Skip to main content
Log in

An acenocoumarol dose algorithm based on a South-Eastern European population

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Aim

To develop and validate an algorithm for the prediction of therapeutic dose of acenocoumarol in Romanian patients.

Methods

The inclusion criteria for entry to the study was age ≥18 years and starting acenocoumarol treatment for at least one of the following clinical indications: acute deep vein thrombosis of the lower limbs, persistent or permanent atrial fibrillation, and/or the presence of valvular prostheses requiring prolonged oral anticoagulant therapy. The patients were followed up for 3 months. Patients admitted to the internal medicine, cardiology, and geriatrics wards of the Municipal Clinical Hospital, Cluj-Napoca and “Niculae Stăncioiu” Heart Institute between October 2009 and June 2011 who fulfilled the inclusion criteria were included in the study. Clinical and demographic data that could influence the acenocoumarol stable dose were recorded for each patient. Genetic analysis included the genotyping the CYP2C9*2 and *3, and the VKORC1 -1693 G > A polymorphisms. The patients were randomly divided into two groups: (1) the main group on which the development of the clinical and genetic algorithms for acenocoumarol dose prediction was based; (2) the validation group.

Results

The study included 301 patients, of whom 155 were women (51.5 %) and 146 were men (48.5 %). The median age of the patient cohort was 66 (women, 57; men, 73) years. After randomization the main group comprised 200 patients (66.4 %) and the validation group 101 patients (33.6 %). Age and body mass index explained 18.8 % (R 2) of the variability in acenocoumarol weekly dose in patients in the main group. When the genetic data were added to the algorithm, the CYP2C9*2 and *3 polymorphisms and the VKORC1 -1693 G > A polymorphism accounted for 4.7 and 19. 6 % of acenocoumarol dose variability, respectively. For the main group, we calculated a mean absolute error of 5 mg/week (0.71 mg/day). In the validation group, clinical parameters explained 22.2 % of the weekly acenocoumarol dose variability. Genetic polymorphisms increased the R 2 coefficient to 32.8 %.

Conclusion

We have developed and validated an accurate algorithm for prediction of the stable therapeutic dose of acenocoumarol in a Romania population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takahashi H, Wilkinson GR, Padrini R, Echizen H (2004) CYP2C9 and oral anticoagulation therapy with acenocoumarol and warfarin: similarities yet differences. Clin Pharmacol Ther 75(5):376–380. doi:10.1016/j.clpt.2004.01.007

    Article  PubMed  CAS  Google Scholar 

  2. Zhou SF, Liu JP, Chowbay B (2009) Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 41(2):89–295. doi:10.1080/03602530902843483

    Article  PubMed  CAS  Google Scholar 

  3. Ageno W, Gallus AS, Wittkowsky A, Crowther M, Hylek EM, Palareti G (2012) Oral anticoagulant therapy: antithrombotic therapy and prevention of thrombosis, 9th edn: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 141[2 Suppl]:e44S–e88S. doi:10.1378/chest.11-2292

    Article  PubMed  CAS  Google Scholar 

  4. Buzoianu AD, Trifa AP, Mureşanu DF, Crişan S (2012) Analysis of CYP2C9*2, CYP2C9*3 and VKORC1–1639 G > A polymorphisms in a population from South-Eastern Europe. J Cell Mol Med 16(12):2919–2924. doi:10.1111/j.1582-4934.2012.01606.x

    Article  PubMed  CAS  Google Scholar 

  5. Yin T, Miyata T (2007) Warfarin dose and the pharmacogenomics of CYP2C9 and VKORC1—rationale and perspectives. Thrombosis Res 120(1):1–10. doi:10.1016/j.thromres.2006.10.021

    Article  CAS  Google Scholar 

  6. Rettie AE, Wienkers LC, Gonzalez FJ, Trager WF, Korzekwa KR (1994) Impaired S-warfarin metabolism catalyzed by R144C allelic variant of CYP2C9. Pharmacogenetics 4:39–42

    Article  PubMed  CAS  Google Scholar 

  7. Crespi CL, Miller VP (1997) The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH:cytochrome P450 oxidoreductase. Pharmacogenetics 7:203–210

