European Journal of Clinical Pharmacology

, Volume 71, Issue 1, pp 59–63 | Cite as

A pharmacogenetic association between a variation in calpain 10 (CAPN10) gene and the response to metformin treatment in patients with type 2 diabetes

  • Ivan Tkáč
  • Martin Javorský
  • Lucia Klimčáková
  • Jozef Židzik
  • Igor Gaľa
  • Eva Babjaková
  • Zbynek Schroner
  • Mária Štolfová
  • Hana Hermanová
  • Viera Habalová



The aim of the present study was to investigate possible associations of the single-nucleotide variants in six genes encoding the key molecules mediating the metformin pharmacodynamic effect with the response to treatment with metformin in patients with type 2 diabetes.


One hundred forty-eight drug-naïve patients with type 2 diabetes were included in the study. PRKAA1 rs249429, STK11 rs741765, PCK1 rs4810083, PPARGC1A rs10213440, HNF1A rs11086926, and CAPN10 rs3792269 variants were genotyped. The outcomes of the study were treatment success defined by achieving HbA1c <7 % and absolute reduction in HbAlc after 6-month metformin therapy. The relationships between genotypes and outcomes were evaluated in multivariate logistic and linear models. The level of statistical significance after Bonferroni correction was predefined as p < 0.0083.


The minor G-allele of CAPN10 rs3792269 A > G polymorphism was significantly associated with less treatment success with an odds ratio of 0.27 (95 % CI 0.12–0.62, p = 0.002) per variant allele. When the reduction in HbA1c was analyzed as a quantitative trait, G-allele was nominally associated with a smaller reduction in HbA1c (per allele β = −0.26, 95 % CI −0.50 to −0.02, p = 0.032). The reduction in HbA1c in minor allele carriers (24 % of study population) was smaller by 0.3 % in comparison with the major allele homozygotes.


The present study provides the first observation of an association between a variant in CAPN10 gene and the response to metformin therapy in patients with type 2 diabetes. This observation needs to be replicated in further studies in different populations.


Metformin Pharmacogenetics Type 2 diabetes mellitus Calpain 10 

Supplementary material

228_2014_1774_MOESM1_ESM.docx (12 kb)
ESM 1(DOCX 11 kb)


