Skip to main content

Advertisement

Log in

Polymorphisms of UGT1A9 and UGT2B7 influence the pharmacokinetics of mycophenolic acid after a single oral dose in healthy Chinese volunteers

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To explore the impact of UDP-glucuronosyltransferase polymorphisms (UGT1A9-118(dT) 9/10 , UGT1A9 CI399T, UGT1A9 C-440T and UGT2B7 G211T) on the pharmacokinetics of mycophenolic acid (MPA) in healthy Chinese volunteers.

Methods

We recruited ten healthy volunteers with no polymorphisms (control group), 11 homozygotes of mutants UGT1A9 CI399T and UGT1A9-118(dT) 9/10 , ten heterozygotes of UGT1A9 C440T and seven carriers of UGT2B7 211T from a total of 518 healthy Chinese volunteers. All the volunteers were orally administered a single dose of 1.5 g mycophenolate mofetil (MMF) after an overnight fast. Plasma was then collected 72 h after MMF administration. MPA, MPA-7-O-glucuronide (MPAG) and its acylglucuronide (AcMPAG) were detected by ultra-pressure liquid chromatography with UV detection.

Results

Compared with the control group, the UGT1A9 CI399T and UGT1A9-118(dT) 9/10 mutant homozygotes had higher MPAG plasma concentrations. Subjects with UGT1A9-440TC had enhanced MPA exposure while carriers of UGT2B7 211T had higher concentrations of the toxic metabolite, AcMPAG.

Conclusions

The current results indicate that UGT1A9 and UGT2B7 genotypes could significantly alter MPA pharmacokinetics in healthy Chinese volunteers after a single oral dose of MMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sollinger HW (2004) Mycophenolates in transplantation. Clin Transplant 18(5):485–492

    Article  PubMed  Google Scholar 

  2. Allison AC, Eugui EM (2000) Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 47(2–3):85–118

    Article  PubMed  CAS  Google Scholar 

  3. van Gelder T, Le Meur Y, Shaw LM, Oellerich M, DeNofrio D, Holt C, Holt DW, Kaplan B, Kuypers D, Meiser B, Toenshoff B, Mamelok RD (2006) Therapeutic drug monitoring of mycophenolate mofetil in transplantation. Ther Drug Monit 28(2):145–154

    Article  PubMed  Google Scholar 

  4. Shaw LM, Holt DW, Oellerich M, Meiser B, van Gelder T (2001) Current issues in therapeutic drug monitoring of mycophenolic acid: report of a roundtable discussion. Ther Drug Monit 23(4):305–315

    Article  PubMed  CAS  Google Scholar 

  5. Shaw LM, Korecka M, Venkataramanan R, Goldberg L, Bloom R, Brayman KL (2003) Mycophenolic acid pharmacodynamics and pharmacokinetics provide a basis for rational monitoring strategies. Am J Transplant 3(5):534–542

    Article  PubMed  CAS  Google Scholar 

  6. Mourad M, Malaise J, Chaib Eddour D, De Meyer M, König J, Schepers R, Squifflet JP, Wallemacq P (2001) Correlation of mycophenolic acid pharmacokinetic parameters with side effects in kidney transplant patients treated with mycophenolate mofetil. Clin Chem 47(1):88–94

    PubMed  CAS  Google Scholar 

  7. Kurata Y, Kato M, Kuzuya T, Miwa Y, Iwasaki K, Haneda M, Amioka K, Watarai Y, Uchida K, Nakao A, Kobayashi T (2009) Pretransplant pharmacodynamic analysis of immunosuppressive agents using CFSE-based T-cell proliferation assay. Clin Pharmacol Ther 86(3):285–289

    Article  PubMed  CAS  Google Scholar 

  8. Borrows R, Chusney G, James A, Stichbury J, Van Tromp J, Cairns T, Griffith M, Hakim N, McLean A, Palmer A, Papalois V, Taube D (2005) Determinants of mycophenolic acid levels after renal transplantation. Ther Drug Monit 27(4):442–450

    Article  PubMed  CAS  Google Scholar 

  9. Shipkova M, Wieland E, Schütz E, Wiese C, Niedmann PD, Oellerich M, Armstrong VW (2001) The acyl glucuronide metabolite of mycophenolic acid inhibits the proliferation of human mononuclear leukocytes. Transplant Proc 33(1–2):1080–1081

