Skip to main content

Advertisement

Log in

Association analysis of SLC30A8 rs13266634 and rs16889462 polymorphisms with type 2 diabetes mellitus and repaglinide response in Chinese patients

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

Genome-wide association studies (GWASs) identified that SLC30A8 genetic polymorphism was a risk of type 2 diabetes mellitus (T2DM) in several populations. This study aimed to investigate whether the SLC30A8 rs13266634 and rs16889462 polymorphisms were associated with T2DM susceptibility and repaglinide therapeutic efficacy in Chinese T2DM patients.

Methods

We conducted a case–control study of 443 T2DM patients and 229 healthy volunteers to identify SLC30A8 rs13266634 and rs16889462 genotypes by polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) assay. Forty-eight patients were randomly selected and underwent an 8-week repaglinide treatment (3 mg/d). Fasting plasma glucose (FPG), postprandial plasma glucose (PPG), glycated hemoglobin (HbAlc), fasting serum insulin (FINS), postprandial serum insulin (PINS), homeostasis model assessment for insulin resistance (HOMA-IR), serum triglyceride, total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-c) and high-density lipoprotein-cholesterol (HDL-c) were determined before and after repaglinide treatment.

Results

SLC30A8 rs13266634 risk C allele frequency was higher in T2DM patients than in healthy controls (P < 0.05). There was a better repaglinide response on FINS (P < 0.05) and PINS (P < 0.01) in patients with rs13266634 CT+TT genotypes compared with CC genotype carriers. Patients with rs16889462 GA genotype showed an enhanced repaglinide efficacy on FPG (P < 0.01), PPG (P < 0.01) and HbAlc (P < 0.05) compared with GG genotype individuals.

Conclusions

SLC30A8 rs13266634 and rs16889462 polymorphisms were associated with repaglinide therapeutic efficacy in Chinese T2DM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GWASs:

genome-wide association studies

SNPs:

single nucleotide polymorphisms

T2DM:

type 2 diabetes mellitus

PCR-RFLP:

polymerase chain reaction–restriction fragment length polymorphism

ZnT-8:

zinc transporter protein member 8

SLC30A8:

zinc transporter solute carrier family 30 member 8 gene

BMI:

body mass index

WHR:

waist to hip ratio

FPG:

fasting plasma glucose

PPG:

postprandial plasma glucose

HbAlc:

glycated hemoglobin

FINS:

fasting serum insulin

PINS:

postprandial serum insulin

HOMA-IR:

homeostasis model assessment for insulin resistance

TC:

total cholesterol

LDL-c:

low-density lipoprotein-cholesterol

HDL-c:

high-density lipoprotein-cholesterol

DV:

differential value (postadministration minus preadministration)

IFG:

impaired fasting glycemia

[Ca2+]i:

intracellular free calcium

ABCC8:

adenosine triphosphate (ATP)-binding cassette superfamily subfamily C (CFTR/MRP), member 8

KCNJ11:

potassium inwardly rectifying channel subfamily J, member 11

VDCC:

voltage-dependent calcium channels

References

  1. Wild S, Roglic G, Green A et al (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diab Care 27:1047–1053

    Article  Google Scholar 

  2. Permutt MA, Wasson J, Cox N (2005) Genetic epidemiology of diabetes. J Clin Invest 115:1431–1439

    Article  CAS  PubMed  Google Scholar 

  3. Saxena R, Voight BF, Lyssenko V et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336

    Article  CAS  PubMed  Google Scholar 

  4. Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in finns detects multiple susceptibility variants. Science 316:1341–1345

    Article  CAS  PubMed  Google Scholar 

  5. Scuteri A, Sanna S, Chen WM et al (2007) Genome-wide association scan shows genetic variants in the fto gene are associated with obesity-related traits. PLoS Genet 3:e115

    Article  PubMed  Google Scholar 

  6. Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885

    Article  CAS  PubMed  Google Scholar 

  7. Steinthorsdottir V, Thorleifsson G, Reynisdottir I et al (2007) A variant in cdkal1 influences insulin response and risk of type 2 diabetes. Nat Genet 39:770–775

