Skip to main content
Log in

Pediatric pharmacogenetic and pharmacogenomic studies: the current state and future perspectives

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Genetic differences among individuals can explain some of the variability observed during drug treatment. Many studies have correlated the different pharmacological response to genetic variability, but most of them have been conducted on adult populations. Much less attention has been given to the pediatric population. Pediatric patients constitute a vulnerable group with regard to rational drug prescribing since they present differences arising from the various stages of development. However, only a few steps have been made in developmental pharmacogenomics. This review attempts to describe the current methods for pharmacogenetic and pharmacogenomic studies, providing some of the most studied examples in pediatric patients. It also gives an overview on the implication and importance of microRNA polymorphisms, transcriptomics, metabonomics, and proteomics in pharmacogenetics and pharmacogenomics studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I, Brockmöller J (2004) Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 9:442–473

    Article  PubMed  CAS  Google Scholar 

  2. Stanulla M, Schaeffeler E, Flohr T, Cario G et al (2005) Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA 293:1485–1489

    Article  PubMed  CAS  Google Scholar 

  3. Phillips KA, Veenstra DL, Oren E, Lee JK, Sadee W (2001) Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA 286:2270–2279

    Article  PubMed  CAS  Google Scholar 

  4. Krekels EH, van den Anker JN, Baiardi P, Cella M et al (2007) Pharmacogenetics and paediatric drug development: issues and consequences to labelling and dosing recommendations. Expert Opin Pharmacother 8:1787–1799

    Article  PubMed  CAS  Google Scholar 

  5. Leeder JS (2003) Developmental and pediatric pharmacogenomics. Pharmacogenomics 4:331–341

    Article  PubMed  CAS  Google Scholar 

  6. Koren G, Cairns J, Chitayat D, Geadigk A, Leeder S (2006) Pharmacogenetics of morphine poisoning in a breastfed neonate of codeine-prescribed mother. Lancet 368:704

    Google Scholar 

  7. ter Laak MA, Temmink AH, Koeken A, van ’t Veer NE, van Hattum PR, Cobbaert CM (2010) Recognition of impaired atomoxetine metabolism because of low CYP2D6 activity. Pediatr Neurol 43:159–162

    Article  PubMed  Google Scholar 

  8. Hines RN, McCarver DG (2002) The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes. J Pharmacol Exp Ther 300:355–360

    Article  PubMed  CAS  Google Scholar 

  9. Odell GB (1967) “Physiologic” hyperbilirubinemia in the neonatal period. N Engl J Med 277:193–195

    Article  PubMed  CAS  Google Scholar 

  10. Kawade N, Onishi S (1981) The prenatal and postnatal development of UDP-glucuronyltransferase activity towards bilirubin and the effect of premature birth on this activity in the human liver. Biochem J 196:257–260

    PubMed  CAS  Google Scholar 

  11. Stephenson T (2005) How children’s response to drugs differ from adults. Br J Clin Pharmacol 59:670–673

    Article  PubMed  Google Scholar 

  12. Klein TE, Chang JT, Cho MK, Easton KL et al (2001) Integrating genotype and phenotype information: an overview of the PharmGKB project. Pharmacogenomics J 1:167–170

    Article  PubMed  CAS  Google Scholar 

  13. Pritchard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65:220–228

    Article  PubMed  CAS  Google Scholar 

  14. Campbell MJ, Julious SA, Altman DG (1995) Estimating sample sizes for binary, ordered categorical, and continuous outcomes in two group comparisons. BMJ 311:1145–1148

    PubMed  CAS  Google Scholar 

  15. Crowley JJ, Sullivan PF, McLeod HL (2009) Pharmacogenomic genome-wide association studies: lessons learned thus far. Pharmacogenomics 10:161–163

    Article  PubMed  Google Scholar 

  16. Hindorff LA, Junkins HA, Hall PN, Mehta JP, Manolio TA (2010) A catalog of published genome-wide association studies. http://www.genome.gov/26525384

