Skip to main content
Log in

Chronic heart failure: β-blockers and pharmacogenetics

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The European Society of Cardiology recommends that β-blockers should be considered for treating all patients with stable, mild, moderate, or severe heart failure (HF) who are receiving standard treatment, unless there is a contraindication. Despite the significant benefit of the drug, there is widespread recognition of patient-to-patient variability in drug response. The genetic determinants of responses to drugs have important implications for the clinical course and management of HF. Pharmacogenetics (PGt) has drawn great attention for its potential to redirect personal care and public health paradigms. The aim of this review was to gather information on PGt of β-blockers in HF treatment.

Methods

We searched for articles related to PGt of β-blockers in the PubMed database and attempted to cover all related articles.

Results

Several genetic polymorphisms affecting proteins in the β-adrenergic receptor signaling pathway have been proposed as modifiers of HF risk. The most relevant of these to this review is the pharmacogenetic interactions between the genetic variants of catecholamine receptors or their effectors and β-blockade for the treatment of HF.

Conclusions

Interindividual variability of responsiveness to β-blockers can be explained by PGt data of adrenaline-related genes. To demonstrate that pharmacogenetic intervention produces successful individualized β-blocker treatment for HF patients, prospective, randomized, and pharmacogenomics (PGx)-based clinical trials are required. Our assessment is that we are already at a turning point in the history of clinical pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Swedberg K, Cleland J, Dargie H, Drexler H, Follath F, Komajda M, Tavazzi L, Smiseth OA, Gavazzi A, Haverich A, Hoes A, Jaarsma T, Korewicki J, Levy S, Linde C, Lopez-Sendon JL, Nieminen MS, Pierard L, Remme WJ (2005) Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005): The task force for the diagnosis and treatment of chronic heart failure of the European Society of Cardiology. Eur Heart J 26:1115–1140

    PubMed  Google Scholar 

  2. Hunt SA (2005) ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). J Am Coll Cardiol 46:e1–e82

    PubMed  Google Scholar 

  3. Heart Failure Society of America (2006) Executive summary: HFSA 2006 comprehensive heart failure practice guideline. J Card Fail 12:10–38

    Google Scholar 

  4. CIBIS-II Investigators and Committees (1999) The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 353:9–13

    Google Scholar 

  5. MERIT-HF Study Group (1999) Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 353:2001–2007

    Google Scholar 

  6. Packer M, Bristow MR, Cohn JN, Colucci WS, Fowler MB, Gilbert EM, Shusterman NH (1996) The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. carvedilol heart failure study group. N Engl J Med 334:1349–1355

    CAS  Google Scholar 

  7. Packer M, Coats AJ, Fowler MB, Katus HA, Krum H, Mohacsi P, Rouleau JL, Tendera M, Castaigne A, Roecker EB, Schultz MK, DeMets DL (2001) Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 344:1651–1658

    PubMed  CAS  Google Scholar 

  8. Feuerstein GZ, Yue TL, Cheng HY, Ruffolo RR (1993) Myocardial protection by the novel vasodilating beta-blocker, carvedilol: potential relevance of anti-oxidant activity. J Hypertens (Suppl 11):S41–S48

    Google Scholar 

  9. Bristow MR (2000) Beta-adrenergic receptor blockade in chronic heart failure. Circulation 101:558–569

    PubMed  CAS  Google Scholar 

  10. Poole-Wilson PA, Swedberg K, Cleland JG, Di Lenarda A, Hanrath P, Komajda M, Lubsen J, Lutiger B, Metra M, Remme WJ, Torp-Pedersen C, Scherhag A, Skene A (2003) Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 362:7–13

    PubMed  CAS  Google Scholar 

  11. Follath F, Cleland JG, Klein W, Murphy R (1998) Etiology and response to drug treatment in heart failure. J Am Coll Cardiol 32:1167–1172

    PubMed  CAS  Google Scholar 

  12. Yamada T, Fukunami M, Ohmori M, Iwakura K, Kumagai K, Kondoh N, Minamino T, Tsujimura E, Nagareda T, Kotoh K (1993) Which subgroup of patients with dilated cardiomyopathy would benefit from long-term beta-blocker therapy? A histologic viewpoint. J Am Coll Cardiol 21:628–633

    Article  PubMed  CAS  Google Scholar 

  13. Eichhorn EJ, Heesch CM, Risser RC, Marcoux L, Hatfield B (1995) Predictors of systolic and diastolic improvement in patients with dilated cardiomyopathy treated with metoprolol. J Am Coll Cardiol 25:154–162

