Skip to main content
Log in

CYP2C9*3 and *13 alleles significantly affect the pharmacokinetics of irbesartan in healthy Korean subjects

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the effects of two major polymorphisms of CYP2C9, CYP2C9*3 and CYP2C9*13, on the pharmacokinetics of irbesartan in healthy Korean volunteers.

Methods

A single 150-mg oral dose of irbesartan was given to 28 Korean volunteers, who had different CYP2C9 genotypes (12, 10, and 6 carriers of CYP2C9*1/*1, *1/*3, and *1/*13 genotypes respectively). Irbesartan levels were analyzed using HPLC fluorescence in plasma samples collected up to 36 h after the drug intake.

Results

Compared with CYP2C9*1 homozygous subjects, not only were the maximum plasma concentrations (Cmax) of irbesartan in CYP2C9*1/*3 and *1/*13 subjects 1.56- and 1.50-fold higher (P = 0.001), but the half-lives were also 1.38- and 1.50-fold longer (P = 0.001). The area under the plasma concentration–time curve (AUC) was 1.64- and 1.79-fold higher (P < 0.001). The oral clearance of irbesartan was 39.3% and 44.0% lower in the CYP2C9*1/*3 and *1/*13 subjects respectively, than in the *1/*1 subjects (P < 0.001). Likewise, the increases in half-life and decreases in oral clearance observed in CYP2C9*1/*13 individuals were similar to those in participants expressing the CYP2C9*1/*3 genotype.

Conclusions

CYP2C9 genetic polymorphisms markedly affected the pharmacokinetics of irbesartan in this study sample. The CYP2C9*3 and CYP2C9*13 alleles appear to be associated with the decreased metabolism of irbesartan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Marino MR, Vachharajani NN (2001) Drug interactions with irbesartan. Clin Pharmacokinet 40:605–614

    Article  PubMed  CAS  Google Scholar 

  2. Perrier L, Bourrié M, Marti E, Tronquet C, Massé D, Berger Y, Magdalou J, Fabre G (1994) In vitro N-glucuronidation of SB 47436 (BMS 186295), a new AT1 nonpeptide angiotensin II receptor antagonist, by rat, monkey and human hepatic microsomal fractions. J Pharmacol Exp Ther 271:91–99

    PubMed  CAS  Google Scholar 

  3. Bourrié M, Meunier V, Berger Y, Fabre G (1999) Role of cytochrome P-4502C9 in irbesartan oxidation by human liver microsomes. Drug Metab Dispos 27:288–296

    PubMed  Google Scholar 

  4. Gillis JC, Markham A (1997) Irbesartan. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in the management of hypertension. Drugs 54:885–902

    Article  PubMed  CAS  Google Scholar 

  5. Marino MR, Langenbacher K, Ford NF, Uderman HD (1998) Pharmacokinetics and pharmacodynamics of irbesartan in healthy subjects. J Clin Pharmacol 38:246–255

    PubMed  CAS  Google Scholar 

  6. Van Booven D, Marsh S, McLeod H, Carrillo MW, Sangkuhl K, Klein TE, Altman RB (2010) Cytochrome P450 2C9-CYP2C9. Pharmacogenet Genomics 20:277–281

    PubMed  Google Scholar 

  7. Miners JO, Birkett DJ (1998) Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 45:525–538

    Article  PubMed  CAS  Google Scholar 

  8. Lee CR, Goldstein JA, Pieper JA (2002) Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 12:251–263, Erratum in: (2002) Pharmacogenetics 12:343

    Article  PubMed  CAS  Google Scholar 

  9. Guo Y, Zhang Y, Wang Y, Chen X, Si D, Zhong D, Fawcett JP, Zhou H (2005) Role of CYP2C9 and its variants (CYP2C9*3 and CYP2C9*13) in the metabolism of lornoxicam in humans. Drug Metab Dispos 33:749–753

    Article  PubMed  CAS  Google Scholar 

  10. Li Z, Wang G, Wang LS, Zhang W, Tan ZR, Fan L, Chen BL, Li Q, Liu J, Tu JH, Hu DL, Liu ZQ, Zhou HH (2009) Effects of the CYP2C9*13 allele on the pharmacokinetics of losartan in healthy male subjects. Xenobiotica 39:788–793

    Article  PubMed  CAS  Google Scholar 

  11. Bae JW, Choi CI, Jang CG, Lee SY (2011) Effects of CYP2C9*1/*13 on the pharmacokinetics and pharmacodynamics of meloxicam. Br J Clin Pharmacol 71:550–555

    Article  PubMed  CAS  Google Scholar 

  12. García-Martín E, Martínez C, Ladero JM, Agúndez JA (2006) Interethnic and intraethnic variability of CYP2C8 and CYP2C9 polymorphisms in healthy individuals. Mol Diagn Ther 10:29–40

