Skip to main content

Advertisement

Log in

Effect of the novel antipsychotic drug perospirone on P-glycoprotein function and expression in Caco-2 cells

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

Perospirone (PER) is a novel atypical antipsychotic drug for the treatment of schizophrenia and other psychotic disorders. The multidrug resistance transporter, P-glycoprotein (Pgp), is involved in the efflux transport of several antipsychotics across the blood-brain barrier (BBB).The aim of the present study was to evaluate the modulating effect of PER on both Pgp activity and expression in Caco-2 cell monolayers.

Methods

The effects of PER were analyzed by means of rhodamine 123 (Rhd 123) assays, and those of Pgp expression were analyzed by flow cytometry and reverse transcriptase-PCR.

Results

Perospirone at concentrations of 0.01–30 μM, which were found to be non-cytotoxic towards the Caco-2 cells, was observed to inhibit Pgp-mediated efflux transport of Rhd 123 in the cells as well as to down-regulate the cellular Pgp protein and MDR1 mRNA levels in a concentration-dependent manner. In the rhodamine accumulation assays, 30 μM PER produced a 429% increase of the cellular Rhd 123 concentration, which exceeded the inhibitory effect of the well-known Pgp inhibitor verapamil.

Conclusion

Our findings provide experimental evidence that PER is an inhibitor of Pgp which interferes directly and indirectly with the function of Pgp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fromm MF (2004) Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci 25:423–429

    Article  PubMed  CAS  Google Scholar 

  2. Martin E, Uhr M (2006) ABC drug transporter at the blood-brain barrier: effects on drug metabolism and drug response. Eur Arch Psychiatry Clin Neurosci 256:294–298

    Article  Google Scholar 

  3. Schinkel AH (1999) P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev 36:179–194

    Article  PubMed  CAS  Google Scholar 

  4. Loscher W, Potschka H (2005) Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 76:22–76

    Article  PubMed  Google Scholar 

  5. Tellingen OV (2001) The importance of drug-transporting P-glycoproteins in toxicology. Toxicol Lett 120:31–41

    Article  PubMed  Google Scholar 

  6. Bodo A, Bakos E, Szeri F, Varadi A, Sarkadi B (2003) The role of multidrug transporters in drug availability, metabolism and toxicity. Toxicol Lett 140–141:133–143

    Article  PubMed  Google Scholar 

  7. Mueser KT, McGurk SR (2004) Schizophrenia. Lancet 363:2063–2072

    Article  PubMed  Google Scholar 

  8. Tandon R, Fleischhacker WW (2005) Comparative efficacy of antipsychotics in the treatment of schizophrenia: a critical assessment. Schizophr Res 79:145–155

    Article  PubMed  Google Scholar 

  9. El Ela AA, Hartter S, Schmitt U, Hiemke C, Spahn-Langguth H, Langguth P (2004) Identification of P-glycoprotein substrates and inhibitors among psychoactive compounds-implications for pharmacokinetics of selected substrates. J Pharm Pharmacol 56:967–975

    Article  PubMed  Google Scholar 

  10. Mahar Doan KM, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh CJ, Adkison KK, Polli JW (2002) Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marked drugs. J Pharmacol Exp Ther 303:1029–1037

    Article  PubMed  Google Scholar 

  11. Onrust SV, McClellan K (2001) Perospirone. CNS Drugs 15:329–337

    Article  PubMed  CAS  Google Scholar 

  12. De Paulis T (2002) Perospirone (Sumitomo Pharmaceuticals). Curr Opin Invest Drugs 3:121–129

    Google Scholar 

  13. Hanelt M, Gareis M, Kollarczik B (1994) Cytotoxicity of mycotoxin evaluated by the MTT cell-culture assay. Mycopathologia 128:167–174

    Article  PubMed  CAS  Google Scholar 

  14. Aouali N, Eddabra L, Macadré J, Morjani H (2005) Immunosuppressors and reversion of multidrug-resistance. Crit Rev Oncol Hematol 56:61–70