    PubMed  CAS  Google Scholar 

  14. Global Technology Centre Health Research Institute. Personalized medicine: the emerging pharmacogenomics revolution. http://www.pwc.com/techforecast/pdfs/pharmaco-wb-x.pdf. Accessed 15 Feb 2005

  15. Meadows M (2005) FDA approves heart drug for black patients. FDA Consum 39:8–9

    Google Scholar 

  16. Home Page of the Human Cytochrome P450 (CYP) Allele Nomenclature Committee. www.cypalleles.ki.se

  17. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116:496–526

    PubMed  CAS  Google Scholar 

  18. Raimundo S, Toscano C, Klein K, Fischer J, Griese EU, Eichelbaum M, Schwab M, Zanger UM (2004) A novel intronic mutation, 2988G>A, with high predictivity for impaired function of cytochrome P450 2D6 in white subjects. Clin Pharmacol Ther 76:128–138

    PubMed  CAS  Google Scholar 

  19. Cai WM, Nikoloff DM, Pan RM, de Leon J, Fanti P, Fairchild M, Koch WH, Wedlund PJ (2006) CYP2D6 genetic variation in healthy adults and psychiatric African-American subjects: implications for clinical practice and genetic testing. Pharmacogenomics J 6:343–350

    PubMed  CAS  Google Scholar 

  20. Ikenaga Y, Fukuda T, Fukuda K, Nishida Y, Naohara M, Maune H, Azuma J (2005) The frequency of candidate alleles for CYP2D6 genotyping in the Japanese population with an additional respect to the -1584C to G substitution. Drug Metab Pharmacokinet 20:113–116

    PubMed  CAS  Google Scholar 

  21. Zanger UM, Raimundo S, Eichelbaum M (2004) Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol 369:23–37

    PubMed  CAS  Google Scholar 

  22. Rodriguez-Antona C, Ingelman-Sundberg M (2006) Cytochrome P450 pharmacogenetics and cancer. Oncogene 25:1679–1691

    PubMed  CAS  Google Scholar 

  23. Bradford LD (2002) CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3:229–243

    PubMed  CAS  Google Scholar 

  24. Daly AK (2003) Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam Clin Pharmacol 17:27–41

    PubMed  CAS  Google Scholar 

  25. Ingelman-Sundberg M (2005) Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J 5:6–13

    PubMed  CAS  Google Scholar 

  26. Regardh CG, Johnsson G (1980) Clinical pharmacokinetics of metoprolol. Clin Pharmacokinet 5:557–569

    Article  PubMed  CAS  Google Scholar 

  27. Lennard MS, Silas JH, Freestone S, Ramsay LE, Tucker GT, Woods HF (1982) Oxidation phenotype-a major determinant of metoprolol metabolism and response. N Engl J Med 307:1558–1560

    PubMed  CAS  Google Scholar 

  28. Huang J, Chuang SK, Cheng CL, Lai ML (1999) Pharmacokinetics of metoprolol enantiomers in Chinese subjects of major CYP2D6 genotypes. Clin Pharmacol Ther 65:402–407

    PubMed  CAS  Google Scholar 

  29. Wuttke H, Rau T, Heide R, Bergmann K, Bohm M, Weil J, Werner D, Eschenhagen T (2002) Increased frequency of cytochrome P450 2D6 poor metabolizers among patients with metoprolol-associated adverse effects. Clin Pharmacol Ther 72:429–437

    PubMed  CAS  Google Scholar 

  30. Zineh I, Beitelshees AL, Gaedigk A, Walker JR, Pauly DF, Eberst K, Leeder JS, Phillips MS, Gelfand CA, Johnson JA (2004) Pharmacokinetics and CYP2D6 genotypes do not predict metoprolol adverse events or efficacy in hypertension. Clin Pharmacol Ther 76:536–544

    PubMed  CAS  Google Scholar 

  31. Fux R, Morike K, Prohmer AM, Delabar U, Schwab M, Schaeffeler E, Lorenz G, Gleiter CH, Eichelbaum M, Kivisto KT (2005) Impact of CYP2D6 genotype on adverse effects during treatment with metoprolol: a prospective clinical study. Clin Pharmacol Ther 78:378–387

