Skip to main content

Advertisement

Log in

Effect of the CYP2C19 genotype on the pharmacokinetics of icotinib in healthy male volunteers

  • Short Communication
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Icotinib hydrochloride {4-[(3-ethynylphenyl)amino]-6,7-benzo-12-crown-4-quinazoline hydrochloride}, a novel epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI), was designed for the treatment of non-small cell lung cancer (NSCLC). In the present study, we investigated the influence of the CYP2C19*2 and CYP2C19*3 alleles on the pharmacokinetics of icotinib in healthy Chinese volunteers.

Methods

In a single-dose pharmacokinetic study, 12 healthy Chinese volunteers received an oral dose of 600 mg of icotinib. Plasma was sampled for up to 72 h post-dose, followed by quantification of icotinib by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS-MS).

Results

Five subjects genotyped as homozygous extensive metabolizers (CYP2C19*1/*1), 6 subjects genotyped as heterozygous extensive metabolizers (CYP2C19*1/*2 or CYP2C19*1/*3), and 1 subject genotyped as a poor metabolizer (CYP2C19*2/*3) and was withdrawn from the research because of urticaria. The mean icotinib AUC0-∞ and Cmax (14.56 ±5.31 h mg/L and 2.32 ± 0.49 μg/mL) in homozygous EMs was 1.56 and 1.41-fold lower than that in heterozygous EMs (22.7 ± 6.11 and 3.28 ± 0.48, P = 0.046 and 0.047). The mean CL/F (44.18 ± 12.17 L/h) in homozygous EMs was 1.55-fold higher than that in heterozygous EMs (28.42 ± 9.23 L/h, P = 0.013).

Conclusions

The data showed that the pharmacokinetics of icotinib differ significantly between homozygous EMs and heterozygous EMs in CYP2C19.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Ciardiello F, Caputo R, Bianco R, Damiano V, Fontanini G, Cuccato S, De Placido S, Bianco AR, Tortora G (2001) Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 7(5):1459–1465

    CAS  Google Scholar 

  2. Ren GJ, Zhao YY, Zhu YJ, Xiao Y, Xu JS, Shan B, Zhang L (2011) Tumor gene mutations and messenger RNA expression: correlation with clinical response to icotinib hydrochloride in non-small cell lung cancer. Chinese Med J 124(1):19–25

    CAS  Google Scholar 

  3. Desta Z, Zhao X, Shin JG, Flockhart DA (2002) Clinical significance of the cytochrome P450 2 C19 genetic polymorphism. Clin Pharmacokinet 41(12):913–958

    Article  PubMed  CAS  Google Scholar 

  4. Myrand SP, Sekiguchi K, Man MZ, Lin X, Tzeng RY, Teng CH, Hee B, Garrett M, Kikkawa H, Lin CY, Eddy SM, Dostalik J, Mount J, Azuma J, Fujio Y, Jang IJ, Shin SG, Bleavins MR, Williams JA, Paulauskis JD, Wilner KD (2008) Pharmacokinetics/genotype associations for major cytochrome P450 enzymes in native and first- and third-generation Japanese populations: comparison with Korean, Chinese, and Caucasian populations. Clin Pharmacol Ther 84(3):347–361 doi:10.1038/sj.clpt.6100482

    Article  PubMed  CAS  Google Scholar 

  5. Li-Wan-Po A, Girard T, Farndon P, Cooley C, Lithgow J (2010) Pharmacogenetics of CYP2C19: functional and clinical implications of a new variant CYP2C19*17. Br J Clin Pharmacol 69(3):222–230 doi:10.1111/j.1365-2125.2009.03578.x

    Article  PubMed  CAS  Google Scholar 

  6. Xiao ZS, Goldstein JA, Xie HG, Blaisdell J, Wang W, Jiang CH, Yan FX, He N, Huang SL, Xu ZH, Zhou HH (1997) Differences in the incidence of the CYP2C19 polymorphism affecting the S-mephenytoin phenotype in Chinese Han and Bai populations and identification of a new rare CYP2C19 mutant allele. J Pharmacol Exp Ther 281(1):604–609

    PubMed  CAS  Google Scholar 

  7. De Morais SM, Goldstein JA, Xie HG, Huang SL, Lu YQ, Xia H, Xiao ZS, Ile N, Zhou HH (1995) Genetic analysis of the S-mephenytoin polymorphism in a Chinese population. Clin Pharmacol Ther 58(4):404–411 doi:10.1016/0009-9236(95)90053-5

