Skip to main content
Log in

Evaluation of methods for achieving stable INR in healthy subjects during a multiple-dose warfarin study

  • Pharmacodynamics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

No consistent method is available for finding stable warfarin maintenance doses and fast stabilization of international normalized ratio (INR) values among healthy subjects in experimental warfarin interaction studies. Using data from an earlier study that targeted a stable INR of 1.5–2.0 to test an interaction, we retrospectively evaluated potential dosing algorithms using all methods available to us to decrease the time needed for INR stabilization, which could be useful for future interaction studies in healthy subjects.

Methods

Published pharmacogenetic and clinical dosing algorithms used to initiate pharmacotherapy with warfarin were applied, predicted doses and actual doses were compared by regression analysis, and concentration-time profiles of S-warfarin were simulated using SimCYP® software.

Results

No demographic variables were significantly associated with time to reach a stable, low-intensity INR in this population of relatively young, healthy subjects. Predicted and actual doses were positively correlated for the pharmacogenetic algorithm, but not for the clinical algorithm. INR levels and S-warfarin concentrations were associated with CYP2C9 and VKORC1 genotypes.

Conclusions

Induction to a pharmacodynamic steady state for warfarin for future multiple-dose warfarin drug-interaction studies in healthy volunteers may be predicted using a pharmacogenetic-based dosing algorithm. Simulations revealed that the desired subtherapeutic INR level may be achieved by reducing the predicted dose by approximately 15%. Further study is needed to assess the applicability of this approach to decrease attrition rates and the time needed to reach INR stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wysowski DK, Nourjah P, Swartz L (2007) Bleeding complications with warfarin use: a prevalent adverse effect resulting in regulatory action. Arch Intern Med 167:1414–1419

    Article  PubMed  Google Scholar 

  2. Merli GJ, Tzanis G (2009) Warfarin: what are the clinical implications of an out-of-range-therapeutic international normalized ratio? J Thromb Thrombolysis 27:293–299

    Article  PubMed  CAS  Google Scholar 

  3. Anthony M, Romero K, Malone DC, Hines LE, Higgins L, Woosley RL (2009) Warfarin interactions with substances listed in drug information compendia and in the FDA-approved label for warfarin sodium. Clin Pharmacol Ther 86:425–429

    Article  PubMed  CAS  Google Scholar 

  4. Aithal GP, Day CP, Kesteven PJ, Daly AK (1999) Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353:717–719

    Article  PubMed  CAS  Google Scholar 

  5. Ansell J, Hirsh J, Poller L, Bussey H, Jacobson A, Hylek E (2004) The pharmacology and management of the vitamin K antagonists: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 126:204S–233S

    Article  PubMed  CAS  Google Scholar 

  6. D'Andrea G, D'Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V, Grandone E, Margaglione M (2005) A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 105:645–649

    Article  PubMed  Google Scholar 

  7. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, Blough DK, Thummel KE, Veenstra DL, Rettie AE (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 352:2285–2293

    Article  PubMed  CAS  Google Scholar 

  8. Bristol-Myers Squibb Company (2010) Coumadin® [package insert]. Bristol-Myers, Princeton, NJ. http://packageinserts.bms.com/pi/pi_coumadin.pdf

  9. Fennerty A, Dolben J, Thomas P, Backhouse G, Bentley DP, Campbell IA, Routledge PA (1984) Flexible induction dose regimen for warfarin and prediction of maintenance dose. Br Med J (Clin Res Ed) 288:1268–1270

    Article  CAS  Google Scholar 

  10. Linder MW, Bon Homme M, Reynolds KK, Gage BF, Eby C, Silvestrov N, Valdes R Jr (2009) Interactive modeling for ongoing utility of pharmacogenetic diagnostic testing: application for warfarin therapy. Clin Chem 55:1861–1868

    Article  PubMed  CAS  Google Scholar 

  11. Millican EA, Lenzini PA, Milligan PE, Grosso L, Eby C, Deych E, Grice G, Clohisy JC, Barrack RL, Burnett RS, Voora D, Gatchel S, Tiemeier A, Gage BF (2007) Genetic-based dosing in orthopedic patients beginning warfarin therapy. Blood 110:1511–1515

