Skip to main content

Advertisement

Log in

Genetic variability of pain perception and treatment—clinical pharmacological implications

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Evidence of a genetic control of pain has led to efforts to exploit genotyping information from pain patients for the development of analgesics and for the selection of pharmacological approaches to pain. Research on translating the genetic bases of familial insensitivity to pain has contributed to the discovery of crucial molecular pathways of pain and to the identification of new analgesic targets (e.g., the Nav1.7 sodium channel, neurotrophic tyrosine kinase receptors, nerve growth factor). Moreover, human genetic variants leading to enhanced or reduced function of specific molecular pathways are employed as substitutes for the lack of modulator molecules usable in humans, enabling nociceptive or anti-nociceptive pathways in humans to be studied before drug development. Translational approaches have also been used to verify the importance of experimentally discovered pain pathways in humans, such as GTP cyclohydrolase 1 and the potassium channel Kv9.1. In addition to these uses of genetics as a research tool, an individualized pharmacological therapy based on the patient’s genotype has been attempted. In terms of analgesics in clinical use, such an approach is at the present time only marginally available. For future analgesic targeting, for example, Nav1.7 or TRPA1, the genotype may be the target of a selective cure for syndromes caused by increased-function mutations in the coding genes. The consideration of human genetics in drug studies may accelerate analgesic drug development while reducing cost because the clinical success may be partly anticipated by including information of functional genetic variants that mimic the action of future analgesics. These developments show that genotyping information obtained from studies on pain patients plays a role in the clinical pharmacology of pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Godinova AM (1967) Phenotypic manifestations and genetic features of migraine. Zh Nevropatol Psikhiatr Im S S Korsakova 67(7):1002–1007

    PubMed  CAS  Google Scholar 

  2. Lötsch J, Geisslinger G (2010) A critical appraisal of human genotyping for pain therapy. Trends Pharmacol Sci 31:312–317

    Article  PubMed  CAS  Google Scholar 

  3. Lötsch J, Geisslinger G, Tegeder I (2009) Genetic modulation of the pharmacological treatment of pain. Pharmacol Ther 124(2):168–184

    Article  PubMed  CAS  Google Scholar 

  4. Lötsch J, Skarke C, Liefhold J, Geisslinger G (2004) Genetic predictors of the clinical response to opioid analgesics: clinical utility and future perspectives. Clin Pharmacokinet 43(14):983–1013

    Article  PubMed  Google Scholar 

  5. Oertel B, Lötsch J (2008) Genetic mutations that prevent pain: implications for future pain medication. Pharmacogenomics 9(2):179–194

    Article  PubMed  CAS  Google Scholar 

  6. Fiore M, Chaldakov GN, Aloe L (2009) Nerve growth factor as a signaling molecule for nerve cells and also for the neuroendocrine-immune systems. Rev Neurosci 20:133–145

    Article  PubMed  CAS  Google Scholar 

  7. Hefti FF, Rosenthal A, Walicke PA, Wyatt S, Vergara G, Shelton DL, Davies AM (2006) Novel class of pain drugs based on antagonism of NGF. Trends Pharmacol Sci 27:85–91

    Article  PubMed  CAS  Google Scholar 

  8. Einarsdottir E, Carlsson A, Minde J, Toolanen G, Svensson O, Solders G, Holmgren G, Holmberg D, Holmberg M (2004) A mutation in the nerve growth factor beta gene (NGFB) causes loss of pain perception. Hum Mol Genet 13(8):799–805

    Article  PubMed  CAS  Google Scholar 

  9. Lane NE, Schnitzer TJ, Birbara CA, Mokhtarani M, Shelton DL, Smith MD, Brown MT (2010) Tanezumab for the treatment of pain from osteoarthritis of the knee. N Engl J Med 363(16):1521–1531

    Article  PubMed  CAS  Google Scholar 

  10. Schnitzer TJ, Lane NE, Birbara C, Smith MD, Simpson SL, Brown MT (2011) Long-term open- label study of tanezumab for moderate to severe osteoarthritic knee pain. Osteoarthritis Cartilage. doi:10.1016/j.joca.2011.01.009

  11. Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, Lira SA, Barbacid M (1994) Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368(6468):246–249

    Article  PubMed  CAS  Google Scholar 

  12. Indo Y, Tsuruta M, Hayashida Y, Karim MA, Ohta K, Kawano T, Mitsubuchi H, Tonoki H, Awaya Y, Matsuda I (1996) Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat Genet 13(4):485–488