  17. CDC (2010) HuGE navigator. http://hugenavigator.net/

  18. Gurwitz D, McLeod HL (2009) Genome-wide association studies: powerful tools for improving drug safety and efficacy. Pharmacogenomics 10:157–159

    Article  PubMed  Google Scholar 

  19. Maitland ML, Ratain MJ, Cox NJ (2007) Interpreting P values in pharmacogenetic studies: a call for process and perspective. J Clin Oncol 25:4513–4515

    Article  PubMed  Google Scholar 

  20. Elia J, Borcherding B, Rapoport J, Keysor C (1991) Methylphenidate and dextroamphetamine treatments of hyperactivity: are there true nonresponders? Psychiatr Res 36:141–155

    Article  CAS  Google Scholar 

  21. Spencer T, Biederman J, Wilens T, Harding M, O’Donnell D, Griffin S (1996) Pharmacotherapy of attention-deficit/hyperactivity disorder across the lifespan. J Am Acad Child Adolesc Psychiatry 35:409–428

    Article  PubMed  CAS  Google Scholar 

  22. Gilbert DL, Wang Z, Sallee FR et al (2006) Dopamine transporter genotype influences the physiological response to medication in ADHD. Brain 129:2038–2046

    Article  PubMed  Google Scholar 

  23. Winsberg BG, Comings DE (1999) Association of the dopamine transporter gene (DAT1) with poor methylphenidate response. J Am Acad Child Adolesc Psychiatry 38:1474–1477

    Article  PubMed  CAS  Google Scholar 

  24. Roman T, Szobot C, Martins S, Biederman J, Rohde LA, Hutz MH (2002) Dopamine transporter gene and response to methylphenidate in attention-deficit/hyperactivity disorder. Pharmacogenetics 12:497–499

    Article  PubMed  CAS  Google Scholar 

  25. Purper-Ouakil D, Wohl M, Orejarena S, Cortese S et al (2008) Pharmacogenetics of methylphenidate response in attention deficit/hyperactivity disorder: association with the dopamine transporter gene (SLC6A3). Am J Med Genet B Neuropsychiatr Genet 147B:1425–1430

    Article  PubMed  CAS  Google Scholar 

  26. Kereszturi E, Tarnok Z, Bognar E et al (2008) Catechol-O-methyltransferase Val158Met polymorphism is associated with methylphenidate response in ADHD children. Am J Med Genet B Neuropsychiatr Genet 147B:1431–1435

    Article  PubMed  CAS  Google Scholar 

  27. da Silva TL, Pianca TG, Roman T et al (2008) Adrenergic a2A receptor gene and response to methylphenidate in attention-deficit/hyperactivity disorder-predominantly inattentive type. J Neural Transm 115:341–345

    Article  PubMed  Google Scholar 

  28. Kirley A, Lowe N, Hawi A, Mullins C, Daly G, Waldman I et al (2003) Association of the 480 bp DAT1 allele with methylphenidate response in a sample of irish children with ADHD. Am J Med Genet 121B:50–54

    Article  PubMed  Google Scholar 

  29. Langley K, Turic D, Peirce TR, Mills S, van den Bree MB, Owen MJ et al (2005) No support for association between the dopamine transporter (DAT 1) gene and ADHD. Am J Med Genet B Neuropsychiatr Genet 139:7–10

    Google Scholar 

  30. Van Tol HH, Wu CM, Guan HC, Ohara K, Bunzow JR, Civelli O, Kennedy J, Seeman P, Niznik HB, Jovanovic V (1992) Multiple dopamine D4 receptor variants in the human population. Nature 358:149–152

    Article  PubMed  Google Scholar 

  31. Husain A, Loehle JA, Hein DW (2007) Clinical pharmacogenetics in pediatric patients. Pharmacogenomics 8:1403–1411

    Article  PubMed  CAS  Google Scholar 

  32. Faraone SV, Perlis R, Doyle AE, Smoller JW, Goralnick JJ, Homgren MA et al (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323