    PubMed  CAS  Google Scholar 

  32. Neugebauer G, Neubert P (1991) Metabolism of carvedilol in man. Eur J Drug Metab Pharmacokinet 16:257–260

    PubMed  CAS  Google Scholar 

  33. Ohno A, Saito Y, Hanioka N, Jinno H, Saeki M, Ando M, Ozawa S, Sawada J (2004) Involvement of human hepatic UGT1A1, UGT2B4, and UGT2B7 in the glucuronidation of carvedilol. Drug Metab Dispos 32:235–239

    PubMed  CAS  Google Scholar 

  34. Honda M, Toyoda W, Shimizu T, Horiuchi I, Kayano Y, Taguchi M, Nozawa T, Inoue H, Hashimoto Y (2007) UGT2B7*3 did not affect the pharmacokinetics of R- and S-carvedilol in healthy Japanese. Drug Metab Pharmacokinet 22:382–386

    PubMed  CAS  Google Scholar 

  35. Takekuma Y, Takenaka T, Yamazaki K, Ueno K, Sugawara M (2007) Stereoselective metabolism of racemic carvedilol by UGT1A1 and UGT2B7, and effects of mutation of these enzymes on glucuronidation activity. Biol Pharm Bull 30:2146–2153

    PubMed  CAS  Google Scholar 

  36. Takekuma Y, Takenaka T, Kiyokawa M, Yamazaki K, Okamoto H, Kitabatake A, Tsutsui H, Sugawara M (2007) Evaluation of effects of polymorphism for metabolic enzymes on pharmacokinetics of carvedilol by population pharmacokinetic analysis. Biol Pharm Bull 30:537–542

    PubMed  CAS  Google Scholar 

  37. Oldham HG, Clarke SE (1997) In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(−)-carvedilol. Drug Metab Dispos 25:970–977

    PubMed  CAS  Google Scholar 

  38. Giessmann T, Modess C, Hecker U, Zschiesche M, Dazert P, Kunert-Keil C, Warzok R, Engel G, Weitschies W, Cascorbi I, Kroemer HK, Siegmund W (2004) CYP2D6 genotype and induction of intestinal drug transporters by rifampin predict presystemic clearance of carvedilol in healthy subjects. Clin Pharmacol Ther 75:213–222

    PubMed  CAS  Google Scholar 

  39. Frishman WH (1998) Carvedilol. N Engl J Med 339:1759–1765

    PubMed  CAS  Google Scholar 

  40. Horikiri Y, Suzuki T, Mizobe M (1998) Pharmacokinetics and metabolism of bisoprolol enantiomers in humans. J Pharm Sci 87:289–294

    PubMed  CAS  Google Scholar 

  41. Horikiri Y, Suzuki T, Mizobe M (1998) Stereoselective metabolism of bisoprolol enantiomers in dogs and humans. Life Sci 63:1097–1108

    PubMed  CAS  Google Scholar 

  42. Brodde OE (1993) Beta-adrenoceptors in cardiac disease. Pharmacol Ther 60:405–430

    PubMed  CAS  Google Scholar 

  43. Brodde OE, Michel MC (1999) Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 51:651–690

    PubMed  CAS  Google Scholar 

  44. Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307:205–211

    PubMed  CAS  Google Scholar 

  45. Kiuchi K, Shannon RP, Komamura K, Cohen DJ, Bianchi C, Homcy CJ, Vatner SF, Vatner DE (1993) Myocardial beta-adrenergic receptor function during the development of pacing-induced heart failure. J Clin Invest 91:907–914

    PubMed  CAS  Google Scholar 

  46. Engelhardt S, Bohm M, Erdmann E, Lohse MJ (1996) Analysis of beta-adrenergic receptor mRNA levels in human ventricular biopsy specimens by quantitative polymerase chain reactions: progressive reduction of beta 1-adrenergic receptor mRNA in heart failure. J Am Coll Cardiol 27:146–154

    PubMed  CAS  Google Scholar 

  47. Ping P, Anzai T, Gao M, Hammond HK (1997) Adenylyl cyclase and G protein receptor kinase expression during development of heart failure. Am J Physiol 273:H707–H717

    PubMed  CAS  Google Scholar 

  48. Ungerer M, Parruti G, Bohm M, Puzicha M, DeBlasi A, Erdmann E, Lohse MJ (1994) Expression of beta-arrestins and beta-adrenergic receptor kinases in the failing human heart. Circ Res 74:206–213

