab for maintenance treatment of Crohn’s disease: results of the CLASSIC II trial. Gut 56(9):1232–1239

    CAS  PubMed Central  PubMed  Google Scholar 

  231. Schreiber S, Rutgeerts P, Fedorak RN, Khaliq-Kareemi M, Kamm MA, Boivin M, CDP870 Crohn’s Disease Study Group et al (2005) A randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn’s disease. Gastroenterology 129:807–818

    CAS  PubMed  Google Scholar 

  232. de Vries MK, Wolbink GJ, Stapel SO, de Vrieze H, van Denderen JC, Dijkmans BA et al (2007) Decreased clinical response to infliximab in ankylosing spondylitis is correlated with anti-infliximab formation. Ann Rheum Dis 66:1252–1254

    PubMed Central  PubMed  Google Scholar 

  233. Wolbink GJ, Vis M, Lems W, Voskuyl AE, de Groot E, Nurmohamed MT et al (2006) Development of antiinfliximab antibodies and relationship to clinical response in patients with rheumatoid arthritis. Arthritis Rheum 54:711–715

    PubMed  Google Scholar 

  234. Fasanmade AA, Adedokun OJ, Olson A, Strauss R, Davis HM (2010) Serum albumin concentration: a predictive factor of infliximab pharmacokinetics and clinical response in patients with ulcerative colitis. Int J Clin Pharmacol Ther 48:297–308

    CAS  PubMed  Google Scholar 

  235. Kevans D, Murthy S, Iacono A, Silverberg MS, Greenberg GR (2012) Accelerated clearance of serum infliximab during induction therapy for acute ulcerative colitis is associated with treatment failure. Gastroenterology 142(Suppl 1):S384–S385

    Google Scholar 

  236. Fasanmade AA, Adedokun OJ, Blank M, Zhou H, Davis HM (2011) Pharmacokinetic properties of infliximab in children and adults with Crohn’s disease: a retrospective analysis of data from 2 phase III clinical trials. Clin Ther 33:946–964

    CAS  PubMed  Google Scholar 

  237. Vermeire S, Noman M, Van Assche G, Baert F, D’Haens G, Rutgeerts P (2007) Effectiveness of concomitant immunosuppressive therapy in suppressing the formation of antibodies to infliximab in Crohn’s disease. Gut 56:1226–1231

    CAS  PubMed Central  PubMed  Google Scholar 

  238. Seow CH, Newman A, Irwin SP, Steinhart AH, Silverberg MS, Greenberg GR (2010) Trough serum infliximab: a predictive factor of clinical outcome for infliximab treatment in acute ulcerative colitis. Gut 59:49–54

    CAS  PubMed  Google Scholar 

  239. Colombel JF, Sandborn WJ, Reinisch W, Mantzaris GJ, Kornbluth A, Rachmilewitz D, SONIC Study Group et al (2010) Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med 362:1383–1395

    CAS  PubMed  Google Scholar 

  240. Fasanmade AA, Adedokun OJ, Ford J, Hernandez D, Johanns J, Hu C et al (2009) Population pharmacokinetic analysis of infliximab in patients with ulcerative colitis. Eur J Clin Pharmacol 65:1211–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  241. Louis E (2013) Strategic use of immunosuppressants and anti-TNF in inflammatory bowel disease. Dig Dis 31(2):207–212

    PubMed  Google Scholar 

  242. Mould DR, Green B (2010) Pharmacokinetics and pharmacodynamics of monoclonal antibodies: concepts and lessons for drug development. Biodrugs 24:23–39

    CAS  PubMed  Google Scholar 

  243. Ordás I, Mould DR, Feagan BG, Sandborn WJ (2012) Anti-TNF monoclonal antibodies in inflammatory bowel disease: pharmacokinetics-based dosing paradigms. Clin Pharmacol Ther 91:635–646

    PubMed  Google Scholar 

  244. Tabrizi M, Bornstein GG, Suria H (2010) Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J 12:33–43

    CAS  PubMed Central  PubMed  Google Scholar 

  245. Morell A, Terry WD, Waldmann TA (1970) Metabolic properties of IgG subclasses in man. J Clin Invest 49:673–680

    CAS  PubMed Central  PubMed  Google Scholar 

  246. Wolbink GJ, Voskuyl AE, Lems WF, de Groot E, Nurmohamed MT, Tak PP et al (2005) Relationship between serum trough infliximab levels, pretreatment C reactive protein levels, and clinical response to infliximab treatment in patients with rheumatoid arthritis. Ann Rheum Dis 64:704–707