    Article  PubMed  CAS  Google Scholar 

  8. De Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA (1994) Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol 46(4):594–598

    PubMed  Google Scholar 

  9. Liu D, Jiang J, Hu P, Tan F, Wang Y (2009) Quantitative determination of icotinib in human plasma and urine using liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 877(30):3781–3786 doi:10.1016/j.jchromb.2009.08.055

    Article  PubMed  CAS  Google Scholar 

  10. Liu D, Jiang J, Zhang L, Tan F, Wang Y, Hu P (2011) Metabolite characterization of a novel anti-cancer agent, icotinib, in humans through liquid chromatography/quadrupole time-of-flight tandem mass spectrometry. Rapid communications in mass spectrometry : RCM 25(15):2131–2140 doi:10.1002/rcm.5061

    Article  PubMed  CAS  Google Scholar 

  11. Baldwin RM, Ohlsson S, Pedersen RS, Mwinyi J, Ingelman-Sundberg M, Eliasson E, Bertilsson L (2008) Increased omeprazole metabolism in carriers of the CYP2C19*17 allele; a pharmacokinetic study in healthy volunteers. Br J Clin Pharmacol 65(5):767–774 doi:10.1111/j.1365-2125.2008.03104.x

    Article  PubMed  CAS  Google Scholar 

  12. Bohanec Grabar P, Grabnar I, Rozman B, Logar D, Tomsic M, Suput D, Trdan T, Peterlin Masic L, Mrhar A, Dolzan V (2009) Investigation of the influence of CYP1A2 and CYP2C19 genetic polymorphism on 2-Cyano-3-hydroxy-N-[4-(trifluoromethyl)phenyl]-2-butenamide (A77 1726) pharmacokinetics in leflunomide-treated patients with rheumatoid arthritis. Drug metabolism and disposition: the biological fate of chemicals 37(10):2061–2068 doi:10.1124/dmd.109.027482

    Article  PubMed  Google Scholar 

  13. Lee JB, Lee KA, Lee KY (2011) Cytochrome P450 2 C19 polymorphism is associated with reduced clopidogrel response in cerebrovascular disease. Yonsei Med J 52(5):734–738 doi:10.3349/ymj.2011.52.5.734

    Article  PubMed  CAS  Google Scholar 

  14. Brennan M, Williams JA, Chen Y, Tortorici M, Pithavala Y, Liu YC (2011) Meta-analysis of contribution of genetic polymorphisms in drug-metabolizing enzymes or transporters to axitinib pharmacokinetics. Eur J Clin Pharmacol doi:10.1007/s00228-011-1171-8

    Google Scholar 

  15. Zalloum I, Hakooz N, Arafat T (2011) Genetic polymorphism of CYP2C19 in a Jordanian population: influence of allele frequencies of CYP2C19*1 and CYP2C19*2 on the pharmacokinetic profile of lansoprazole. Mol Biol Rep 39:4195–4200 doi:10.1007/s11033-011-1204-5

    Article  PubMed  Google Scholar 

  16. Barker CM, Murray SS, Teirstein PS, Kandzari DE, Topol EJ, Price MJ (2010) Pilot study of the antiplatelet effect of increased clopidogrel maintenance dosing and its relationship to CYP2C19 genotype in patients with high on-treatment reactivity. JACC Cardiovasc Interv 3(10):1001–1007 doi:10.1016/j.jcin.2010.07.012

    Article  PubMed  Google Scholar 

  17. Shi HY, Yan J, Zhu WH, Yang GP, Tan ZR, Wu WH, Zhou G, Chen XP, Ouyang DS (2010) Effects of erythromycin on voriconazole pharmacokinetics and association with CYP2C19 polymorphism. Eur J Clin Pharmacol 66(11):1131–1136 doi:10.1007/s00228-010-0869-3

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruan, CJ., Liu, DY., Jiang, J. et al. Effect of the CYP2C19 genotype on the pharmacokinetics of icotinib in healthy male volunteers. Eur J Clin Pharmacol 68, 1677–1680 (2012). https://doi.org/10.1007/s00228-012-1288-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-012-1288-4

Keywords

Navigation