    PubMed  CAS  Google Scholar 

  49. Ungerer M, Bohm M, Elce JS, Erdmann E, Lohse MJ (1993) Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 87:454–463

    PubMed  CAS  Google Scholar 

  50. Feldman AM, Cates AE, Veazey WB, Hershberger RE, Bristow MR, Baughman KL, Baumgartner WA, Van Dop C (1988) Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest 82:189–197

    PubMed  CAS  Google Scholar 

  51. Neumann J, Schmitz W, Scholz H, von Meyerinck L, Doring V, Kalmar P (1988) Increase in myocardial Gi-proteins in heart failure. Lancet 2:936–937

    PubMed  CAS  Google Scholar 

  52. Bohm M, Gierschik P, Jakobs KH, Pieske B, Schnabel P, Ungerer M, Erdmann E (1990) Increase of Gi alpha in human hearts with dilated but not ischemic cardiomyopathy. Circulation 82:1249–1265

    PubMed  CAS  Google Scholar 

  53. Brodde OE (2008) Beta-1 and beta-2 adrenoceptor polymorphisms: functional importance, impact on cardiovascular diseases and drug responses. Pharmacol Ther 117:1–29

    PubMed  CAS  Google Scholar 

  54. Shin J, Johnson JA (2008) Beta-blocker pharmacogenetics in heart failure. Heart Fail Rev, published online: 24 April 2008

  55. Rathz DA, Brown KM, Kramer LA, Liggett SB (2002) Amino acid 49 polymorphisms of the human beta1-adrenergic receptor affect agonist-promoted trafficking. J Cardiovasc Pharmacol 39:155–160

    PubMed  CAS  Google Scholar 

  56. Levin MC, Marullo S, Muntaner O, Andersson B, Magnusson Y (2002) The myocardium-protective Gly-49 variant of the beta 1-adrenergic receptor exhibits constitutive activity and increased desensitization and down-regulation. J Biol Chem 277:30429–30435

    PubMed  CAS  Google Scholar 

  57. Mason DA, Moore JD, Green SA, Liggett SB (1999) A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor. J Biol Chem 274:12670–12674

    PubMed  CAS  Google Scholar 

  58. Green SA, Turki J, Innis M, Liggett SB (1994) Amino-terminal polymorphisms of the human beta 2-adrenergic receptor impart distinct agonist-promoted regulatory properties. Biochemistry 33:9414–9419

    PubMed  CAS  Google Scholar 

  59. Green SA, Cole G, Jacinto M, Innis M, Liggett SB (1993) A polymorphism of the human beta 2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem 268:23116–23121

    PubMed  CAS  Google Scholar 

  60. Nonen S, Okamoto H, Akino M, Matsui Y, Fujio Y, Yoshiyama M, Takemoto Y, Yoshikawa J, Azuma J, Kitabatake A (2005) No positive association between adrenergic receptor variants of alpha2cDel322–325, beta1Ser49, beta1Arg389 and the risk for heart failure in the Japanese population. Br J Clin Pharmacol 60:414–417

    PubMed  CAS  Google Scholar 

  61. Small KM, Forbes SL, Rahman FF, Bridges KM, Liggett SB (2000) A four amino acid deletion polymorphism in the third intracellular loop of the human alpha 2C-adrenergic receptor confers impaired coupling to multiple effectors. J Biol Chem 275:23059–23064

    PubMed  CAS  Google Scholar 

  62. Maqbool A, Hall AS, Ball SG, Balmforth AJ (1999) Common polymorphisms of beta1-adrenoceptor: identification and rapid screening assay. Lancet 353:897

    PubMed  CAS  Google Scholar 

  63. Podlowski S, Wenzel K, Luther HP, Muller J, Bramlage P, Baumann G, Felix SB, Speer A, Hetzer R, Kopke K, Hoehe MR, Wallukat G (2000) Beta1-adrenoceptor gene variations: a role in idiopathic dilated cardiomyopathy? J Mol Med 78:87–93

    PubMed  CAS  Google Scholar 

  64. Joseph SS, Lynham JA, Grace AA, Colledge WH, Kaumann AJ (2004) Markedly reduced effects of (−)-isoprenaline but not of (−)-CGP12177 and unchanged affinity of beta-blockers at Gly389-beta1-adrenoceptors compared to Arg389-beta1-adrenoceptors. Br J Pharmacol 142:51–56