    Article  PubMed  CAS  Google Scholar 

  10. Mackenzie PI (2000) Identification of uridine diphosphate glucuronosyltransferases involved in the metabolism and clearance of mycophenolic acid. Ther Drug Monit 22(1):10–13

    Article  PubMed  CAS  Google Scholar 

  11. Bernard O, Guillemette C (2004) The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab Dispos 32(8):775–778

    Article  PubMed  CAS  Google Scholar 

  12. Bernard O, Tojcic J, Journault K, Perusse L, Guillemette C (2006) Influence of nonsynonymous polymorphisms of UGT1A8 and UGT2B7 metabolizing enzymes on the formation of phenolic and acyl glucuronides of mycophenolic acid. Drug Metab Dispos 34(9):1539–1545

    Article  PubMed  CAS  Google Scholar 

  13. Shipkova M, Armstrong VW, Weber L, Niedmann PD, Wieland E, Haley J, Tönshoff B, Oellerich M, German Study Group on Mycophenolate Mofetil Therapy in Pediatric Renal Transplant Recipients (2002) Pharmacokinetics and protein adduct formation of the pharmacologically active acyl glucuronide metabolite of mycophenolic acid in pediatric renal transplant recipients. Ther Drug Monit 24(3):390–399

    Article  PubMed  CAS  Google Scholar 

  14. Bullingham RE, Nicholls AJ, Kamm BR (1998) Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 34(6):429–455

    Article  PubMed  CAS  Google Scholar 

  15. Available from: most recent update; http://www.pharmacogenomics.pha.ulaval.ca/webdav/site/pharmacogenomics/shared/Nomenclature/UGT1A/UGT1A9.htm.

  16. Girard H, Court MH, Bernard O, Fortier LC, Villeneuve L, Hao Q, Greenblatt DJ, von Moltke LL, Perussed L, Guillemette C (2004) Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics 14(8):501–515

    Article  PubMed  CAS  Google Scholar 

  17. Yamanaka H, Nakajima M, Katoh M, Hara Y, Tachibana O, Yamashita J, McLeod HL, Yokoi T (2004) A novel polymorphism in the promoter region of human UGT1A9 gene (UGT1A9*22) and its effects on the transcriptional activity. Pharmacogenetics 14(5):329–332

    Article  PubMed  CAS  Google Scholar 

  18. Carlini LE, Meropol NJ, Bever J, Andria ML, Hill T, Gold P, Rogatko A, Wang H, Blanchard RL (2005) UGT1A7 and UGT1A9 polymorphisms predict response and toxicity in colorectal cancer patients treated with capecitabine/irinotecan. Clin Cancer Res 11(3):1226–1236

    PubMed  CAS  Google Scholar 

  19. Sandanaraj E, Jada SR, Shu X, Lim R, Lee SC, Zhou Q, Zhou S, Goh BC, Chowbay B (2008) Influence of UGT1A9 intronic I399C4T polymorphism on SN-38 glucuronidation in Asian cancer patients. Pharmacogenomics J 8(3):174–185

    Article  PubMed  CAS  Google Scholar 

  20. Hirota T, Ieiri I, Takane H, Sano H, Kawamoto K, Aono H, Yamasaki A, Takeuchi H, Masada M, Shimizu E, Higuchi S, Otsubo K (2003) Sequence variability and candidate gene analysis in two cancer patients with complex clinical outcomes during morphine therapy. Drug Metab Dispos 31(5):677–680

    Article  PubMed  CAS  Google Scholar 

  21. Kuypers DR, Naesens M, Vermeire S, Vanrenterghem Y (2005) The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGTIA9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients. Clin Pharmacol Ther 78(4):351–361

    Article  PubMed  CAS  Google Scholar 

  22. Zhang WX, Chen B, Jin Z, Yu Z, Wang X, Chen H, Mao A, Cai W (2008) Influence of uridine diphosphate (UDP)-glucuronosyltransferases and ABCC2 genetic polymorphisms on the pharmacokinetics of mycophenolic acid and its metabolites in Chinese renal transplant recipients. Xenobiotica 38(11):1422–1436

    Article  PubMed  CAS  Google Scholar 

  23. Sánchez-Fructuoso AI, Maestro ML, Calvo N, Viudarreta M, Pérez-Flores I, Veganzone S, De la Orden V, Ortega D, Arroyo M, Barrientos A (2009) The prevalence of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T and its influence on mycophenolic acid pharmacokinetics in stable renal transplant patients. Transplant Proc 41(6):2313–2316