    Article  PubMed  Google Scholar 

  15. Ejsing TB, Pedersen AD, Linnet K (2005) P-glycoprotein interaction with risperidone and 9-OH-risperidone studied in vitro, in knock-out mice and in drug-drug interaction experiments. Hum Psychopharmacol Clin Exp 20:493–500

    Article  CAS  Google Scholar 

  16. Araki T, Kasai K, Rogers MA, Kato N, Iwanami A (2006) The effect of perospirone on auditory P300 in schizophrenia: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 30:1083–1090

    Article  PubMed  CAS  Google Scholar 

  17. Araki T, Yamasue H, Sumiyoshi T, Kuwabara H, Suga M, Iwanami A, Kato N, Kasai K (2006) Perospirone in the treatment of schizophrenia: effect on verbal memory organization. Prog Neuropsychopharmacol Biol Psychiatry 30:204–208

    Article  PubMed  CAS  Google Scholar 

  18. Yoshino T, Nisijima K, Shioda K, Yui K, Katoh S (2004) Perospirone, a novel atypical antipsychotic drug, potentiates fluoxetine-induced increase in dopamine levels via multireceptor actions in the rat medial prefrontal cortex. Neurosci Lett 364:16–21

    Article  PubMed  CAS  Google Scholar 

  19. Shimakura J, Tani N, Mizuno Y, Komuro S, Kanamaru H (2003) In vitro drug-drug interactions with perospirone and concomitantly administered drugs in human liver microsomes. Eur J Drug Metab Pharmacokinet 28:67–72

    PubMed  CAS  Google Scholar 

  20. Kitamura A, Mizuno Y, Natsui K, Yabuki M, Komuro S, Kanamaru H (2005) Characterization of human cytochrome P450 enzymes involved in the in vitro metabolism of perospirone. Biopharm Drug Dispos 26:59–65

    Article  PubMed  CAS  Google Scholar 

  21. Mizuno Y, Tani N, Komuro S, Kanamaru H, Nakatsuka I (2003) In vitro metabolism of perospirone in rat, monkey and human liver microsomes. Eur J Drug Metab Pharmacokinet 28:59–65

    PubMed  CAS  Google Scholar 

  22. Sekine Y, Ouchi Y, Takei N, Yoshikawa E, Okada H, Minabe Y, Nakamura K, Suzuki K, Iwata Y, Tsuchiya KJ, Sugihara G, Mori N (2006) Perospirone is a new generation antipsychotic: evidence from a positron emission tomography study of serotonin-2 and D2 receptor occupancy in the living human brain. J Clin Psychopharmacol 26:531–533

    Article  PubMed  Google Scholar 

  23. Yasui-Furukori N, Furukori H, Nakagami T, Saito M, Inoue Y, Kaneko S, Tateishi T (2004) Steady-state Pharmacokinetics of a new antipsychotic agent perospirone and its active metabolite, and its relationship with prolactin response. Ther Drug Monit 26:361–365

    Article  PubMed  CAS  Google Scholar 

  24. Mauri MC, Volonteri LS, Colasanti A, Fiorentini A, De Gaspari IF, Bareggi SR (2007) Clinical pharmacokinetics of atypical antipsychotics: a critical review of the relationship between plasma concentrations and clinical response. Clin Pharmacokinet 46:359–388

    Article  PubMed  CAS  Google Scholar 

  25. Gerlach M, Hünnerkopf R, Rothenhöfer S, Libal G, Burger R, Clement HW, Fegert JM, Wewetzer Ch, Mehler-Wex C (2007) Therapeutic drug monitoring of quetiapine in adolescents with psychotic disorders. Pharmacopsychiatry 40:72–76

    Article  PubMed  CAS  Google Scholar 

  26. Hiemke C, Dragicevic A, Gründer G, Hatter S, Sachse J, Vernaleken I, Muller MJ (2004) Therapeutic monitoring of new antipsychotic drugs. Ther Drug Monit 26:156–160

    Article  PubMed  CAS  Google Scholar 

  27. Szabó D, Szabó G Jr, Ocsovszki I, Aszalos A, Molnár J (1999) Anti-psychotic drugs reverse multidrug resistance of tumor cell lines and human AML cells ex-vivo. Cancer Lett 139:115–119