    Article  CAS  PubMed  Google Scholar 

  8. Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in uk samples reveals risk loci for type 2 diabetes. Science 316:1336–1341

    Article  CAS  PubMed  Google Scholar 

  9. Zeggini E, Scott LJ, Saxena R et al (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40:638–645

    Article  CAS  PubMed  Google Scholar 

  10. Ng MC, Park KS, Oh B et al (2008) Implication of genetic variants near tcf7l2, slc30a8, hhex, cdkal1, cdkn2a/b, igf2bp2, and fto in type 2 diabetes and obesity in 6, 719 asians. Diabetes 57:2226–2233

    Article  CAS  PubMed  Google Scholar 

  11. Chimienti F, Devergnas S, Favier A et al (2004) Identification and cloning of a beta-cell-specific zinc transporter, znt-8, localized into insulin secretory granules. Diabetes 53:2330–2337

    Article  CAS  PubMed  Google Scholar 

  12. Wu Y, Li H, Loos RJ et al (2008) Common variants in cdkal1, cdkn2a/b, igf2bp2, slc30a8, and hhex/ide genes are associated with type 2 diabetes and impaired fasting glucose in a chinese han population. Diabetes 57:2834–2842

    Article  CAS  PubMed  Google Scholar 

  13. Boesgaard TW, Zilinskaite J, Vanttinen M et al (2008) The common slc30a8 arg325trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients–the eugene2 study. Diabetologia 51:816–820

    Article  CAS  PubMed  Google Scholar 

  14. Hatorp V (2002) Clinical pharmacokinetics and pharmacodynamics of repaglinide. Clin Pharmacokinet 41:471–483

    Article  CAS  PubMed  Google Scholar 

  15. Guay DR (1998) Repaglinide, a novel, short-acting hypoglycemic agent for type 2 diabetes mellitus. Pharmacotherapy 18:1195–1204

    CAS  PubMed  Google Scholar 

  16. Papa G, Fedele V, Rizzo MR et al (2006) Safety of type 2 diabetes treatment with repaglinide compared with glibenclamide in elderly people: A randomized, open-label, two-period, cross-over trial. Diab Care 29:1918–1920

    Article  CAS  Google Scholar 

  17. Gromada J, Dissing S, Kofod H et al (1995) Effects of the hypoglycaemic drugs repaglinide and glibenclamide on atp-sensitive potassium-channels and cytosolic calcium levels in beta tc3 cells and rat pancreatic beta cells. Diabetologia 38:1025–1032

    Article  CAS  PubMed  Google Scholar 

  18. Fuhlendorff J, Rorsman P, Kofod H et al (1998) Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes 47:345–351

    Article  CAS  PubMed  Google Scholar 

  19. Bidstrup TB, Bjornsdottir I, Sidelmann UG et al (2003) Cyp2c8 and cyp3a4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br J Clin Pharmacol 56:305–314

    Article  CAS  PubMed  Google Scholar 

  20. Niemi M, Backman JT, Kajosaari LI et al (2005) Polymorphic organic anion transporting polypeptide 1b1 is a major determinant of repaglinide pharmacokinetics. Clin Pharmacol Ther 77:468–478

    Article  CAS  PubMed  Google Scholar 

  21. Niemi M, Leathart JB, Neuvonen M et al (2003) Polymorphism in cyp2c8 is associated with reduced plasma concentrations of repaglinide. Clin Pharmacol Ther 74:380–387

    Article  CAS  PubMed  Google Scholar 

  22. Emdin SO, Dodson GG, Cutfield JM et al (1980) Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic b-cell. Diabetologia 19:174–182

    Article  CAS  PubMed  Google Scholar 

  23. Bancila V, Cens T, Monnier D et al (2005) Two sur1-specific histidine residues mandatory for zinc-induced activation of the rat katp channel. J Biol Chem 280:8793–8799