    Article  PubMed  CAS  Google Scholar 

  13. Indo Y (2001) Molecular basis of congenital insensitivity to pain with anhidrosis (CIPA): mutations and polymorphisms in TRKA (NTRK1) gene encoding the receptor tyrosine kinase for nerve growth factor. Hum Mutat 18(6):462–471

    Article  PubMed  CAS  Google Scholar 

  14. Mantegazza M, Curia G, Biagini G, Ragsdale DS, Avoli M (2010) Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol 9:413–424

    Article  PubMed  CAS  Google Scholar 

  15. Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y, Al-Gazali L, Hamamy H, Valente EM, Gorman S, Williams R, McHale DP, Wood JN, Gribble FM, Woods CG (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444(7121):894–898

    Article  PubMed  CAS  Google Scholar 

  16. Nilsen KB, Nicholas AK, Woods CG, Mellgren SI, Nebuchennykh M, Aasly J (2009) Two novel SCN9A mutations causing insensitivity to pain. Pain 143(1–2):155–158

    Article  PubMed  CAS  Google Scholar 

  17. Staud R, Price DD, Janicke D, Andrade E, Hadjipanayis AG, Eaton WT, Kaplan L, Wallace MR (2010) Two novel mutations of SCN9A (Nav1.7) are associated with partial congenital insensitivity to pain. Eur J Pain. doi:10.1016/j.ejpain.2010.07.003

  18. Lariviere WR, Mogil JS (2010) The genetics of pain and analgesia in laboratory animals. Methods Mol Biol 617:261–278

    Article  PubMed  CAS  Google Scholar 

  19. Tegeder I, Costigan M, Griffin RS, Abele A, Belfer I, Schmidt H, Ehnert C, Nejim J, Marian C, Scholz J, Wu T, Allchorne A, Diatchenko L, Binshtok AM, Goldman D, Adolph J, Sama S, Atlas SJ, Carlezon WA, Parsegian A, Lötsch J, Fillingim RB, Maixner W, Geisslinger G, Max MB, Woolf CJ (2006) GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nat Med 12(11):1269–1277

    Article  PubMed  CAS  Google Scholar 

  20. Auerbach G, Nar H (1997) The pathway from GTP to tetrahydrobiopterin: three-dimensional structures of GTP cyclohydrolase I and 6-pyruvoyl tetrahydropterin synthase. Biol Chem 378(3–4):185–192

    PubMed  CAS  Google Scholar 

  21. Thony B, Auerbach G, Blau N (2000) Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J 347(Pt 1):1–16

    Article  PubMed  CAS  Google Scholar 

  22. Tegeder I, Adolph J, Schmidt H, Woolf CJ, Geisslinger G, Lötsch J (2008) Reduced hyperalgesia in homozygous carriers of a GTP cyclohydrolase 1 haplotype. Eur J Pain 12(8):1069–1077

    Article  PubMed  CAS  Google Scholar 

  23. Campbell CM, Edwards RR, Carmona C, Uhart M, Wand G, Carteret A, Kim YK, Frost J, Campbell JN (2009) Polymorphisms in the GTP cyclohydrolase gene (GCH1) are associated with ratings of capsaicin pain. Pain 141(1–2):114–118

    Article  PubMed  CAS  Google Scholar 

  24. Doehring A, Freynhagen R, Griessinger N, Zimmermann M, Sittl R, Hentig N, Geisslinger G, Lötsch J (2009) Cross-sectional assessment of the consequences of a GTP cyclohydrolase 1 haplotype for specialized tertiary outpatient pain care. Clin J Pain 25(9):781–785

    Article  PubMed  Google Scholar 

  25. Lötsch J, Klepstad P, Doehring A, Dale O (2010) A GTP cyclohydrolase 1 genetic variant delays cancer pain. Pain 148:103–106

    Article  PubMed  CAS  Google Scholar 

  26. Kim H, Dionne RA (2007) Lack of influence of GTP cyclohydrolase gene (GCH1) variations on pain sensitivity in humans. Mol Pain 3:6

    Article  PubMed  CAS  Google Scholar 

  27. Lazarev M, Lamb J, Barmada Pitt Edu MM, Dai F, Anderson MA, Max MB, Whitcomb DC (2008) Does the pain-protective GTP cyclohydrolase haplotype significantly alter the pattern or severity of pain in humans with chronic pancreatitis? Mol Pain 4(1):58