    Article  PubMed  CAS  Google Scholar 

  33. McGough J, McCracken J, Swanson J et al (2006) Pharmacogenetics of methylphenidate response in preschoolers with ADHD. J Am Acad Child Adolesc Psychiatry 45:1314–1322

    Article  PubMed  Google Scholar 

  34. Polanczyk G, Zeni C, Genro J et al (2007) Association of the adrenergic alpha2A receptor gene with methylphenidate improvement of inattentive symptoms in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 64:218–224

    Article  PubMed  CAS  Google Scholar 

  35. Elia J, Capasso M, Zaheer Z, Lantieri F, Ambrosini P, Berrettini W, Devoto M, Hakonarson H (2009) Candidate gene analysis in an on-going genome-wide association study of attention-deficit hyperactivity disorder: suggestive association signals in ADRA1A. Psychiatr Genet 19:134–141

    Article  PubMed  Google Scholar 

  36. Jorge AA, Marchisotti FG, Montenegro LR, Carvalho LR, Mendonca BB, Arnhold IJ (2006) Growth hormone (GH) pharmacogenetics: influence of GH receptor exon 3 retention or deletion on first-year growth response and final height in patients with severe GH deficiency. J Clin Endocrinol Metab 91:1076–1080

    Article  PubMed  CAS  Google Scholar 

  37. Pantel J, Machinis K, Sobrier ML, Duquesnoy P, Goossens M, Amselem S (2000) Species-specific alternative splice mimicry at the growth hormone receptor locus revealed by the lineage of retroelements during primate evolution. J Biol Chem 275:18664–18669

    Article  PubMed  CAS  Google Scholar 

  38. Dos Santos C, Essioux L, Teinturier C, Tauber M, Goffin V, Bougneres P (2004) A common polymorphism of the growth hormone receptor is associated with increased responsiveness to growth hormone. Nat Genet 36:720–724

    Article  PubMed  Google Scholar 

  39. Rosenfeld RG (2007) Pharmacogenomics and pharmacoproteomics in the evaluation and management of short stature. Eur J Endocrinol 157:S27–S31

    Article  PubMed  CAS  Google Scholar 

  40. Cheok MH, Evans WE (2006) Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. Nat Rev Cancer 6:117–129

    Article  PubMed  CAS  Google Scholar 

  41. Ujiie S, Sasaki T, Mizugaki M, Ishikawa M, Hiratsuka M (2008) Functional characterization of 23 allelic variants of thiopurine S-methyltransferase gene (TPMT*2–*24). Pharmacogenet Genomics 18:887–893

    Article  PubMed  CAS  Google Scholar 

  42. Lennard L, Lilleyman JS, Van LJ, Weinshilboum RM (1990) Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 336:225–229

    Article  PubMed  CAS  Google Scholar 

  43. Yates CR, Krynetski EY, Loennechen T, Fessing MY et al (1997) Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 126:608–614

    PubMed  CAS  Google Scholar 

  44. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    Article  PubMed  CAS  Google Scholar 

  45. Rebbeck TR (1997) Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility. Cancer Epidemiol Biomark Prev 6:733–7343

    CAS  Google Scholar 

  46. Ye Z, Song H (2005) Glutathione s-transferase polymorphisms (GSTM1, GSTP1 and GSTT1) and the risk of acute leukaemia: a systematic review and meta-analysis. Eur J Cancer 41:980–989

    Article  PubMed  CAS  Google Scholar 

  47. Kishi S, Yang W, Boureau B, Morand S et al (2004) Effects of prednisone and genetic polymorphisms on etoposide disposition in children with acute lymphoblastic leukemia. Blood 103:67–72

    Article  PubMed  CAS  Google Scholar 

  48. Frosst P, Blom HJ, Milos R, Goyette P et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylene tetrahydrofolate reductase. Nat Genet 10:111–113