    CAS  PubMed Central  PubMed  Google Scholar 

  247. Takeuchi T, Miyasaka N, Tatsuki Y, Yano T, Yoshinari T, Abe T et al (2011) Baseline tumour necrosis factor alpha levels predict the necessity for dose escalation of infliximab therapy in patients with rheumatoid arthritis. Ann Rheum Dis 70:1208–1215

    CAS  PubMed Central  PubMed  Google Scholar 

  248. Olsen T, Goll R, Cui G, Christiansen I, Florholmen J (2009) TNF-alpha gene expression in colorectal mucosa as a predictor of remission after induction therapy with infliximab in ulcerative colitis. Cytokine 46:222–227

    CAS  PubMed  Google Scholar 

  249. Jamnitski A, Bartelds GM, Nurmohamed MT, van Schouwenburg PA, van Schaardenburg D, Stapel SO et al (2011) The presence or absence of antibodies to infliximab or adalimumab determines the outcome of switching to etanercept. Ann Rheum Dis 70:284–288

    CAS  PubMed  Google Scholar 

  250. Ungar B, Chowers Y, Yavzori M, Picard O, Fudim E, Har-Noy O et al (2014) The temporal evolution of antidrug antibodies in inflammatory bowel disease patients treated with infliximab. Gut 63(8):1258–1264. doi:10.1136/gutjnl-2013-305259

    CAS  PubMed  Google Scholar 

  251. Steenholdt C, Al-khalaf M, Brynskov J, Bendtzen K, Thomsen OØ, Ainsworth MA (2012) Clinical implications of variations in anti-infliximab antibody levels in patients with inflammatory bowel disease. Inflamm Bowel Dis 18:2209–2217

    PubMed  Google Scholar 

  252. Vande Casteele N, Gils A, Singh S, Ohrmund L, Hauenstein S, Rutgeerts P et al (2013) Antibody response to infliximab and its impact on pharmacokinetics can be transient. Am J Gastroenterol 108:962–971

    PubMed  Google Scholar 

  253. Maser EA, Villela R, Silverberg MS, Greenberg GR (2006) Association of trough serum infliximab to clinical outcome after scheduled maintenance treatment for Crohn’s disease. Clin Gastroenterol Hepatol 4:1248–1254

    CAS  PubMed  Google Scholar 

  254. Reinisch W, Sandborn WJ, Hommes DW, D’Haens G, Hanauer S, Schreiber S et al (2011) Adalimumab for induction of clinical remission in moderately to severely active ulcerative colitis: results of a randomised controlled trial. Gut 60:780–787

    CAS  PubMed  Google Scholar 

  255. Bartelds GM, Wijbrandts CA, Nurmohamed MT, Stapel S, Lems WF, Aarden L et al (2010) Anti-infliximab and anti-adalimumab antibodies in relation to response to adalimumab in infliximab switchers and anti-tumour necrosis factor naive patients: a cohort study. Ann Rheum Dis 69:817–821

    CAS  PubMed  Google Scholar 

  256. West RL, Zelinkova Z, Wolbink GJ, Kuipers EJ, Stokkers PC, van der Woude CJ (2008) Immunogenicity negatively influences the outcome of adalimumab treatment in Crohn’s disease. Aliment Pharmacol Ther 28:1122–1126

    CAS  PubMed  Google Scholar 

  257. Bultman E, de Haar C, van Liere-Baron A, Verhoog H, West RL, Kuipers EJ et al (2012) Predictors of dose escalation of adalimumab in a prospective cohort of Crohn’s disease patients. Aliment Pharmacol Ther 35:335–341

    CAS  PubMed  Google Scholar 

  258. Peyrin-Biroulet L, Gonzalez F, Dubuquoy L, Rousseaux C, Dubuquoy C, Decourcelle C et al (2012) Mesenteric fat as a source of C reactive protein and as a target for bacterial translocation in Crohn’s disease. Gut 61:78–85

    CAS  PubMed Central  PubMed  Google Scholar 

  259. Rutgeerts P, Sandborn WJ, Feagan BG, Reinisch W, Olson A, Johanns J et al (2005) Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med 353:2462–2476