    Article  PubMed  CAS  Google Scholar 

  8. Schalekamp T, Brassé BP, Roijers JFM, Chahid Y, van Geest-Daalderop JHH et al (2006) VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: Interaction between both genotypes affects overanticoagulation. Clin Pharmacol Ther 80(1):13–22. doi:10.1016/j.clpt.2006.04.006

    Article  PubMed  CAS  Google Scholar 

  9. Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM et al (2002) Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 287(13):1690–1698. doi:10.1001/jama.287.13.1690

    Article  PubMed  CAS  Google Scholar 

  10. Visser LE, van Vliet M, van Schaik RH, Kasbergen AA, De Smet PA, Vulto AG et al (2004) The risk of overanticoagulation in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Pharmacogenetics 14(1):27–33

    Article  PubMed  CAS  Google Scholar 

  11. Cadamuro J, Dieplinger B, Felder T, Kedenko I, Mueller T, Haltmayer M et al (2010) Genetic determinants of acenocoumarol and phenprocoumon maintenance dose requirements. Eur J Clin Pharmacol 66(3):253–260. doi:10.1007/s00228-009-0768-7

    Article  PubMed  CAS  Google Scholar 

  12. Goodstadt L, Ponting CP (2004) Vitamin K epoxide reductase: homology, active site and catalytic mechanism. Trends Biochem Sci 29(6):289–292. doi:10.1016/j.tibs.2004.04.004

    Article  PubMed  CAS  Google Scholar 

  13. Takahashi H, Wilkinson GR, Nutescu EA, Morita T, Ritchie MD, Scordo MG et al (2006) Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genomics 16(2):101–110. doi:10.1097/01.fpc.0000184955.08453.a8

    Article  PubMed  CAS  Google Scholar 

  14. Montes R, Ruiz de Gaona E, Martínez-González MA, Alberca I, Hermida J (2006) The c.-1639G > A polymorphism of the VKORC1 gene is a major determinant of the response to acenocoumarol in anticoagulated patients. Br J Haematol 133(2):183–187. doi:10.1111/j.1365-2141.2006.06007.x

    Article  PubMed  CAS  Google Scholar 

  15. Harrison L, Johnston M, Massicotte MP, Crowther M, Moffat K, Hirsh J (1997) Comparison of 5-mg and 10-mg loading doses in initiation of warfarin therapy. Ann Intern Med 126(2):133–136. doi:10.7326/0003-4819-126-2-199701150-00006

    Article  PubMed  CAS  Google Scholar 

  16. Kovacs MJ, Rodger M, Anderson DR, Morrow B, Kells G, Kovacs J et al (2003) Comparison of 10-mg and 5-mg warfarin initiation nomograms together with low-molecular-weight heparin for outpatient treatment of acute venous thromboembolism. A randomized, double-blind, controlled trial. Ann Intern Med 138(9):714–719

    Article  PubMed  CAS  Google Scholar 

  17. Joffe HV, Xu R, Johnson FB, Longtine J, Kucher N, Goldhaber SZ (2004) Warfarin dosing and cytochrome P450 2C9 polymorphisms. Thromb Haemost 91(6):1123–1128. doi:10.1160/TH04-02-0083

    PubMed  CAS  Google Scholar 

  18. Brockmöller J, Tzvetkov MT (2008) Pharmacogenetics: data, concepts and tools to improve drug discovery and drug treatment. Eur J Clin Pharmacol 64(2):133–157. doi:10.1007/s00228-007-0424-z

    Article  PubMed  Google Scholar 

  19. Stehle S, Kirchheiner J, Lazar A, Fuhr U (2008) Pharmacogenetics of oral anticoagulants: a basis for dose individualization. Clin Pharmacokinet 47(9):565–594. doi:10.2165/00003088-200847090-00002

    Article  PubMed  CAS  Google Scholar 

  20. Borobia AM, Lubomirov R, Ramírez E, Lorenzo A, Campos A, Muñoz-Romo R et al (2012) An acenocoumarol dosing algorithm using clinical and pharmacogenetic data in spanish patients with thromboembolic disease. PLoS One 7(7):e41360. doi:10.1371/journal.pone.0041360

    Article  PubMed  CAS  Google Scholar 

  21. Verde Z, Ruiz JR, Santiago C, Valle B, Bandrés F et al (2010) A novel, single algorithm approach to predict acenocoumarol dose based on CYP2C9 and VKORC1 allele variants. PLoS One 5(6):e11210. doi:10.1371/journal.pone.0011210