    Article  PubMed  CAS  Google Scholar 

  49. Ulrich CM, Yasui Y, Storb R, Schubert MM, Wagner JL, Bigler J, Ariail KS, Keener CL, Li S, Liu H, Farin FM, Potter JD (2001) Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood 98:231–234

    Article  PubMed  CAS  Google Scholar 

  50. Skibola CF, Smith MT, Kane E, Roman E et al (1999) Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults. Proc Natl Acad Sci USA 96:12810–12815

    Article  PubMed  CAS  Google Scholar 

  51. Wiemels JL, Smith RN, Taylor GM, Eden OB et al (2001) Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc Natl Acad Sci USA 98:4004–4009

    Article  PubMed  CAS  Google Scholar 

  52. Krajinovic M, Lemieux-Blanchard E, Chiasson S et al (2004) Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics J 4:66–72

    Article  PubMed  CAS  Google Scholar 

  53. Mattke S, Martorell F, Sharma P, Malveaux F, Lurie N (2009) Quality of care for childhood asthma: estimating impact and implications. Pediatrics 123(Suppl 3):S199–S204

    Article  PubMed  Google Scholar 

  54. Bleecker ER, Postma DS, Lawrance RM, Meyers DA, Ambrose HJ, Goldman M (2007) Effect of ADRB2 polymorphisms on response to longacting β2-agonist therapy: a pharmacogenetic analysis of two randomised studies. Lancet 370:2118–2125

    Article  PubMed  CAS  Google Scholar 

  55. Sampson AP, Siddiqui S, Buchanan D, Howarth PH, Holgate ST, Holloway JW et al (2000) Variant LTC(4) synthase allele modifies cysteinyl leukotriene synthesis in eosinophils and predicts clinical response to zafirlukast. Thorax 55(Suppl 2):S28–S31

    Article  PubMed  Google Scholar 

  56. Whelan GJ, Blake K, Kissoon N et al (2003) Effect of montelukast on time-course of exhaled nitric oxide in asthma: influence of LTC4 A(-444). Pediatr Pulmonol 36:413–420

    Article  PubMed  Google Scholar 

  57. Currie GP, Lima JJ, Sylvester JE, Lee KD et al (2003) Leukotriene C4 synthase polymorphisms and responsiveness to leukotriene antagonistis in asthma. Br J Clin Pharmacol 56:422–426

    Article  PubMed  CAS  Google Scholar 

  58. Kedda MA, Shi J, Duffy D et al (2004) Characterization of two polymorphisms in the leukotriene C4 synthase gene in an Australian population of subjects with mild, moderate, and severe asthma. J Allergy Clin Immunol 113:889–895

    Article  PubMed  CAS  Google Scholar 

  59. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  PubMed  CAS  Google Scholar 

  60. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  PubMed  CAS  Google Scholar 

  61. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    Article  PubMed  CAS  Google Scholar 

  62. Mishra PJ, Humeniuk R, Mishra PJ, Longo-Sorbello GS, Banerjee D, Bertino JR (2007) A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci USA 104:13513–13518

    Article  PubMed  CAS  Google Scholar 

  63. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  PubMed  CAS  Google Scholar 

  64. Mishra PJ, Mishra PJ, Banerjee D, Bertino JR (2008) MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: introducing microRNA pharmacogenomics. Cell Cycle 7:853–858

    Article  PubMed  CAS  Google Scholar 

  65. Mishra PJ, Bertino JR (2009) MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics 10:399–416

    Article  PubMed  CAS  Google Scholar 

  66. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    Article  PubMed  CAS  Google Scholar 

  67. Hon LS, Zhang Z (2007) The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol 8:R166

    Article  PubMed  Google Scholar 

  68. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    Article  PubMed  CAS  Google Scholar 