    PubMed  Google Scholar 

  13. Nakai K, Habano W, Nakai K, Fukushima N, Suwabe A, Moriya S, Osano K, Gurwitz D (2005) Ethnic differences in CYP2C9*2 (Arg144Cys) and CYP2C9*3 (Ile359Leu) genotypes in Japanese and Israeli populations. Life Sci 78:107–111

    Article  PubMed  CAS  Google Scholar 

  14. Bae JW, Kim HK, Kim JH, Yang SI, Kim MJ, Jang CG, Lee SY (2005) Allele and genotype frequencies of CYP2C9 in a Korean population. Br J Clin Pharmacol 60:418–422

    Article  PubMed  CAS  Google Scholar 

  15. Si D, Guo Y, Zhang Y, Yang L, Zhou H, Zhong D (2004) Identification of a novel variant CYP2C9 allele in Chinese. Pharmacogenetics 14:465–469

    Article  PubMed  CAS  Google Scholar 

  16. Maekawa K, Harakawa N, Sugiyama E, Tohkin M, Kim SR, Kaniwa N, Katori N, Hasegawa R, Yasuda K, Kamide K, Miyata T, Saito Y, Sawada J (2009) Substrate-dependent functional alterations of seven CYP2C9 variants found in Japanese subjects. Drug Metab Dispos 37:1895–1903

    Article  PubMed  CAS  Google Scholar 

  17. Scott SA, Khasawneh R, Peter I, Kornreich R, Desnick RJ (2010) Combined CYP2C9, VKORC1 and CYP4F2 frequencies among racial and ethnic groups. Pharmacogenomics 11:781–791

    Article  PubMed  CAS  Google Scholar 

  18. Dupont WD, Plummer WD (1998) Power and sample size calculations for studies involving linear regression. Control Clin Trials 19:589–601

    Article  PubMed  CAS  Google Scholar 

  19. Kirchheiner J, Bauer S, Meineke I, Rohde W, Prang V, Meisel C, Roots I, Brockmöller J (2002) Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenetics 12:101–109

    Article  PubMed  CAS  Google Scholar 

  20. Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R (2002) Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 72:702–710

    Article  PubMed  CAS  Google Scholar 

  21. Lee CR, Pieper JA, Frye RF, Hinderliter AL, Blaisdell JA, Goldstein JA (2003) Tolbutamide, flurbiprofen, and losartan as probes of CYP2C9 activity in humans. J Clin Pharmacol 43:84–91

    Article  PubMed  CAS  Google Scholar 

  22. Zhou YH, Zheng QC, Li ZS, Zhang Y, Sun M, Sun CC, Si D, Cai L, Guo Y, Zhou H (2006) On the human CYP2C9*13 variant activity reduction: a molecular dynamics simulation and docking study. Biochimie 88:1457–1465

    Article  PubMed  CAS  Google Scholar 

  23. Guo Y, Wang Y, Si D, Fawcett PJ, Zhong D, Zhou H (2005) Catalytic activities of human cytochrome P450 2C9*1, 2C9*3 and 2C9*13. Xenobiotica 35:853–861

    Article  PubMed  CAS  Google Scholar 

  24. Hong X, Zhang S, Mao G, Jiang S, Zhang Y, Yu Y, Tang G, Xing H, Xu X (2005) CYP2C9*3 allelic variant is associated with metabolism of irbesartan in Chinese population. Eur J Clin Pharmacol 61:627–634

    Article  PubMed  CAS  Google Scholar 

  25. Chen G, Jiang S, Mao G, Zhang S, Hong X, Tang G, Li Z, Liu X, Zhang Y, Xing H, Wang B, Yu Y, Xu X (2006) CYP2C9 Ile359Leu polymorphism, plasma irbesartan concentration and acute blood pressure reductions in response to irbesartan treatment in Chinese hypertensive patients. Methods Find Exp Clin Pharmacol 28:19–24

    Article  PubMed  Google Scholar 

  26. Hallberg P, Karlsson J, Kurland L, Lind L, Kahan T, Malmqvist K, Ohman KP, Nyström F, Melhus H (2002) The CYP2C9 genotype predicts the blood pressure response to irbesartan: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (SILVHIA) trial. J Hypertens 20:2089–2093

    Article  PubMed  CAS  Google Scholar 

  27. Wen SY, Wang H, Sun OJ, Wang SQ (2003) Rapid detection of the known SNPs of CYP2C9 using oligonucleotide microarray. World J Gastroenterol 9:1342–1346

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Korean Food and Drug Administration. We thank Ho-Kyun Han, Kyeong-Joo Jeon, So-Jung Youn, Seul-Ki Keum, and Da-Hee Oh for their help with clinical study and subject genotyping.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Woo Bae or Seok-Yong Lee.

Additional information

Chang-Ik Choi and Mi-Jeong Kim contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, CI., Kim, MJ., Chung, EK. et al. CYP2C9*3 and *13 alleles significantly affect the pharmacokinetics of irbesartan in healthy Korean subjects. Eur J Clin Pharmacol 68, 149–154 (2012). https://doi.org/10.1007/s00228-011-1098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-011-1098-0

Keywords

Navigation