    CAS  PubMed  Google Scholar 

  260. Sandborn WJ, van Assche G, Reinisch W, Colombel JF, D’Haens G, Wolf DC et al (2012) Adalimumab induces and maintains clinical remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology 142:257–265

    CAS  PubMed  Google Scholar 

  261. Hanauer SB, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF et al (2002) Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet 359:1541–1549

    CAS  PubMed  Google Scholar 

  262. Hanauer SB, Sandborn WJ, Rutgeerts P, Fedorak RN, Lukas M, MacIntosh D et al (2006) Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial. Gastroenterology 130:323–333

    CAS  PubMed  Google Scholar 

  263. Nesbitt A, Fossati G, Bergin M, Stephens P, Stephens S, Foulkes R et al (2007) Mechanism of action of certolizumab pegol (CDP870): in vitro comparison with other anti-tumor necrosis factor alpha agents. Inflamm Bowel Dis 13:1323–1332

    PubMed  Google Scholar 

  264. Monshouwer M, Witkamp RF, Nijmeijer SM, Van Amsterdam JG, Van Miert AS (1996) Suppression of cytochrome P450- and UDP glucuronosyl transferase-dependent enzyme activities by proinflammatory cytokines and possible role of nitric oxide in primary cultures of pig hepatocytes. Toxicol Appl Pharmacol 137:237–244

    CAS  PubMed  Google Scholar 

  265. Maini RN, Breedveld FC, Kalden JR, Smolen JS, Davis D, Macfarlane JD et al (1998) Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal anti-body combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum 41:1552–1563

    CAS  PubMed  Google Scholar 

  266. Sandborn WJ, Feagan BG, Marano C, Zhang H, Strauss R, Johanns J, PURSUIT-Maintenance Study Group et al (2014) Subcutaneous golimumab induces clinical response and remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology 146:85–95

    CAS  PubMed  Google Scholar 

  267. Colombel JF, Sandborn WJ, Rutgeerts P, Enns R, Hanauer SB, Panaccione R et al (2007) Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: the CHARM trial. Gastroenterology 132:52–65

    CAS  PubMed  Google Scholar 

  268. Sandborn WJ, Reinisch W, Mantzaris GJ, Kornbluth A, Rachmilewitz D, SONIC Study Group et al (2010) Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med 362:1383–1395

    PubMed  Google Scholar 

  269. Sandborn WJ, Schreiber S, Feagan BG, Rutgeerts P, Younes ZH, Bloomfield R et al (2011) Certolizumab pegol for active Crohn’s disease: a placebo-controlled, randomized trial. Clin Gastroenterol Hepatol 9(8):670–678

    CAS  PubMed  Google Scholar 

  270. Ben-Horin S, Kopylov U, Chowers Y (2014) Optimizing anti-TNF treatments in inflammatory bowel disease. Autoimmun Rev 13(1):24–30

    CAS  PubMed  Google Scholar 

  271. Sandborn WJ, Gasink C, Gao LL, Blank MA, Johanns J, Guzzo C, CERTIFI Study Group et al (2012) Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med 367(16):1519–1528

    CAS  PubMed  Google Scholar 

  272. Zorzi F (2012) Efficacy and safety of infliximab and adalimumab in Crohn’s disease: a single centre study. Aliment Pharmacol Ther 35:1397–1407

    CAS  PubMed  Google Scholar 

  273. Arnott ID, McNeill G, Satsangi J (2003) An analysis of factors influencing short-term and sustained response to infliximab treatment for Crohn’s disease. Aliment Pharmacol Ther 17:1451–1457

    CAS  PubMed  Google Scholar 

  274. Sprakes MB, Ford AC, Warren L, Greer D, Hamlin J (2012) Efficacy, tolerability, and predictors of response to infliximab therapy for Crohn’s disease: a large single centre experience. J Crohns Colitis 6:143–153

    PubMed  Google Scholar 

  275. Siegel CA, Melmed GY (2009) Predicting response to anti-TNF agents for the treatment of Crohn’s disease. Ther Adv Gastroenterol 2:244–251

    Google Scholar 

  276. Ferrante M, Vermeire S, Katsanos KH, Noman M, Van Assche G, Schnitzler F et al (2007) Predictors of early response to infliximab in patients with ulcerative colitis. Inflamm Bowel Dis 13:123–128