  69. Kiechle FL, Holland-Staley CA (2003) Genomics, transcriptomics, proteomics, and numbers. Arch Pathol Lab Med 127:1089–1097

    PubMed  CAS  Google Scholar 

  70. McGregor PF (2003) Gene expression in cancer: the application of microarrays. Expert Rev Mol Diagn 3:185–200

    Article  Google Scholar 

  71. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ (2002) MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 30:41–47

    Article  PubMed  CAS  Google Scholar 

  72. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537

    Article  PubMed  CAS  Google Scholar 

  73. Ramaswamy S, Golub TR (2002) DNA microarrays in clinical oncology. J Clin Oncol 20:1932–1941

    PubMed  CAS  Google Scholar 

  74. Moos PJ, Raetz EA, Carlson MA, Szabo A, Smith FE, Willman C, Wei Q, Hunger SP, Carroll WL (2002) Identification of gene expression profiles that segregate patients with childhood leukemia. Clin Cancer Res 8:3118–3130

    PubMed  CAS  Google Scholar 

  75. Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X et al (2004) Gene expression profiling of pediatric acute myelogenous leukemia. Blood 104:3679–3687

    Article  PubMed  CAS  Google Scholar 

  76. Ross ME, Zhou X, Song G, Shurtleff SA et al (2003) Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102:2951–2959

    Article  PubMed  CAS  Google Scholar 

  77. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK et al (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1:133–143

    Article  PubMed  CAS  Google Scholar 

  78. Teuffel O, Dettling M, Cario G, Stanulla M, Schrappe M et al (2004) Gene expression profiles and risk stratification in childhood acute lymphoblastic leukemia. Haematologica 89:801–808

    PubMed  CAS  Google Scholar 

  79. Willenbrock H, Juncker AS, Schmiegelow K, Knudsen S, Ryder LP (2004) Prediction of immunophenotype, treatment response, and relapse in childhood acute lymphoblastic leukemia using DNA microarrays. Leukemia 18:1270–1277

    Article  PubMed  CAS  Google Scholar 

  80. Plumb RS, Stumpf CL, Gorenstein MV, Castro-Perez JM, Dear GJ, Anthony M, Sweatman BC, Connor SC, Haselden JN (2002) Metabonomics: the use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development. Rapid Commun Mass Spectrom 16:1991–1996

    Article  PubMed  CAS  Google Scholar 

  81. Reo NV (2002) NMR-based metabolomics. Drug Chem Toxicol 25:375–382

    Article  PubMed  CAS  Google Scholar 

  82. Nebert DW, Jorge-Nebert LF, Vesell ES (2003) Pharmacogenomics and “individualized drug therapy”: high expectations and disappointing achievements. Am J Pharmacogenomics 3:361–370

    Article  PubMed  Google Scholar 

  83. Campbell CJ, Ghazal P (2004) Molecular signatures for diagnosis of infection: application of microarray technology. J Appl Microbiol 96:18–23

    Article  PubMed  CAS  Google Scholar 

  84. Xing Y, Resch R, Lee C (2004) The multi-assembly problem: reconstructing multiple transcript isoforms from EST fragment mixtures. Genome Res 14:426–441

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Regione Campania (DGRC 2362/07) and from MIUR (PS 35-126/Ind). Mario Capasso was supported by Associazione Oncologia Pediatrica e Neuroblastoma (OPEN).

This contribution is part of the Task-force in Europe for Drug Development for the Young (TEDDY) Network of Excellence supported by the European Commission’s Sixth Framework Program (Contract n. 0005216 LSHBCT- 2005-005126)

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Achille Iolascon.

Additional information

Part of TEDDY Supplement

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russo, R., Capasso, M., Paolucci, P. et al. Pediatric pharmacogenetic and pharmacogenomic studies: the current state and future perspectives. Eur J Clin Pharmacol 67 (Suppl 1), 17–27 (2011). https://doi.org/10.1007/s00228-010-0931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-010-0931-1

Keywords

Navigation