    Article  PubMed  CAS  Google Scholar 

  28. Zhang L, Rao F, Zhang K, Khandrika S, Das M, Vaingankar SM, Bao X, Rana BK, Smith DW, Wessel J, Salem RM, Rodriguez-Flores JL, Mahata SK, Schork NJ, Ziegler MG, O'Connor DT (2007) Discovery of common human genetic variants of GTP cyclohydrolase 1 (GCH1) governing nitric oxide, autonomic activity, and cardiovascular risk. J Clin Invest 117(9):2658–2671

    Article  PubMed  CAS  Google Scholar 

  29. Doehring A, Antoniades C, Channon KM, Tegeder I, Lötsch J (2008) Clinical genetics of functionally mild non-coding GTP cyclohydrolase 1 (GCH1) polymorphisms modulating pain and cardiovascular risk. Mutat Res 659(3):195–201

    Article  PubMed  CAS  Google Scholar 

  30. Costigan M, Belfer I, Griffin RS, Dai F, Barrett LB, Coppola G, Wu T, Kiselycznyk C, Poddar M, Lu Y, Diatchenko L, Smith S, Cobos EJ, Zaykin D, Allchorne A, Shen PH, Nikolajsen L, Karppinen J, Mannikko M, Kelempisioti A, Goldman D, Maixner W, Geschwind DH, Max MB, Seltzer Z, Woolf CJ (2010) Multiple chronic pain states are associated with a common amino acid-changing allele in KCNS1. Brain 133(9):2519–2527

    Article  PubMed  Google Scholar 

  31. Maitland ML, Vasisht K, Ratain MJ (2006) TPMT, UGT1A1 and DPYD: genotyping to ensure safer cancer therapy? Trends Pharmacol Sci 27(8):432–437

    Article  PubMed  CAS  Google Scholar 

  32. Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M, Karrison T, Janisch L, Ramirez J, Rudin CM, Vokes EE, Ratain MJ (2004) Genetic variants in the UDP- glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22(8):1382–1388

    Article  PubMed  CAS  Google Scholar 

  33. Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC, Krynetski EY, Pui CH, Evans WE (1999) Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S- methyltransferase gene locus. J Natl Cancer Inst 91(23):2001–2008

    Article  PubMed  CAS  Google Scholar 

  34. Kim H, Dionne RA (2005) Genetics, pain, and analgesia (volume XIII, no. 3). http://www.iasp-pain.org/AM/TemplateRedirect.cfm?template=/CM/ContentDisplay.cfm&ContentID=7637

  35. Kim H, Clark D, Dionne RA (2009) Genetic contributions to clinical pain and analgesia: avoiding pitfalls in genetic research. J Pain 10(7):663–693

    Article  PubMed  Google Scholar 

  36. Lötsch J, Geisslinger G (2006) Current evidence for a genetic modulation of the response to analgesics. Pain 121(1–2):1–5

    Article  PubMed  CAS  Google Scholar 

  37. Lötsch J, Geisslinger G (2005) Are mu-opioid receptor polymorphisms important for clinical opioid therapy? Trends Mol Med 11(2):82–89

    Article  PubMed  CAS  Google Scholar 

  38. Nishizawa D, Nagashima M, Katoh R, Satoh Y, Tagami M, Kasai S, Ogai Y, Han W, Hasegawa J, Shimoyama N, Sora I, Hayashida M, Ikeda K (2009) Association between KCNJ6 (GIRK2) gene polymorphisms and postoperative analgesic requirements after major abdominal surgery. PLoS ONE 4(9):e7060

    Article  PubMed  CAS  Google Scholar 

  39. Lee YS, Kim H, Wu TX, Wang XM, Dionne RA (2006) Genetically mediated interindividual variation in analgesic responses to cyclooxygenase inhibitory drugs. Clin Pharmacol Ther 79(5):407–418

    Article  PubMed  CAS  Google Scholar 

  40. Oertel BG, Kettner M, Scholich K, Renne C, Roskam B, Geisslinger G, Schmidt PH, Lötsch J (2009) A Common Human mu-Opioid Receptor Genetic Variant Diminishes the Receptor Signaling Efficacy in Brain Regions Processing the Sensory Information of Pain. J Biol Chem 284(10):6530–6535

    Article  PubMed  CAS  Google Scholar 

  41. Zhang Y, Wang D, Johnson AD, Papp AC, Sadee W (2005) Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant A118G. J Biol Chem 280(38):32618–32624