    PubMed  CAS  Google Scholar 

  65. Mialet Perez J, Rathz DA, Petrashevskaya NN, Hahn HS, Wagoner LE, Schwartz A, Dorn GW, Liggett SB (2003) Beta 1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat Med 9:1300–1305

    PubMed  Google Scholar 

  66. Rochais F, Vilardaga JP, Nikolaev VO, Bunemann M, Lohse MJ, Engelhardt S (2007) Real-time optical recording of beta1-adrenergic receptor activation reveals supersensitivity of the Arg389 variant to carvedilol. J Clin Invest 117:229–235

    PubMed  CAS  Google Scholar 

  67. Borjesson M, Magnusson Y, Hjalmarson A, Andersson B (2000) A novel polymorphism in the gene coding for the beta(1)-adrenergic receptor associated with survival in patients with heart failure. Eur Heart J 21:1853–1858

    PubMed  CAS  Google Scholar 

  68. Terra SG, Hamilton KK, Pauly DF, Lee CR, Patterson JH, Adams KF, Schofield RS, Belgado BS, Hill JA, Aranda JM, Yarandi HN, Johnson JA (2005) Beta1-adrenergic receptor polymorphisms and left ventricular remodeling changes in response to beta-blocker therapy. Pharmacogenet Genomics 15:227–234

    PubMed  CAS  Google Scholar 

  69. Magnusson Y, Levin MC, Eggertsen R, Nystrom E, Mobini R, Schaufelberger M, Andersson B (2005) Ser49Gly of beta1-adrenergic receptor is associated with effective beta-blocker dose in dilated cardiomyopathy. Clin Pharmacol Ther 78:221–231

    PubMed  CAS  Google Scholar 

  70. Chen L, Meyers D, Javorsky G, Burstow D, Lolekha P, Lucas M, Semmler AB, Savarimuthu SM, Fong KM, Yang IA, Atherton J, Galbraith AJ, Parsonage WA, Molenaar P (2007) Arg389Gly-beta1-adrenergic receptors determine improvement in left ventricular systolic function in nonischemic cardiomyopathy patients with heart failure after chronic treatment with carvedilol. Pharmacogenet Genomics 17:941–949

    PubMed  CAS  Google Scholar 

  71. Liggett SB, Mialet-Perez J, Thaneemit-Chen S, Weber SA, Greene SM, Hodne D, Nelson B, Morrison J, Domanski MJ, Wagoner LE, Abraham WT, Anderson JL, Carlquist JF, Krause-Steinrauf HJ, Lazzeroni LC, Port JD, Lavori PW, Bristow MR (2006) A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci USA 103:11288–11293

    PubMed  CAS  Google Scholar 

  72. de Groote P, Helbecque N, Lamblin N, Hermant X, Mc Fadden E, Foucher-Hossein C, Amouyel P, Dallongeville J, Bauters C (2005) Association between beta-1 and beta-2 adrenergic receptor gene polymorphisms and the response to beta-blockade in patients with stable congestive heart failure. Pharmacogenet Genomics 15:137–142

    PubMed  Google Scholar 

  73. White HL, de Boer RA, Maqbool A, Greenwood D, van Veldhuisen DJ, Cuthbert R, Ball SG, Hall AS, Balmforth AJ (2003) An evaluation of the beta-1 adrenergic receptor Arg389Gly polymorphism in individuals with heart failure: a MERIT-HF sub-study. Eur J Heart Fail 5:463–468

    PubMed  CAS  Google Scholar 

  74. Dewar JC, Wheatley AP, Venn A, Morrison JF, Britton J, Hall IP (1998) Beta2-adrenoceptor polymorphisms are in linkage disequilibrium, but are not associated with asthma in an adult population. Clin Exp Allergy 28:442–448

    PubMed  CAS  Google Scholar 

  75. Johnson JA, Terra SG (2002) Beta-adrenergic receptor polymorphisms: cardiovascular disease associations and pharmacogenetics. Pharm Res 19:1779–1787

    PubMed  CAS  Google Scholar 

  76. Small KM, McGraw DW, Liggett SB (2003) Pharmacology and physiology of human adrenergic receptor polymorphisms. Annu Rev Pharmacol Toxicol 43:381–411

    PubMed  CAS  Google Scholar 

  77. Kirstein SL, Insel PA (2004) Autonomic nervous system pharmacogenomics: a progress report. Pharmacol Rev 56:31–52

    PubMed  CAS  Google Scholar 

  78. Leineweber K, Buscher R, Bruck H, Brodde OE (2004) Beta-adrenoceptor polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 369:1–22