    PubMed  Google Scholar 

  277. Lee KM, Jeen YT, Cho JY, Lee CK, Koo JS, Park DI et al (2013) Efficacy, safety, and predictors of response to infliximab therapy for ulcerative colitis: a Korean multicenter retrospective study. J Gastroenterol Hepatol 28:1829–1833

    CAS  PubMed  Google Scholar 

  278. Sandborn WJ, Colombel JF, Panés J, Castillo M, Robinson AM, Zhou Q et al (2013) Exploring the use of adalimumab for patients with moderate Crohn’s disease: subanalyses from induction and maintenance trials. J Crohns Colitis 7:958–967

    PubMed  Google Scholar 

  279. Steenholdt C, Palarasah Y, Bendtzen K, Teisner A, Brynskov J, Teisner B et al (2013) Pre-existing IgG antibodies cross-reacting with the Fab region of infliximab predict efficacy and safety of infliximab therapy in inflammatory bowel disease. Aliment Pharmacol Ther 37:1172–1183

    CAS  PubMed  Google Scholar 

  280. Hlavaty T, Pierik M, Henckaerts L, Ferrante M, Joossens S, van Schuerbeek N et al (2005) Polymorphisms in apoptosis genes predict response to infliximab therapy in luminal and fistulizing Crohn’s disease. Aliment Pharmacol Ther 22:613–626

    CAS  PubMed  Google Scholar 

  281. Arijs I, Quintens R, Van Lommel L, Van Steen K, De Hertogh G, Lemaire K et al (2010) Predictive value of epithelial gene expression profiles for response to infliximab in Crohn’s disease. Inflamm Bowel Dis 16:2090–2098

    PubMed  Google Scholar 

  282. Arijs I, Li K, Toedter G, Quintens R, Van Lommel L, Van Steen K et al (2009) Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut 58:1612–1619

    CAS  PubMed  Google Scholar 

  283. Van Moerkercke W et al (2010) High infliximab trough levels are associated with mucosal healing in Crohn’s disease. Gastroenterology 138(Suppl 1):S60

    Google Scholar 

  284. Zintzaras E, Dahabreh IJ, Giannouli S, Voulgarelis M, Moutsopoulos HM (2008) Infliximab and methotrexate in the treatment of rheumatoid arthritis: a systematic review and meta-analysis of dosage regimens. Clin Ther 30:1939–1955

    CAS  PubMed  Google Scholar 

  285. Lin Z, Bai Y, Zheng P (2011) Meta-analysis: efficacy and safety of combination therapy of infliximab and immunosuppressives for Crohn’s disease. Eur J Gastroenterol Hepatol 23:1100–1110

    CAS  PubMed  Google Scholar 

  286. Colombel JF, Feagan BG, Sandborn WJ, van Assche G, Robinson AM (2012) Therapeutic drug monitoring of biologics for inflammatory bowel disease. Inflamm Bowel Dis 18(2):349–358

    PubMed  Google Scholar 

  287. Ben-Horin S, Chowers Y (2011) Loss of response to anti-TNF treatments in Crohn’s disease. Aliment Pharmacol Ther 33:987–995

    CAS  PubMed  Google Scholar 

  288. St Clair EW, Wagner CL, Fasanmade AA, Wang B, Schaible T, Kavanaugh A et al (2002) The relationship of serum infliximab concentrations to clinical improvement in rheumatoid arthritis: results from ATTRACT, a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 46(6):1451–1459

    CAS  PubMed  Google Scholar 

  289. Kopylov U, Mantzaris GJ, Katsanos KH, Reenaers C, Ellul P, Rahier JF et al (2011) The efficacy of shortening the dosing interval to once every six weeks in Crohn’s patients losing response to maintenance dose of infliximab. Aliment Pharmacol Ther 33(3):349–357

    CAS  PubMed  Google Scholar 

  290. Katz L, Gisbert JP, Manoogian B, Lin K, Steenholdt C, Mantzaris GJ et al (2012) Doubling the infliximab dose versus halving the infusion intervals in Crohn’s disease patients with loss of response. Inflamm Bowel Dis 18:2026–2033

    PubMed  Google Scholar 

  291. Ben-Bassat O, Hauestein S, Iacono A, Irwin SP, Singh S, Greenberg GR (2013) Serum adalimumab and immunogenicity in IBD patients after 80 mg biweekly maintenance therapy. Gastroenterology 144(Suppl 1):S771