    Article  PubMed  CAS  Google Scholar 

  12. International Warfarin Pharmacogenetics Consortium, Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, Limdi NA, Page D, Roden DM, Wagner MJ, Caldwell MD, Johnson JA (2009) Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 360:753–764

    Article  PubMed  Google Scholar 

  13. Chappell J, He J, Knadler MP, Mitchell M, Lee D, Lobo E (2009) Effects of duloxetine on the pharmacodynamics and pharmacokinetics of warfarin at steady state in healthy subjects. J Clin Pharmacol 49:1456–1466

    Article  PubMed  CAS  Google Scholar 

  14. Zhu Y, Shennan M, Reynolds KK, Johnson NA, Herrnberger MR, Valdes R Jr, Linder MW (2007) Estimation of warfarin maintenance dose based on VKORC1 (-1639 G>A) and CYP2C9 genotypes. Clin Chem 53:1199–1205

    Article  PubMed  CAS  Google Scholar 

  15. Geisen C, Watzka M, Sittinger K, Steffens M, Daugela L, Seifried E, Müller CR, Wienker TF, Oldenburg J (2005) VKORC1 haplotypes and their impact on the inter-individual and inter-ethnical variability of oral anticoagulation. Thromb Haemost 94:773–779

    PubMed  Google Scholar 

  16. Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P, Hubbard J, Turpaz Y, Langaee TY, Eby C, King CR, Brower A, Schmelzer JR, Glurich I, Vidaillet HJ, Yale SH, Qi Zhang K, Berg RL, Burmester JK (2008) CYP4F2 genetic variant alters required warfarin dose. Blood 111:4106–4112

    Article  PubMed  CAS  Google Scholar 

  17. Hillman MA, Wilke RA, Caldwell MD, Berg RL, Glurich I, Burmester JK (2004) Relative impact of covariates in prescribing warfarin according to CYP2C9 genotype. Pharmacogenetics 14:539–547

    Article  PubMed  CAS  Google Scholar 

  18. Kimura R, Miyashita K, Kokubo Y, Akaiwa Y, Otsubo R, Nagatsuka K, Otsuki T, Okayama A, Minematsu K, Naritomi H, Honda S, Tomoike H, Miyata T (2007) Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb Res 120:181–186

    Article  PubMed  CAS  Google Scholar 

  19. Peyvandi F, Spreafico M, Siboni SM, Moia M, Mannucci PM (2004) CYP2C9 genotypes and dose requirements during the induction phase of oral anticoagulant therapy. Clin Pharmacol Ther 75:198–203

    Article  PubMed  CAS  Google Scholar 

  20. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, Wood P, Kesteven P, Daly AK, Kamali F (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106:2329–2333

    Article  PubMed  CAS  Google Scholar 

  21. Goldhaber SZ (2006) Low intensity warfarin anticoagulation is safe and effective as a long-term venous thromboembolism prevention strategy. J Thromb Thrombolysis 21:51–52

    Article  PubMed  CAS  Google Scholar 

  22. Vaz-da-Silva M, Almeida L, Falcão A, Soares E, Maia J, Nunes T, Soares-da-Silva P (2010) Effect of eslicarbazepine acetate on the steady-state pharmacokinetics and pharmacodynamics of warfarin in healthy subjects during a three-stage, open-label, multiple-dose, single-period study. Clin Ther 32:179–192

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Cynthia Fuller, PhD, Michelle Carey, PhD, and Kelly Guerrettaz, MA (i3, Minneapolis, MN) assisted with the development of this manuscript. Angela Lorio (i3, Minneapolis, MN) provided editorial assistance. Lei Shen, PhD (Eli Lilly and Company, Indianapolis, IN), prepared the genetic data for the healthy volunteers.

Disclosure

J.C. Chappell, G. Dickinson, M.I. Mitchell, Y. Jin, and E. Lobo are employees and shareholders of Eli Lilly and Company. H. Haber is a full-time employee of i3, part of the inVentiv Health Company, and has no competing interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill C. Chappell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chappell, J.C., Dickinson, G., Mitchell, M.I. et al. Evaluation of methods for achieving stable INR in healthy subjects during a multiple-dose warfarin study. Eur J Clin Pharmacol 68, 239–247 (2012). https://doi.org/10.1007/s00228-011-1114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-011-1114-4

Keywords

Navigation