    PubMed  CAS  Google Scholar 

  79. Brodde OE, Leineweber K (2005) Beta2-adrenoceptor gene polymorphisms. Pharmacogenet Genomics 15:267–275

    PubMed  CAS  Google Scholar 

  80. Molenaar P, Savarimuthu SM, Sarsero D, Chen L, Semmler AB, Carle A, Yang I, Bartel S, Vetter D, Beyerdorfer I, Krause EG, Kaumann AJ (2007) (−)-Adrenaline elicits positive inotropic, lusitropic, and biochemical effects through beta2 -adrenoceptors in human atrial myocardium from nonfailing and failing hearts, consistent with Gs coupling but not with Gi coupling. Naunyn Schmiedebergs Arch Pharmacol 375:11–28

    PubMed  CAS  Google Scholar 

  81. Turki J, Lorenz JN, Green SA, Donnelly ET, Jacinto M, Liggett SB (1996) Myocardial signaling defects and impaired cardiac function of a human beta 2-adrenergic receptor polymorphism expressed in transgenic mice. Proc Natl Acad Sci USA 93:10483–10488

    PubMed  CAS  Google Scholar 

  82. Hoit BD, Suresh DP, Craft L, Walsh RA, Liggett SB (2000) Beta2-adrenergic receptor polymorphisms at amino acid 16 differentially influence agonist-stimulated blood pressure and peripheral blood flow in normal individuals. Am Heart J 139:537–542

    PubMed  CAS  Google Scholar 

  83. Bruck H, Leineweber K, Buscher R, Ulrich A, Radke J, Insel PA, Brodde OE (2003) The Gln27Glu beta2-adrenoceptor polymorphism slows the onset of desensitization of cardiac functional responses in vivo. Pharmacogenetics 13:59–66

    PubMed  CAS  Google Scholar 

  84. Gratze G, Fortin J, Labugger R, Binder A, Kotanko P, Timmermann B, Luft FC, Hoehe MR, Skrabal F (1999) Beta-2 Adrenergic receptor variants affect resting blood pressure and agonist-induced vasodilation in young adult Caucasians. Hypertension 33:1425–1430

    PubMed  CAS  Google Scholar 

  85. Kaye DM, Smirk B, Williams C, Jennings G, Esler M, Holst D (2003) Beta-adrenoceptor genotype influences the response to carvedilol in patients with congestive heart failure. Pharmacogenetics 13:379–382

    PubMed  CAS  Google Scholar 

  86. Brodde OE, Buscher R, Tellkamp R, Radke J, Dhein S, Insel PA (2001) Blunted cardiac responses to receptor activation in subjects with Thr164Ile beta(2)-adrenoceptors. Circulation 103:1048–1050

    PubMed  CAS  Google Scholar 

  87. Wagoner LE, Craft LL, Singh B, Suresh DP, Zengel PW, McGuire N, Abraham WT, Chenier TC, Dorn GW, Liggett SB (2000) Polymorphisms of the beta(2)-adrenergic receptor determine exercise capacity in patients with heart failure. Circ Res 86:834–840

    PubMed  CAS  Google Scholar 

  88. Liggett SB, Wagoner LE, Craft LL, Hornung RW, Hoit BD, McIntosh TC, Walsh RA (1998) The Ile164 beta2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest 102:1534–1539

    PubMed  CAS  Google Scholar 

  89. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311:819–823

    PubMed  CAS  Google Scholar 

  90. Benedict CR, Shelton B, Johnstone DE, Francis G, Greenberg B, Konstam M, Probstfield JL, Yusuf S (1996) Prognostic significance of plasma norepinephrine in patients with asymptomatic left ventricular dysfunction. SOLVD investigators. Circulation 94:690–697

    CAS  Google Scholar 

  91. Hein L, Altman JD, Kobilka BK (1999) Two functionally distinct alpha2-adrenergic receptors regulate sympathetic neurotransmission. Nature 402:181–184

    PubMed  CAS  Google Scholar 

  92. Minatoguchi S, Ito H, Ishimura K, Watanabe H, Imai Y, Koshiji M, Asano K, Hirakawa S, Fujiwara H (1995) Modulation of noradrenaline release through presynaptic alpha 2-adrenoceptors in congestive heart failure. Am Heart J 130:516–521