    Article  PubMed  Google Scholar 

  22. van Schie RMF, Wessels JAM, le Cessie S, de Boer A, Schalekamp T, van der Meer FJM et al (2011) Loading and maintenance dose algorithms for phenprocoumon and acenocoumarol using patient characteristics and pharmacogenetic data. Eur Heart J 32(15):1909–1917. doi:10.1093/eurheartj/ehr116

    Article  PubMed  Google Scholar 

  23. Aynacioglu AS, Brockmöller J, Bauer S, Sachse C, Güzelbey P, Ongen Z et al (1999) Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol 48(3):409–415. doi:10.1046/j.1365-2125.1999.00012.x

    Article  PubMed  CAS  Google Scholar 

  24. Wen MS, Lee M, Chen JJ, Chuang HP, Lu LS, Chen CH et al (2008) Prospective study of warfarin dosage requirements based on CYP2C9 and VKORC1 genotypes. Clin Pharmacol Ther 84(1):83–89. doi:10.1038/sj.clpt.6100453

    Article  PubMed  CAS  Google Scholar 

  25. Arboix M, Laporte JR, Frati ME, Rutllan M (1984) Effect of age and sex on acenocoumarol requirements. Br J Clin Pharmacol 18(4):475–479

    Article  PubMed  CAS  Google Scholar 

  26. Loi CM, Vestal RE (1988) Drug metabolism in the elderly. Pharmacol Ther 36:131–149. doi:10.1016/0163-7258(88)90115-5

    Article  PubMed  CAS  Google Scholar 

  27. Tanaka E (1998) In vivo age-related changes in hepatic drug-oxidizing capacity in humans. J Clin Pharm Ther 23(4):247–255

    Article  PubMed  CAS  Google Scholar 

  28. Dreisbach AW, Lertora JJ (2008) The effect of chronic renal failure on drug metabolism and transport. Expert Opin Drug Metab Toxicol 4(8):1065–1074. doi:10.1517/17425255.4.8.1065

    Article  PubMed  CAS  Google Scholar 

  29. Husted S, Andreasen F (1977) The influence of age on the response to anticoagulants. Br J Clin Pharmacol 4:559–565

    Article  PubMed  CAS  Google Scholar 

  30. Teichert M, van Noord C, Uitterlinden AG, Hofman A, Buhre PN, De Smet PA et al (2011) Proton pump inhibitors and the risk of overanticoagulation during acenocoumarol maintenance treatment. Br J Haematol 153(3):379–385. doi:10.1111/j.1365-2141.2011.08633.x

    Article  PubMed  Google Scholar 

  31. Vreeburg EM, De Vlaam-Schluter GM, Trienekens PH, Snel P, Tytgat GN (1997) Lack of effect of omeprazole in oral acenocoumarol anticoagulant therapy. Scand J Gastroenterol 32(10):991–994. doi:10.3109/00365529709011215

    Article  PubMed  CAS  Google Scholar 

  32. de Hoon JN, Thijssen HH, Beysens AJ, Van Bortel LM (1997) No effect of short-term omeprazole intake on acenocoumarol pharmacokinetics and pharmacodynamics. Br J Clin Pharmacol 44(4):399–401. doi:10.1046/j.1365-2125.1997.00600.x

    Article  PubMed  Google Scholar 

  33. van Schie RM, Verhoef TI, Boejharat SB, Schalekamp T, Wessels JA, le Cessie S et al (2012) Evaluation of the effect of statin use on the acenocoumarol and phenprocoumon maintenance dose. Drug Metabol Drug Interact 27(4):229–234. doi:10.1515/dmdi-2012-0024

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by research grant 42-127/2008 “Trombo-Gen”, from National Authority for Scientific Research from Romania.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ştefan Cristian Vesa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 21.8 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pop, T.R., Vesa, Ş.C., Trifa, A.P. et al. An acenocoumarol dose algorithm based on a South-Eastern European population. Eur J Clin Pharmacol 69, 1901–1907 (2013). https://doi.org/10.1007/s00228-013-1551-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-013-1551-3

Keywords

Navigation