    Article  PubMed  Google Scholar 

  28. Wang RB, Kuo CL, Lien LL, Lien EJ (2003) Structure-activity relationship: analyses of p-glycoprotein substrates and inhibitors. J Clin Pharm Ther 28:203–228

    Article  PubMed  CAS  Google Scholar 

  29. Jin S, Gorfajn B, Faircloth G, Scotto KW (2000) Ecteinascidin 743, a transcription-targeted chemotherapeutic that inhibits MDR1 activation. Proc Natl Acad Sci USA 97:6775–6779

    Article  PubMed  CAS  Google Scholar 

  30. Anuchapreeda S, Leechanachai P, Smith MM, Ambudkar SV, Limtrakul PN (2002) Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells. Biochem Pharmacol 64:573–582

    Article  PubMed  CAS  Google Scholar 

  31. Yu ST, Chen TM, Tseng SY, Chen YH (2007) Tryptanthrin inhibits MDR1 and reverses doxorubicin resistance in breast cancer cells. Biochem Biophys Res Commun 358:79–84

    Article  PubMed  CAS  Google Scholar 

  32. Mutoh K, Tsukahara S, Mitsuhashi J, Katayama K, Sugimoto Y (2006) Estrogen-mediated post transcriptional down-regulation of P-glycoprotein in MDR1-transduced human breast cancer cells. Cancer Sci 97:1198–1204

    Article  PubMed  CAS  Google Scholar 

  33. Kanzaki A, Takebayashi Y, Ren XQ, Miyashita H, Mori S, Akiyama S, Pommier Y (2002) Overcoming multidrug drug resistance in P-glycoprotein/MDR1-overexpressing cell lines by ecteinascidin 743. Mol Cancer Ther 1:1327–1334

    PubMed  CAS  Google Scholar 

  34. Jetté L, Beaulieu E, Leclerc JM, Béliveau R (1996) Cyclosporin A treatment induces overexpression of P-glycoprotein in the kidney and other tissues. Am J Physiol 270:F756–F765

    PubMed  Google Scholar 

  35. Herzog CE, Tsokos M, Bates SE, Fojo AT (1993) Increased mdr-1/P-glycoprotein expression after treatment of human colon carcinoma cells with P-glycoprotein antagonists. J Biol Chem 268:2946–2952

    PubMed  CAS  Google Scholar 

  36. Keks NA, Altson K, Hope J, Krapivensky N, Culhane C, Tanaghow A, Doherty P, Bootle A (1999) Use of antipsychotics and adjunctive medications by an inner urban community psychiatric service. Aust N Z J Psychiatry 33:896–901

    Article  PubMed  CAS  Google Scholar 

  37. Boulton DW, DeVane CL, Liston HL, Markowitz JS (2002) In vitro P-glycoprotein affinity for atypical and conventional antipsychotics. Life Sci 71:163–169

    Article  PubMed  CAS  Google Scholar 

  38. Bettencourt MV, Bosne-David S, Amaral L (2000) Comparative in vitro activity of phenothiazines against multidrug-resistant Mycobacterium tuberculosis. Int J Antimicrob Agents 16:69–71

    Article  PubMed  CAS  Google Scholar 

  39. Wang JS, Zhu HJ, Markowitz JS, Donovan JL, DeVane CL (2006) Evaluation of antipsychotic drugs as inhibitors of multidrug resistance transporter P-glycoprotein. Psychopharmacology (Berl) 187:415–423

    Article  CAS  Google Scholar 

  40. Masui T, Kusumi I, Takahashi Y, Koyama T (2005) Efficacy of carbamazepine against neuroleptic-induced akathisia in treatment with perospirone: case series. Prog Neuropsychopharmacol Biol Psychiatry 29:343–346

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Di-Lan Qin for excellent technical assistance. None of the authors have conflicting interests that interfere with the integrity of the content of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan-De Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, YG., Li, KY. & Li, HD. Effect of the novel antipsychotic drug perospirone on P-glycoprotein function and expression in Caco-2 cells. Eur J Clin Pharmacol 64, 697–703 (2008). https://doi.org/10.1007/s00228-008-0487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-008-0487-5

Keywords

Navigation