    PubMed  CAS  Google Scholar 

  93. Small KM, Wagoner LE, Levin AM, Kardia SL, Liggett SB (2002) Synergistic polymorphisms of beta1- and alpha2C-adrenergic receptors and the risk of congestive heart failure. N Engl J Med 347:1135–1142

    PubMed  CAS  Google Scholar 

  94. Metra M, Zani C, Covolo L, Nodari S, Pezzali N, Gelatti U, Donato F, Nardi G, Dei Cas L (2006) Role of beta1- and alpha2c-adrenergic receptor polymorphisms and their combination in heart failure: a case-control study. Eur J Heart Fail 8:131–135

    PubMed  CAS  Google Scholar 

  95. Regitz-Zagrosek V, Hocher B, Bettmann M, Brede M, Hadamek K, Gerstner C, Lehmkuhl HB, Hetzer R, Hein L (2006) Alpha2C-adrenoceptor polymorphism is associated with improved event-free survival in patients with dilated cardiomyopathy. Eur Heart J 27:454–459

    PubMed  Google Scholar 

  96. Lobmeyer MT, Gong Y, Terra SG, Beitelshees AL, Langaee TY, Pauly DF, Schofield RS, Hamilton KK, Herbert Patterson J, Adams KF, Hill JA, Aranda JM, Johnson JA (2007) Synergistic polymorphisms of beta1 and alpha2C-adrenergic receptors and the influence on left ventricular ejection fraction response to beta-blocker therapy in heart failure. Pharmacogenet Genomics 17:277–282

    PubMed  CAS  Google Scholar 

  97. Koch WJ, Rockman HA, Samama P, Hamilton RA, Bond RA, Milano CA, Lefkowitz RJ (1995) Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science 268:1350–1353

    PubMed  CAS  Google Scholar 

  98. Matkovich SJ, Diwan A, Klanke JL, Hammer DJ, Marreez Y, Odley AM, Brunskill EW, Koch WJ, Schwartz RJ, Dorn GW (2006) Cardiac-specific ablation of G-protein receptor kinase 2 redefines its roles in heart development and beta-adrenergic signaling. Circ Res 99:996–1003

    PubMed  CAS  Google Scholar 

  99. Premont RT, Koch WJ, Inglese J, Lefkowitz RJ (1994) Identification, purification, and characterization of GRK5, a member of the family of G protein-coupled receptor kinases. J Biol Chem 269:6832–6841

    PubMed  CAS  Google Scholar 

  100. Koch WJ (2004) Genetic and phenotypic targeting of beta-adrenergic signaling in heart failure. Mol Cell Biochem 263:5–9

    PubMed  CAS  Google Scholar 

  101. Liggett SB, Cresci S, Kelly RJ, Syed FM, Matkovich SJ, Hahn HS, Diwan A, Martini JS, Sparks L, Parekh RR, Spertus JA, Koch WJ, Kardia SL, Dorn GW (2008) A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure. Nat Med 14:510–517

    PubMed  CAS  Google Scholar 

  102. International HapMap Project. http://www.hapmap.org/index.html.en

  103. Eisenhofer G (2001) The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. Pharmacol Ther 91:35–62

    PubMed  CAS  Google Scholar 

  104. Suwa M, Otake Y, Moriguchi A, Ito T, Hirota Y, Kawamura K, Adachi I, Narabayashi I (1997) Iodine-123 metaiodobenzylguanidine myocardial scintigraphy for prediction of response to beta-blocker therapy in patients with dilated cardiomyopathy. Am Heart J 133:353–358

    PubMed  CAS  Google Scholar 

  105. Nonen S, Okamoto H, Fujio Y, Takemoto Y, Yoshiyama M, Hamaguchi T, Matsui Y, Yoshikawa J, Kitabatake A, Azuma J (2008) Polymorphisms of norepinephrine transporter and adrenergic receptor alpha1D are associated with the response to beta-blockers in dilated cardiomyopathy. Pharmacogenomics J 8:78–84

    PubMed  CAS  Google Scholar 

  106. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F (1990) An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86:1343–1346

    PubMed  CAS  Google Scholar 

  107. Nakai K, Itoh C, Miura Y, Hotta K, Musha T, Itoh T, Miyakawa T, Iwasaki R, Hiramori K (1994) Deletion polymorphism of the angiotensin I-converting enzyme gene is associated with serum ACE concentration and increased risk for CAD in the Japanese. Circulation 90:2199–2202