  1. 1.
    Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M et al (2012) Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 55:1577–1596PubMedCrossRefGoogle Scholar
  2. 2.
    UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352:854–865CrossRefGoogle Scholar
  3. 3.
    Kooy A, de Jager J, Lehert P, Bets D, Wulffelé MG, Donker AJ et al (2009) Long-term effects of metformin on metabolism and microvascular and macrovascular disease in patients with type 2 diabetes. Arch Int Med 169:616–625CrossRefGoogle Scholar
  4. 4.
    Hirst JA, Farmer AJ, Ali R, Roberts NW, Stevens RJ (2012) Quantifying the effect of metformin treatment and dose on glycemic control. Diabetes Care 35:446–445PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK et al (2011) Clinical pharmacokinetics of metformin. Clin Pharmacokinet 50:81–98PubMedCrossRefGoogle Scholar
  6. 6.
    Zhou K, Bellenguez C, Spencer CCA, Bennett AJ, Coleman RL, Tavendale R et al (2011) Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet 43:117–120PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH (2009) Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J 9:242–247PubMedCrossRefGoogle Scholar
  8. 8.
    Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH (2009) Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes 58:745–749PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Christensen MM, Brasch-Andersen C, Green H, Nielsen F, Damkier P, Beck-Nielsen H et al (2011) The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet Genomics 21:837–850PubMedCrossRefGoogle Scholar
  10. 10.
    Stocker SL, Morrissey KM, Yee SW, Castro RA, Xu L, Dahlin A et al (2013) The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacol Ther 93:186–194PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Tkáč I, Klimčáková L, Javorský M, Fabianová M, Schroner Z, Hermanová H et al (2013) Pharmacogenomic association between a variant in SLC47A1 gene and therapeutic response to metformin in type 2 diabetes. Diabetes Obes Metab 15:189–191PubMedCrossRefGoogle Scholar
  12. 12.
    Jablonski KA, McAteer JB, Bakker PIW, Franks PW, Pollin TI, Hanson RL et al (2010) Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the Diabetes Prevention Program. Diabetes 59:2672–2681PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D et al (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13:2004–2008PubMedCrossRefGoogle Scholar
  15. 15.
    Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ et al (2003) Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1α): requirement for hepatocyte nuclear factor 4α in gluconeogenesis. Proc Natl Acad Sci 100:4012–4017PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kim YD, Park KG, Lee YS, Park YY, Kim DK, Nedumaran B et al (2008) Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes 57:306–314PubMedCrossRefGoogle Scholar
  17. 17.
    Koo SH, Flechner L, Qi L, Screaton RA, Jeffries S, Hedrick S et al (2005) The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437:1109–1114PubMedCrossRefGoogle Scholar
  18. 18.
    Foretz M, Hébrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G et al (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LBK1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120:2355–2369PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Miller MA, Birnbaum MJ (2010) An energetic tale of AMPK-independent effects of metformin. J Clin Invest 120:2267–2270PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Arrington DD, Van Vleet TR, Schnellmann RG (2006) Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol Cell Physiol 291:C1159–C1171PubMedCrossRefGoogle Scholar
  21. 21.
    Smith MA, Covington MD, Schnellmann RG (2012) Loss of calpain 10 causes mitochondrial dysfunction during chronic hyperglycemia. Arch Biochem Biophys 523:161–168PubMedCrossRefGoogle Scholar
  22. 22.
    Brown AE, Yeaman SJ, Walker M (2007) Targeted suppression of calpain-10 impairs insulin-stimulated glucose uptake in cultured primary human skeletal muscle cells. Mol Genet Metab 91:318–324PubMedCrossRefGoogle Scholar
  23. 23.
    Ling C, Groop L, Guerra SD, Lupi R (2009) Calpain-10 expression is elevated in pancreatic islets from patients with type 2 diabetes. PLoS ONE 4:e6558PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    American Diabetes Association (2006) Diagnosis and classification of diabetes mellitus. Diabetes Care 29(suppl 1):S43–S48Google Scholar
  25. 25.
    Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP (2006) for the ADOPT Study Group Glycaemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–2443PubMedCrossRefGoogle Scholar
  26. 26.
    Suzuki K, Hata S, Kawamata Y, Sorimachi H (2004) Structure, activation, and biology of calpain. Diabetes 55(suppl 1):S12–S18CrossRefGoogle Scholar
  27. 27.
    Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M et al (2000) Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 26:163–175PubMedCrossRefGoogle Scholar
  28. 28.
    Rasmussen SK, Urhammer SA, Berglund L, Jensen JN, Hansen L, Echwald SM et al (2002) Variants within the calpain-10 gene on chromosome 2q37 (NIDDM1) and relationships to type 2 diabetes, insulin resistance, and impaired acute insulin secretion among Scandinavian Caucasians. Diabetes 51:3561–3567PubMedCrossRefGoogle Scholar
  29. 29.
    Tsuchiya T, Schwarz PE, Bosque-Plata LD, Geoffrey Hayes M, Dina C, Froguel P et al (2006) Association of calpain-10 gene with type 2 diabetes in Europeans: results of pooled meta-analyses. Mol Genet Metab 89:174–184PubMedCrossRefGoogle Scholar
  30. 30.
    Morris AP, Voight BF, Teslovich TM, Ferreira T, Segrè AV, Steinthorsdottir V et al (2012) DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA et al (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerolphosphate dehydrogenase. Nature 510:542–546PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ivan Tkáč
    • 1
    • 2
  • Martin Javorský
    • 1
    • 2
  • Lucia Klimčáková
    • 3
  • Jozef Židzik
    • 3
  • Igor Gaľa
    • 1
    • 2
  • Eva Babjaková
    • 1
    • 2
  • Zbynek Schroner
    • 1
  • Mária Štolfová
    • 1
  • Hana Hermanová
    • 3
  • Viera Habalová
    • 3
  1. 1.Department of Internal Medicine 4, Faculty of MedicineP. J. Šafárik UniversityKošiceSlovakia
  2. 2.Department of Internal Medicine 4L. Pasteur University HospitalKošiceSlovakia
  3. 3.Department of Medical Biology, Faculty of MedicineP. J. Šafárik UniversityKošiceSlovakia

Personalised recommendations