    Article  PubMed  Google Scholar 

  24. Kagaya H, Inoue K, Miura M, Satoh S, Saito M, Tada H, Habuchi T, Suzuki T (2007) Influence of UGT1A8 and UGT2B7 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol 63(3):279–288

    Article  PubMed  CAS  Google Scholar 

  25. Inoue K, Miura M, Satoh S, Kagaya H, Saito M, Habuchi T, Suzuki T (2007) Influence of UGT1A7 and UGT1A9 intronic 1399 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Ther Drug Monit 29(3):299–304

    Article  PubMed  CAS  Google Scholar 

  26. Girard H, Villeneuve L, Court MH, Fortier LC, Caron P, Hao Q, von Moltke LL, Greenblatt DJ, Guillemette C (2006) The novel UGT1A9 intronic I399 polymorphism appears as a predictor of 7-ethyl-10-hydroxycamptothecin glucuronidation levels in the liver. Drug Metab Dispos 34(7):1220–1228

    Article  PubMed  CAS  Google Scholar 

  27. Baldelli S, Merlini S, Perico N, Nicastri A, Cortinovis M, Gotti E, Remuzzi G, Cattaneo D (2007) C-440T/T-331C polymorphisms in the UGT1A9 gene affect the pharmacokinetics of mycophenolic acid in kidney transplantation. Pharmacogenomics 8(9):1127–1141

    Article  PubMed  CAS  Google Scholar 

  28. Saito K, Moriya H, Sawaguchi T, Hayakawa T, Nakahara S, Goto A, Arimura Y, Imai K, Kurosawa N, Owada E, Miyamoto A (2006) Haplotype analysis of UDP-glucuronocyltransferase 2B7 gene (UGT2B7) polymorphisms in healthy Japanese subjects. Clin Biochem 39(3):303–308

    Article  PubMed  CAS  Google Scholar 

  29. Lévesque E, Delage R, Benoit-Biancamano MO, Caron P, Bernard O, Couture F, Guillemette C (2007) The impact of UGT1A8, UGT1A9, and UGT2B7 genetic polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers. Clin Pharmacol Ther 81(3):392–400

    Article  PubMed  Google Scholar 

  30. Innocenti F, Liu W, Chen P, Desai AA, Das S, Ratain MJ (2005) Haplotypes of variants in the UDP-glucuronosyltransferase 1A9 and 1A1 genes. Pharmacogenet Genomics 15(5):295–301

    Article  PubMed  CAS  Google Scholar 

  31. Ho WF, Koo SH, Yee JY, Lee JD (2008) Genetic variations of the ABCC2 gene in the Chinese, Malay, and Indian populations of Singapore. Drug Metab Pharmacokinet 23(5):385–391

    Article  PubMed  CAS  Google Scholar 

  32. Sai K, Saito Y, Itoda M, Fukushima-Uesaka H, Nishimaki-Mogami T, Ozawa S, Maekawa K, Kurose K, Kaniwa N, Kawamoto M, Kamatani N, Shirao K, Hamaguchi T, Yamamoto N, Kunitoh H, Ohe Y, Yamada Y, Tamura T, Yoshida T, Minami H, Matsumura Y, Ohtsu A, Saijo N, Sawada J (2008) Genetic variations and haplotypes of ABCC2 encoding MRP2 in a Japanese population. Drug Metab Pharmacokinet 23(2):139–147

    Article  PubMed  CAS  Google Scholar 

  33. Picard N, Ratanasavanh D, Prémaud A, Le Meur Y, Marquet P (2005) Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos 33(1):139–146

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sabine Hadulo from Roche Palo Alto for his help in acquiring the MPA, MPAG and AcMPAG standards. This work was supported by the National Scientific Foundation of China (No. 302002014), the Fundamental Research Funds for the Central Universities (No. 2012QNZT083) and Specialized Research Fund for the Doctoral Program of Higher Education (NO.20110162120025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Hao Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, D., Pang, LF., Han, Y. et al. Polymorphisms of UGT1A9 and UGT2B7 influence the pharmacokinetics of mycophenolic acid after a single oral dose in healthy Chinese volunteers. Eur J Clin Pharmacol 69, 843–849 (2013). https://doi.org/10.1007/s00228-012-1409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-012-1409-0

Keywords

Navigation