    PubMed  CAS  Google Scholar 

  108. McNamara DM, Holubkov R, Janosko K, Palmer A, Wang JJ, MacGowan GA, Murali S, Rosenblum WD, London B, Feldman AM (2001) Pharmacogenetic interactions between beta-blocker therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure. Circulation 103:1644–1648

    PubMed  CAS  Google Scholar 

  109. de Groote P, Helbecque N, Lamblin N, Hermant X, Amouyel P, Bauters C, Dallongeville J (2004) Beta-adrenergic receptor blockade and the angiotensin-converting enzyme deletion polymorphism in patients with chronic heart failure. Eur J Heart Fail 6:17–21

    PubMed  Google Scholar 

  110. Lopez-Sendon J, Swedberg K, McMurray J, Tamargo J, Maggioni AP, Dargie H, Tendera M, Waagstein F, Kjekshus J, Lechat P, Torp-Pedersen C (2004) Expert consensus document on beta-adrenergic receptor blockers. Eur Heart J 25:1341–1362

    PubMed  Google Scholar 

  111. Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of beta-adrenergic signaling in heart failure? Circ Res 93:896–906

    PubMed  CAS  Google Scholar 

  112. Feldman DS, Carnes CA, Abraham WT, Bristow MR (2005) Mechanisms of disease: beta-adrenergic receptors-alterations in signal transduction and pharmacogenomics in heart failure. Nat Clin Pract Cardiovasc Med 2:475–483

    PubMed  CAS  Google Scholar 

  113. Hayata N, Fujio Y, Yamamoto Y, Iwakura T, Obana M, Takai M, Mohri T, Nonen S, Maeda M, Azuma J (2008) Connective tissue growth factor induces cardiac hypertrophy through Akt signaling. Biochem Biophys Res Commun 370:274–278

    PubMed  CAS  Google Scholar 

  114. Koitabashi N, Arai M, Kogure S, Niwano K, Watanabe A, Aoki Y, Maeno T, Nishida T, Kubota S, Takigawa M, Kurabayashi M (2007) Increased connective tissue growth factor relative to brain natriuretic peptide as a determinant of myocardial fibrosis. Hypertension 49:1120–1127

    PubMed  CAS  Google Scholar 

  115. Assessment of Beta-Blocker Treatment in Japanese Patients with Chronic Heart Failure. http://poppy.ac/j-chf/

  116. Dreifus C (2008) A conversation with Arno Motulsky: a genetics pioneer sees a bright future, cautiously. http://www.nytimes.com/2008/04/29/science/29conv.html?ex=1367121600&en=68232da8922b0f7d&ei=5124&partner=permalink&exprod=permalink. The New York Times April 29

  117. Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP, Kahn SF, May HT, Samuelson KM, Muhlestein JB, Carlquist JF (2007) Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 116:2563–2570

    PubMed  CAS  Google Scholar 

  118. Tucker G (2004) Pharmacogenetics-expectations and reality. BMJ 329:4–6

    PubMed  Google Scholar 

  119. Hopkins MM, Ibarreta D, Gaisser S, Enzing CM, Ryan J, Martin PA, Lewis G, Detmar S, van den Akker-van Marle ME, Hedgecoe AM, Nightingale P, Dreiling M, Hartig KJ, Vullings W, Forde T (2006) Putting pharmacogenetics into practice. Nat Biotechnol 24:403–410

    PubMed  CAS  Google Scholar 

  120. Schmedders M, van Aken J, Feuerstein G, Kollek R (2003) Individualized pharmacogenetic therapy: a critical analysis. Community Genet 6:114–119

    PubMed  Google Scholar 

  121. Taylor MR (2007) Pharmacogenetics of the human beta-adrenergic receptors. Pharmacogenomics J 7:29–37

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kenichi Imagawa for his stimulating discussion. This study was supported in part by Health Labour Sciences Research Grant from The Ministry of Health Labour and Welfare and Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science. This study was also supported by a grant from the Japan Research Foundation for Clinical Pharmacology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Azuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azuma, J., Nonen, S. Chronic heart failure: β-blockers and pharmacogenetics. Eur J Clin Pharmacol 65, 3–17 (2009). https://doi.org/10.1007/s00228-008-0566-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-008-0566-7

Keywords

Navigation