    Google Scholar 

  292. Ma C, Panaccione R, Heitman SJ, Devlin SM, Ghosh S, Kaplan GG (2009) Systematic review: the short-term and long-term efficacy of adalimumab following discontinuation of infliximab. Aliment Pharmacol Ther 30(10):977–986

    CAS  PubMed  Google Scholar 

  293. Afif W, Loftus EV, Faubion WA, Kane SV, Bruining DH, Hanson KA et al (2010) Clinical utility of measuring Infliximab and human anti-chimeric antibody concentrations in patients with inflammatory bowel disease. Am J Gastroenterol 105:1133–1139

    CAS  PubMed  Google Scholar 

  294. Pariente B, Pineton de Chambrun G, Krzysiek R, Desroches M, Louis G, De Cassan C et al (2012) Trough levels and antibodies to infliximab may not predict response to intensification of infliximab therapy in patients with inflammatory bowel disease. Inflamm Bowel Dis 18:1199–1206

    PubMed  Google Scholar 

  295. Van Assche G, Vermeire S, Rutgeerts P (2006) Safety issues with biological therapies for inflammatory bowel disease. Curr Opin Gastroenterol 22(4):370–376

    PubMed  Google Scholar 

  296. Han PD, Cohen RD (2004) Managing immunogenic responses to infliximab: treatment implications for patients with Crohn’s disease. Drugs 64(16):1767–1777

    CAS  PubMed  Google Scholar 

  297. Rutgeerts P, Van Assche G, Vermeire S (2006) Review article: Infliximab therapy for inflammatory bowel disease—seven years on. Aliment Pharmacol Ther 23(4):451–463

    CAS  PubMed  Google Scholar 

  298. Feagan BG, Singh S, Lockton S, Hauenstein S, Ohrmund L, Croner LJ et al (2012) Novel infliximab and antibody-to-infliximab (ATI) assays are predictive of disease activity in patients with Crohn’s disease. Gastroenterology 142(Suppl 1):S–114

    Google Scholar 

  299. Karmiris K, Paintaud G, Noman M, Magdelaine-Beuzelin C, Ferrante M, Degenne D et al (2009) Influence of trough serum levels and immunogenicity on long-term outcome of adalimumab therapy in Crohn’s disease. Gastroenterology 137:1628–1640

    CAS  PubMed  Google Scholar 

  300. Sandborn WJ, Hanauer SB, Pierre-Louis B, Lichtenstein GR (2012) Certolizumab pegol plasma concentration and clinical remission in Crohn’s disease. Gastroenterology 142(Suppl 1):S–563

    Google Scholar 

  301. Vande Casteele N, Compernolle G, Ballet V, Van Assche G, Gils A, Vermeire S et al (2012) Results on the optimisation phase of the prospective controlled Trough Level Adapted Infliximab Treatment (TAXIT) trial. Gastroenterology 142(Suppl 1):S211–S212

    Google Scholar 

  302. Ling J, Lyn S, Xu Z, Achira M, Bouman-Thio E, Shishido A et al (2010) Lack of racial differences in the pharmacokinetics of subcutaneous golimumab in healthy Japanese and Caucasian male subjects. J Clin Pharmacol 50:792–802

    CAS  PubMed  Google Scholar 

  303. Zhuang Y, Lyn S, Lv Y, Xu Z, Bouman-Thio E, Masterson T et al (2013) Pharmacokinetics and safety of golimumab in healthy Chinese subjects following a single subcutaneous administration in a randomized phase I trial. Clin Drug Invest 33:795–800

    CAS  Google Scholar 

  304. Sandborn WJ, Feagan BG, Fedorak RN, Scherl E, Fleisher MR, Katz S et al (2008) A randomized trial of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology 135:1130–1141

    CAS  PubMed  Google Scholar 

  305. Bridges LC, Tani PH, Hanson KR, Roberts CM, Judkins MB, Bowditch RD (2002) The lymphocyte metalloprotease MDC-L (ADAM 28) is a ligand for the integrin alpha4beta1. J Biol Chem 277:3784–3792

    CAS  PubMed  Google Scholar 

  306. Li Z, Calzada MJ, Sipes JM, Cashel JA, Krutzsch HC, Annis DS et al (2002) Interactions of thrombospondins with alpha4beta1 integrin and CD47 differentially modulate T cell behavior. J Cell Biol 157:509–519