    Article  PubMed  CAS  Google Scholar 

  42. Bond C, LaForge KS, Tian M, Melia D, Zhang S, Borg L, Gong J, Schluger J, Strong JA, Leal SM, Tischfield JA, Kreek MJ, Yu L (1998) Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA 95(16):9608–9613

    Article  PubMed  CAS  Google Scholar 

  43. Lötsch J, Zimmermann M, Darimont J, Marx C, Dudziak R, Skarke C, Geisslinger G (2002) Does the A118G polymorphism at the mu-opioid receptor gene protect against morphine-6- glucuronide toxicity? Anesthesiology 97(4):814–819

    Article  PubMed  Google Scholar 

  44. Walter C, Lötsch J (2009) Meta-analysis of the relevance of the OPRM1 118A>G genetic variant for pain treatment. Pain 146(3):270–275

    Article  PubMed  CAS  Google Scholar 

  45. Hirota T, Ieiri I, Takane H, Sano H, Kawamoto K, Aono H, Yamasaki A, Takeuchi H, Masada M, Shimizu E, Higuchi S, Otsubo K (2003) Sequence variability and candidate gene analysis in two cancer patients with complex clinical outcomes during morphine therapy. Drug Metab Dispos 31(5):677–680

    Article  PubMed  CAS  Google Scholar 

  46. Oertel BG, Schmidt R, Schneider A, Geisslinger G, Lötsch J (2006) The mu-opioid receptor gene polymorphism 118A>G depletes alfentanil-induced analgesia and protects against respiratory depression in homozygous carriers. Pharmacogenet Genomics 16(9):625–636

    Article  PubMed  CAS  Google Scholar 

  47. Shabalina SA, Zaykin DV, Gris P, Ogurtsov AY, Gauthier J, Shibata K, Tchivileva IE, Belfer I, Mishra B, Kiselycznyk C, Wallace MR, Staud R, Spiridonov NA, Max MB, Goldman D, Fillingim RB, Maixner W, Diatchenko L (2009) Expansion of the Human mu-Opioid Receptor Gene Architecture: Novel Functional Variants. Hum Mol Genet 18:1037–1051

    Article  PubMed  CAS  Google Scholar 

  48. Gris P, Gauthier J, Cheng P, Gibson DG, Gris D, Laur O, Pierson J, Wentworth S, Nackley AG, Maixner W, Diatchenko L (2010) A novel alternatively spliced isoform of the mu-opioid receptor: functional antagonism. Mol Pain 6:33

    Article  PubMed  CAS  Google Scholar 

  49. Berthele A, Platzer S, Jochim B, Boecker H, Buettner A, Conrad B, Riemenschneider M, Toelle TR (2005) COMT Val108/158Met genotype affects the mu-opioid receptor system in the human brain: evidence from ligand-binding, G-protein activation and preproenkephalin mRNA expression. Neuroimage 28(1):185–193

    Article  PubMed  Google Scholar 

  50. Zubieta JK, Heitzeg MM, Smith YR, Bueller JA, Xu K, Xu Y, Koeppe RA, Stohler CS, Goldman D (2003) COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science 299(5610):1240–1243

    Article  PubMed  CAS  Google Scholar 

  51. Rakvag TT, Klepstad P, Baar C, Kvam TM, Dale O, Kaasa S, Krokan HE, Skorpen F (2005) The Val158Met polymorphism of the human catechol-O-methyltransferase (COMT) gene may influence morphine requirements in cancer pain patients. Pain 116(1–2):73–78

    Article  PubMed  CAS  Google Scholar 

  52. Lacroix-Fralish ML, Ledoux JB, Mogil JS (2007) The Pain Genes Database: An interactive web browser of pain-related transgenic knockout studies. Pain 131(1–2):3e1–3e4

    Google Scholar 

  53. Mitrovic I, Margeta-Mitrovic M, Bader S, Stoffel M, Jan LY, Basbaum AI (2003) Contribution of GIRK2-mediated postsynaptic signaling to opiate and alpha 2-adrenergic analgesia and analgesic sex differences. Proc Natl Acad Sci USA 100(1):271–276

    Article  PubMed  CAS  Google Scholar 

  54. Kobayashi T, Ikeda K, Kojima H, Niki H, Yano R, Yoshioka T, Kumanishi T (1999) Ethanol opens G-protein-activated inwardly rectifying K+ channels. Nat Neurosci 2:1091–1097

    Article  PubMed  CAS  Google Scholar 

  55. Marker CL, Stoffel M, Wickman K (2004) Spinal G-protein-gated K+ channels formed by GIRK1 and GIRK2 subunits modulate thermal nociception and contribute to morphine analgesia. J Neurosci 24(11):2806–2812