    Article  CAS  PubMed  Google Scholar 

  24. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  PubMed  Google Scholar 

  25. Kang ES, Yun YS, Park SW et al (2005) Limitation of the validity of the homeostasis model assessment as an index of insulin resistance in korea. Metabolism 54:206–211

    Article  CAS  PubMed  Google Scholar 

  26. Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169

    Article  CAS  PubMed  Google Scholar 

  27. Chausmer AB (1998) Zinc, insulin and diabetes. J Am Coll Nutr 17:109–115

    CAS  PubMed  Google Scholar 

  28. Liuzzi JP, Cousins RJ (2004) Mammalian zinc transporters. Annu Rev Nutr 24:151–172

    Article  CAS  PubMed  Google Scholar 

  29. Guerinot ML (2000) The zip family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  CAS  PubMed  Google Scholar 

  30. Chimienti F, Favier A, Seve M (2005) Znt-8, a pancreatic beta-cell-specific zinc transporter. Biometals 18:313–317

    Article  CAS  PubMed  Google Scholar 

  31. Qian WJ, Aspinwall CA, Battiste MA et al (2000) Detection of secretion from single pancreatic beta-cells using extracellular fluorogenic reactions and confocal fluorescence microscopy. Anal Chem 72:711–717

    Article  CAS  PubMed  Google Scholar 

  32. Kirchhoff K, Machicao F, Haupt A et al (2008) Polymorphisms in the tcf7l2, cdkal1 and slc30a8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597–601

    Article  CAS  PubMed  Google Scholar 

  33. Tabara Y, Osawa H, Kawamoto R et al (2009) Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening. Diabetes 58:493–498

    Article  CAS  PubMed  Google Scholar 

  34. Fu Y, Tian W, Pratt EB et al (2009) Down-regulation of znt8 expression in ins-1 rat pancreatic beta cells reduces insulin content and glucose-inducible insulin secretion. PLoS ONE 4:e5679

    Article  PubMed  Google Scholar 

  35. Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol 54:87–143

    Article  CAS  PubMed  Google Scholar 

  36. Ishihara H, Maechler P, Gjinovci A et al (2003) Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells. Nat Cell Biol 5:330–335

    Article  CAS  PubMed  Google Scholar 

  37. Dodson G, Steiner D (1998) The role of assembly in insulin’s biosynthesis. Curr Opin Struct Biol 8:189–194

    Article  CAS  PubMed  Google Scholar 

  38. Tarasov A, Dusonchet J, Ashcroft F (2004) Metabolic regulation of the pancreatic beta-cell atp-sensitive k+channel: A pas de deux. Diabetes 53(Suppl 3):S113–S122

    Article  CAS  PubMed  Google Scholar 

  39. Kang ES, Kim MS, Kim YS et al (2008) A polymorphism in the zinc transporter gene slc30a8 confers resistance against posttransplantation diabetes mellitus in renal allograft recipients. Diabetes 57:1043–1047

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all study participants for their cooperation. This work was supported by the National “created a major new drugs”-Science and Technology Major Project (No. 2009ZX09304), the National Natural Science Foundation of China Grants 30572230, 30873089, and by the Hunan Provincial Natural Science Foundation of China Grants 08JJ3058.

Conflict of interest

The authors declare that there is no conflict of interest associated with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Qian Liu.

Additional information

This work was supported by the National “created a major new drugs”-Science and Technology Major Project (No. 2009ZX09304), the National Natural Science Foundation of China Grants 30572230, 30873089, and the Hunan Provincial Natural Science Foundation of China Grants 08JJ3058.

Disclosure statement

The authors have nothing to disclose

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Q., Yin, JY., Dai, XP. et al. Association analysis of SLC30A8 rs13266634 and rs16889462 polymorphisms with type 2 diabetes mellitus and repaglinide response in Chinese patients. Eur J Clin Pharmacol 66, 1207–1215 (2010). https://doi.org/10.1007/s00228-010-0882-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-010-0882-6

Keywords

Navigation