    CAS  PubMed Central  PubMed  Google Scholar 

  307. Bayless KJ, Davis GE (2001) Identification of dual alpha 4beta1 integrin binding sites within a 38 amino acid domain in the N-terminal thrombin fragment of human osteopontin. J Biol Chem 276:13483–13489

    CAS  PubMed  Google Scholar 

  308. Sandborn WJ, Feagan BG, Rutgeerts P, Hanauer S, Colombel JF, Sands BE et al (2013) Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med 369:711–721

    CAS  PubMed  Google Scholar 

  309. Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356:63–66

    CAS  PubMed  Google Scholar 

  310. Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910

    CAS  PubMed  Google Scholar 

  311. Rudick RA, Stuart WH, Calabresi PA, Confavreux C, Galetta SL, Radue EW et al (2006) Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med 354:911–923

    CAS  PubMed  Google Scholar 

  312. Ghosh S, Goldin E, Gordon FH, Malchow HA, Rask-Madsen J, Rutgeerts P et al (2003) Natalizumab for active Crohn’s disease. N Engl J Med 348:24–32

    CAS  PubMed  Google Scholar 

  313. Sandborn WJ, Colombel JF, Enns R, Feagan BG, Hanauer SB, Lawrance IC et al (2005) Natalizumab induction and maintenance therapy for Crohn’s disease. N Engl J Med 353:1912–1925

    CAS  PubMed  Google Scholar 

  314. Targan SR, Feagan BG, Fedorak RN, Lashner BA, Panaccione R, Present DH et al (2007) Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE trial. Gastroenterology 132:1672–1683

    CAS  PubMed  Google Scholar 

  315. Sands BE, Kozarek R, Spainhour J, Barish CF, Becker S, Goldberg L et al (2007) Safety and tolerability of concurrent natalizumab treatment for patients with Crohn’s disease not in remission while receiving infliximab. Inflamm Bowel Dis 13:2–11

    PubMed  Google Scholar 

  316. Feagan BG, Rutgeerts P, Sands BE, Hanauer S, Colombel JF, Sandborn WJ et al (2013) Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med 369:699–710

    CAS  PubMed  Google Scholar 

  317. Sandborn WJ, Feagan BG, Rutgeerts P, Hanauer S, Colombel JF, Sands BE et al (2013) Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med 369:711–721

    CAS  PubMed  Google Scholar 

  318. Feagan BG, Greenberg GR, Wild G, Fedorak RN, Paré P, McDonald JW et al (2005) Treatment of ulcerative colitis with a humanized antibody to the alpha4beta7 integrin. N Engl J Med 352:2499–2507

    CAS  PubMed  Google Scholar 

  319. Brunner M, Ziegler S, Di Stefano AF, Dehghanyar P, Kletter K, Tschurlovits M et al (2006) Gastrointestinal transit, release and plasma pharmacokinetics of a new oral budesonide formulation. Br J Clin Pharmacol 61:31–38

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the invaluable help of Katrin Seemayer (Grünenthal Information Management Services) for her contribution to the scientific information, criticism of the manuscript and subsequent corrections.

Conflict of interest

Emilio G. Quetglas, Simone Wigge, Lutz Barnscheid and Marcel Froelich are currently employees of Grünenthal. Alessandro Armuzzi has been an External Consultant for AbbVie, Lilly, Hospira, MSD, Mundipharma, Pfizer, Sofar and Takeda and a lecturer for AbbVie, AstraZeneca, Chiesi, Ferring, Hospira, MSD, Otsuka, Takeda and Zambon. He also holds a grant for research from MSD. Gionata Fiorino served as a consultant and a member of Advisory Boards for MSD, AbbVie, Takeda Pharmaceuticals and Janssen Pharmaceuticals. Silvio Danese has served as a speaker, consultant and Advisory Board member for Schering-Plough, Abbott Laboratories, Merck & Co, UCB Pharma, Ferring, Cellerix, Millenium Takeda, Nycomed, Pharmacosmos, Actelion, Alpha Wasserman, Genentech, Grünenthal, Pfizer, AstraZeneca, Novo Nordisk, Cosmo Pharmaceuticals, Vifor Pharma and Johnson & Johnson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Danese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quetglas, E.G., Armuzzi, A., Wigge, S. et al. Review article: The pharmacokinetics and pharmacodynamics of drugs used in inflammatory bowel disease treatment. Eur J Clin Pharmacol 71, 773–799 (2015). https://doi.org/10.1007/s00228-015-1862-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-015-1862-7

Keywords

Navigation