    Article  PubMed  CAS  Google Scholar 

  56. Lötsch J, Prüss H, Veh RW, Doehring A (2010) A KCNJ6 (Kir3.2, GIRK2) gene polymorphism modulates opioid effects on analgesia and addiction but not on pupil size. Pharmacogenet Genomics 20(5):291–297

    Article  PubMed  CAS  Google Scholar 

  57. Mogil JS, Wilson SG, Chesler EJ, Rankin AL, Nemmani KV, Lariviere WR, Groce MK, Wallace MR, Kaplan L, Staud R, Ness TJ, Glover TL, Stankova M, Mayorov A, Hruby VJ, Grisel JE, Fillingim RB (2003) The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans. Proc Natl Acad Sci USA 100(8):4867–4872

    Article  PubMed  CAS  Google Scholar 

  58. Skarke C, Reus M, Schmidt R, Grundei I, Schuss P, Geisslinger G, Lötsch J (2006) The cyclooxygenase 2 genetic variant −765G>C does not modulate the effects of celecoxib on prostaglandin E2 production. Clin Pharmacol Ther 80(6):621–632

    Article  PubMed  CAS  Google Scholar 

  59. Rodger IW (2009) Analgesic targets: today and tomorrow. Inflammopharmacology 17:151–161

    Article  PubMed  Google Scholar 

  60. Clare JJ (2010) Targeting voltage-gated sodium channels for pain therapy. Expert Opin Investig Drugs 19:45–62

    Article  PubMed  CAS  Google Scholar 

  61. Patapoutian A, Tate S, Woolf CJ (2009) Transient receptor potential channels: targeting pain at the source. Nat Rev Drug Discov 8(1):55–68

    Article  PubMed  CAS  Google Scholar 

  62. Choi J-S, Cheng X, Foster E, Leffler A, Tyrrell L, Te Morsche RHM, Eastman EM, Jansen HJ, Huehne K, Nau C, Dib-Hajj SD, Drenth JPH, Waxman SG (2010) Alternative splicing may contribute to time-dependent manifestation of inherited erythromelalgia. Brain 133:1823–1835

    Article  PubMed  Google Scholar 

  63. Norbury TA, MacGregor AJ, Urwin J, Spector TD, McMahon SB (2007) Heritability of responses to painful stimuli in women: a classical twin study. Brain 130(Pt 11):3041–3049

    Article  PubMed  Google Scholar 

  64. Ahn H-S, Dib-Hajj S, Cox JJ, Tyrell L, Elmslie FV, Clarke AA, Drenth JPH, Woods CG, Waxman SG (2010) A new Nav1.7 sodium channel mutation I234T in a child with severe pain. Eur J Pain 14:944–950

    Article  PubMed  CAS  Google Scholar 

  65. Reimann F, Cox JJ, Belfer I, Diatchenko L, Zaykin DV, McHale DP, Drenth JP, Dai F, Wheeler J, Sanders F, Wood L, Wu TX, Karppinen J, Nikolajsen L, Mannikko M, Max MB, Kiselycznyk C, Poddar M, Te Morsche RH, Smith S, Gibson D, Kelempisioti A, Maixner W, Gribble FM, Woods CG (2010) Pain perception is altered by a nucleotide polymorphism in SCN9A. Proc Natl Acad Sci USA. doi:10.1073/pnas.0913181107

  66. Estacion M, Harty TP, Choi J-S, Tyrrell L, Dib-Hajj SD, Waxman SG (2009) A sodium channel gene SCN9A polymorphism that increases nociceptor excitability. Ann Neurol 66:862–866

    Article  PubMed  CAS  Google Scholar 

  67. Samuels ME, te Morsche RHM, Lynch ME, Drenth JPH (2008) Compound heterozygosity in sodium channel Nav1.7 in a family with hereditary erythermalgia. Mol Pain 4:21

    Article  PubMed  CAS  Google Scholar 

  68. Kremeyer B, Lopera F, Cox JJ, Momin A, Rugiero F, Marsh S, Woods CG, Jones NG, Paterson KJ, Fricker FR, Villegas A, Acosta N, Pineda-Trujillo NG, Ramirez JD, Zea J, Burley MW, Bedoya G, Bennett DL, Wood JN, Ruiz-Linares A (2010) A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66(5):671–680

    Article  PubMed  CAS  Google Scholar 

  69. Montell C (2005) Drosophila TRP channels. Pflügers Arch Eur J Physiol 451:19–28

    Article  CAS  Google Scholar 

  70. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112(6):819–829

    Article  PubMed  CAS  Google Scholar 

  71. Jordt S-E, Bautista DM, Chuang H-H, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  PubMed  CAS  Google Scholar 

  72. McKemy DD (2005) How cold is it? TRPM8 and TRPA1 in the molecular logic of cold sensation. Mol Pain 1(1):16

    Article  PubMed  CAS  Google Scholar 

  73. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108(5):705–715

    Article  PubMed  CAS  Google Scholar 

  74. Eid SR, Cortright DN (2009) Transient receptor potential channels on sensory nerves. Handbook of experimental pharmacology. Springer, Berlin, pp 261–281

  75. Poulsen L, Brosen K, Arendt-Nielsen L, Gram LF, Elbaek K, Sindrup SH (1996) Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects. Eur J Clin Pharmacol 51(3–4):289–295

    Article  PubMed  CAS  Google Scholar 

  76. Collart L, Luthy C, Favario-Constantin C, Dayer P (1993) Duality of the analgesic effect of tramadol in humans. Schweiz Med Wochenschr 123(47):2241–2243

    PubMed  CAS  Google Scholar 

  77. Madadi P, Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder JS, Teitelbaum R, Karaskov T, Aleksa K (2007) Safety of codeine during breastfeeding: fatal morphine poisoning in the breastfed neonate of a mother prescribed codeine. Can Fam Physician 53(1):33–35

    PubMed  Google Scholar 

  78. Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ (2006) Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 368(9536):704

    Article  PubMed  Google Scholar 

  79. Ferreirós N, Dresen S, Hermanns-Clausen M, Auwaerter V, Thierauf A, Müller C, Hentschel R, Trittler R, Skopp G, Weinmann W (2009) Fatal and severe codeine intoxication in 3-year-old twins–interpretation of drug and metabolite concentrations. Int J Leg Med 123:387–394

    Article  Google Scholar 

  80. Voronov P, Przybylo HJ, Jagannathan N (2007) Apnea in a child after oral codeine: a genetic variant - an ultra-rapid metabolizer. Paediatr Anaesth 17(7):684–687

    Article  PubMed  Google Scholar 

  81. Lötsch J, Rohrbacher M, Schmidt H, Doehring A, Brockmöller J, Geisslinger G (2009) Can extremely low or high morphine formation from codeine be predicted prior to therapy initiation? Pain 144(1–2):119–124

    Article  PubMed  CAS  Google Scholar 

  82. Dalen P, Frengell C, Dahl ML, Sjoqvist F (1997) Quick onset of severe abdominal pain after codeine in an ultrarapid metabolizer of debrisoquine. Ther Drug Monit 19(5):543–544

    Article  PubMed  CAS  Google Scholar 

  83. Gasche Y, Daali Y, Fathi M, Chiappe A, Cottini S, Dayer P, Desmeules J (2004) Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 351(27):2827–2831

    Article  PubMed  CAS  Google Scholar 

  84. Campa D, Gioia A, Tomei A, Poli P, Barale R (2008) Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther 83(4):559–566

    Article  PubMed  CAS  Google Scholar 

  85. Skarke C, Jarrar M, Schmidt H, Kauert G, Langer M, Geisslinger G, Lötsch J (2003) Effects of ABCB1 (multidrug resistance transporter) gene mutations on disposition and central nervous effects of loperamide in healthy volunteers. Pharmacogenetics 13(11):651–660

    Article  PubMed  CAS  Google Scholar 

  86. Coller JK, Barratt DT, Dahlen K, Loennechen MH, Somogyi AA (2006) ABCB1 genetic variability and methadone dosage requirements in opioid-dependent individuals. Clin Pharmacol Ther 80(6):682–690

    Article  PubMed  CAS  Google Scholar 

  87. Park HJ, Shinn HK, Ryu SH, Lee HS, Park CS, Kang JH (2007) Genetic polymorphisms in the ABCB1 gene and the effects of fentanyl in Koreans. Clin Pharmacol Ther 81(4):539–546

    Article  PubMed  CAS  Google Scholar 

  88. Szeto CY, Tang NL, Lee DT, Stadlin A (2001) Association between mu opioid receptor gene polymorphisms and Chinese heroin addicts. Neuroreport 12(6):1103–1106

    Article  PubMed  CAS  Google Scholar 

  89. Shi J, Hui L, Xu Y, Wang F, Huang W, Hu G (2002) Sequence variations in the mu-opioid receptor gene (OPRM1) associated with human addiction to heroin. Hum Mutat 19(4):459–460

    Article  PubMed  CAS  Google Scholar 

  90. Tan EC, Tan CH, Karupathivan U, Yap EP (2003) Mu opioid receptor gene polymorphisms and heroin dependence in Asian populations. Neuroreport 14(4):569–572

    Article  PubMed  CAS  Google Scholar 

  91. Hoehe MR, Kopke K, Wendel B, Rohde K, Flachmeier C, Kidd KK, Berrettini WH, Church GM (2000) Sequence variability and candidate gene analysis in complex disease: association of mu opioid receptor gene variation with substance dependence. Hum Mol Genet 9(19):2895–2908

    Article  PubMed  CAS  Google Scholar 

  92. Crowley JJ, Oslin DW, Patkar AA, Gottheil E, DeMaria PA Jr, O'Brien CP, Berrettini WH, Grice DE (2003) A genetic association study of the mu opioid receptor and severe opioid dependence. Psychiatr Genet 13(3):169–173

    Article  PubMed  Google Scholar 

  93. Berrettini WH, Hoehe MR, Ferraro TN, Demaria PA, Gottheil E (1997) Human mu opioid receptor gene polymorphisms and vulnerability to substance abuse. Addict Biol 2(3):303–308

    Article  CAS  Google Scholar 

  94. Luo X, Kranzler HR, Zhao H, Gelernter J (2003) Haplotypes at the OPRM1 locus are associated with susceptibility to substance dependence in European-Americans. Am J Med Genet 120B(1):97–108

    Article  PubMed  Google Scholar 

  95. Doehring A, Hentig N, Graff J, Salamat S, Schmidt M, Geisslinger G, Harder S, Lötsch J (2009) Genetic variants altering dopamine D2 receptor expression or function modulate the risk of opiate addiction and the dosage requirements of methadone substitution. Pharmacogenet Genomics 19(6):407–414

    Article  PubMed  CAS  Google Scholar 

  96. Barratt DT, Coller JK, Somogyi AA (2006) Association between the DRD2 A1 allele and response to methadone and buprenorphine maintenance treatments. Am J Med Genet B Neuropsychiatr Genet 141(4):323–331

    Google Scholar 

  97. Proudnikov D, LaForge KS, Hofflich H, Levenstien M, Gordon D, Barral S, Ott J, Kreek MJ (2006) Association analysis of polymorphisms in serotonin 1B receptor (HTR1B) gene with heroin addiction: a comparison of molecular and statistically estimated haplotypes. Pharmacogenet Genomics 16(1):25–36

    Article  PubMed  CAS  Google Scholar 

  98. Proudnikov D, Hamon S, Ott J, Kreek MJ (2008) Association of polymorphisms in the melanocortin receptor type 2 (MC2R, ACTH receptor) gene with heroin addiction. Neurosci Lett 435(3):234–239

    Article  PubMed  CAS  Google Scholar 

  99. Goldman D, Oroszi G, Ducci F (2005) The genetics of addictions: uncovering the genes. Nat Rev Genet 6(7):521–532

    Article  PubMed  CAS  Google Scholar 

  100. Mogil JS (2009) Are we getting anywhere in human pain genetics? Pain 146(3):231–232

    Article  PubMed  Google Scholar 

  101. Lötsch J, von Hentig N, Freynhagen R, Griessinger N, Zimmermann M, Doehring A, Rohrbacher M, Sittl R, Geisslinger G (2009) Cross-sectional analysis of the influence of currently known pharmacogenetic modulators on opioid therapy in outpatient pain centers. Pharmacogenet Genomics 19(6):429–436

    Article  PubMed  CAS  Google Scholar 

  102. Lötsch J, Geisslinger G (2007) Current evidence for a modulation of nociception by human genetic polymorphisms. Pain 132(1–2):18–22

    Article  PubMed  CAS  Google Scholar 

  103. Lötsch J, Geisslinger G (2010) Pharmacogenetics of new analgesics. Br J Pharmacol. doi:10.1111/j.1476-5381.2010.01074.x

  104. Nicholson GA, Dawkins JL, Blair IP, Kennerson ML, Gordon MJ, Cherryson AK, Nash J, Bananis T (1996) The gene for hereditary sensory neuropathy type I (HSN-I) maps to chromosome 9q22.1-q22.3. Nat Genet 13(1):101–104

    Article  PubMed  CAS  Google Scholar 

  105. Bejaoui K, Wu C, Scheffler MD, Haan G, Ashby P, Wu L, de Jong P, Brown RH Jr (2001) SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nat Genet 27(3):261–262

    Article  PubMed  CAS  Google Scholar 

  106. Dawkins JL, Hulme DJ, Brahmbhatt SB, Auer-Grumbach M, Nicholson GA (2001) Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat Genet 27(3):309–312

    Article  PubMed  CAS  Google Scholar 

  107. Lafreniere RG, MacDonald ML, Dube MP, MacFarlane J, O'Driscoll M, Brais B, Meilleur S, Brinkman RR, Dadivas O, Pape T, Platon C, Radomski C, Risler J, Thompson J, Guerra-Escobio AM, Davar G, Breakefield XO, Pimstone SN, Green R, Pryse-Phillips W, Goldberg YP, Younghusband HB, Hayden MR, Sherrington R, Rouleau GA, Samuels ME (2004) Identification of a novel gene (HSN2) causing hereditary sensory and autonomic neuropathy type II through the Study of Canadian Genetic Isolates. Am J Hum Genet 74(5):1064–1073

    Article  PubMed  CAS  Google Scholar 

  108. Riviere JB, Verlaan DJ, Shekarabi M, Lafreniere RG, Benard M, Der Kaloustian VM, Shbaklo Z, Rouleau GA (2004) A mutation in the HSN2 gene causes sensory neuropathy type II in a Lebanese family. Ann Neurol 56(4):572–575

    Article  PubMed  CAS  Google Scholar 

  109. Blumenfeld A, Slaugenhaupt SA, Axelrod FB, Lucente DE, Maayan C, Liebert CB, Ozelius LJ, Trofatter JA, Haines JL, Breakefield XO et al (1993) Localization of the gene for familial dysautonomia on chromosome 9 and definition of DNA markers for genetic diagnosis. Nat Genet 4(2):160–164

    Article  PubMed  CAS  Google Scholar 

  110. Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J, Cuajungco MP, Liebert CB, Chadwick B, Idelson M, Reznik L, Robbins C, Makalowska I, Brownstein M, Krappmann D, Scheidereit C, Maayan C, Axelrod FB, Gusella JF (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68(3):598–605

    Article  PubMed  CAS  Google Scholar 

  111. Houlden H, King RH, Hashemi-Nejad A, Wood NW, Mathias CJ, Reilly M, Thomas PK (2001) A novel TRK A (NTRK1) mutation associated with hereditary sensory and autonomic neuropathy type V. Ann Neurol 49(4):521–525

    Article  PubMed  CAS  Google Scholar 

  112. Goldberg YP, MacFarlane J, MacDonald ML, Thompson J, Dube MP, Mattice M, Fraser R, Young C, Hossain S, Pape T, Payne B, Radomski C, Donaldson G, Ives E, Cox J, Younghusband HB, Green R, Duff A, Boltshauser E, Grinspan GA, Dimon JH, Sibley BG, Andria G, Toscano E, Kerdraon J, Bowsher D, Pimstone SN, Samuels ME, Sherrington R, Hayden MR (2007) Loss-of- function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet 71(4):311–319

    Article  PubMed  CAS  Google Scholar 

  113. Miura Y, Hiura M, Torigoe K, Numata O, Kuwahara A, Matsunaga M, Hasegawa S, Boku N, Ino H, Mardy S, Endo F, Matsuda I, Indo Y (2000) Complete paternal uniparental isodisomy for chromosome 1 revealed by mutation analyses of the TRKA (NTRK1) gene encoding a receptor tyrosine kinase for nerve growth factor in a patient with congenital insensitivity to pain with anhidrosis. Hum Genet 107(3):205–209

    Article  PubMed  CAS  Google Scholar 

  114. Klepstad P, Rakvag TT, Kaasa S, Holthe M, Dale O, Borchgrevink PC, Baar C, Vikan T, Krokan HE, Skorpen F (2004) The 118A>G polymorphism in the human mu-opioid receptor gene may increase morphine requirements in patients with pain caused by malignant disease. Acta Anaesthesiol Scand 48(10):1232–1239

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Lötsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lötsch, J. Genetic variability of pain perception and treatment—clinical pharmacological implications. Eur J Clin Pharmacol 67, 541–551 (2011). https://doi.org/10.1007/s00228-011-1012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-011-1012-9

Keywords

Navigation