Skip to main content

Advertisement

Log in

Population pharmacokinetic analysisof lamivudine, stavudine and zidovudine in controlled HIV-infected patients on HAART

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

This work aimed at building a population pharmacokinetic (PK) model for lamivudine (LMV), stavudine (STV) and zidovudine (ZDV), estimating their inter and intraindividual PK variability and investigating the influence of different covariates.

Methods

Population PK of LMV, STV and ZDV was separately evaluated from plasma concentrations obtained in 54, 39 and 27 HIV1-infected patients, respectively, enrolled in the COPHAR1-ANRS102 trial. The primary objective of this trial was to study the pharmacokinetics of indinavir (IDV) and nelfinavir (NFV) in treated patients with a sustained virological response. Concentrations of nucleoside analogs (NA) were measured in plasma as a secondary objective. A one-compartment model with first-order elimination was used, with zero-order absorption for LMV and first-order absorption for STV and ZDV.

Results

Mean parameters [interpatient variability in coefficient of variation (CV%)] of LMV, STV and ZDV were: oral volume of distribution (V/F) 145 l (52%), 24 l (81%) and 248 l (80%), oral clearance (Cl/F) 32 l/h, 16 l/h (74%) and 124 l/h (51%), respectively. For LMV, absorption duration (T a ) was 1.46 h (64%). For STV and ZDV, k a was 0.46 h−1 and 2.9 h−1, respectively. We found a systematic effect of combination with NFV vs. IDV. We found that intrapatient variability was greater than interpatient variability (except for STV) and greater than 55% for the three drugs.

Conclusion

This trial enabled the estimation of the population PK parameters of three NA in patients with a sustained virological response, and the median curves could be used as references for concentration-controlled strategies. We observed, as for the protease inhibitors, a great variability of PK parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stretcher B (1995) Pharmacokinetic optimisation of antiretroviral therapy in patients with HIV infection. Clin Pharmacokinet 29(1):46–65

    Article  PubMed  CAS  Google Scholar 

  2. Hoetelmans R, Burger D, Meenhorst P, Beijnen J (1996) Pharmacokinetic individualisation of zidovudine therapy. Current state of pharmacokinetic-pharmacodynamic relationships. Clin Pharmacokinet 30(4):314–327

    PubMed  CAS  Google Scholar 

  3. Fletcher C, Acosta E, Henry K, Page L, Gross C, Kawle S, Remmel R, Erice A, Balfour H (1998) Concentration-controlled zidovudine therapy. Clin Pharmacol Ther 64(3):331–338

    Article  PubMed  CAS  Google Scholar 

  4. Kakuda T, Page L, Anderson P, Henry K, Schacker T, Rhame F, Acosta E, Brundage R, Fletcher C (2001) Pharmacological basis for concentration-controlled therapy with zidovudine, lamivudine, and indinavir. Antimicrob Agents Chemother 45(1):236–242

    Article  PubMed  CAS  Google Scholar 

  5. Goujard C, Legrand M, Panhard X, Diquet B, Duval X, Peytavin G, Vincent I, Katlama C, Leport C, Bonnet B, Salmon-Céron D, Mentré F, Taburet A, the COPHAR1 ANRS 102 Study Group (2005) High variability of indinavir and nelfinavir pharmacokinetics in HIV-infected patients with a sustained virological response on haart. Clin Pharmacokinet 44(12):1267–1278

    Article  PubMed  CAS  Google Scholar 

  6. Brendel K, Legrand M, Taburet A, Baron G, Goujard C, Mentré F, the Cophar 1-ANRS 102 Trial Group (2005) Population pharmacokinetic analysis of indinavir in HIV-infected patient treated with a stable antiretroviral therapy. Fundam Clin Pharmacol 19(3):373–383

    Article  PubMed  CAS  Google Scholar 

  7. Panhard X, Goujard C, Legrand M, Taburet A, Diquet B, Mentré F, study group CA (2005) Population pharmacokinetic analysis for nelfinavir and its metabolite M8 in virologically controlled HIV-infected patients on HAART. Br J Clin Pharmacol 60(4):390–403

    Article  PubMed  CAS  Google Scholar 

  8. Spire B, Duran S, Souville M, Leport C, Raffi F, Moatti J, the APROCO cohort study group (2002) Adherence to highly active antiretroviral therapies (HAART) in HIV-infected patients: from a predictive to a dynamic approach. Soc Sci Med 54(10):1481–1496

    Article  PubMed  Google Scholar 

  9. Aymard G, Legrand M, Trichereau N, Diquet B (2000) Determination of twelve antiretroviral agents in human plasma sample using reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 744(2):227–240

    Article  PubMed  CAS  Google Scholar 

  10. Beal S (2001) Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn 28(5):481–504

    Article  PubMed  CAS  Google Scholar 

  11. Lindstrom M, Bates D (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46(3):673–687

    Article  PubMed  CAS  Google Scholar 

  12. Pinheiro J, Bates D (2000) Mixed-effect models in S and Splus. Springer-Verlag, New York

    Google Scholar 

  13. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 2005

  14. Akaike H (1973) Statistical predictor identification. Ann Inst Statist Math 22:203–217

    Article  Google Scholar 

  15. Gitterman S, Drusano G, Egorin M, Standiford H (1990) Population pharmacokinetics of zidovudine. The Veterans Administration Cooperative Studies Group. Clin Pharmacol Ther 48(2):161–167

    Article  PubMed  CAS  Google Scholar 

  16. Mentré F, Escolano S, Diquet B, Golmard J, Mallet A (1993) Clinical pharmacokinetics of zidovudine: inter and intraindividual variability and relationship to long term efficacy and toxicity. Eur J Clin Pharmacol 45(5):397–407

    Article  PubMed  Google Scholar 

  17. Horton C, Dudley M, Kaul S, Mayer K, Squires K, Dunkle L, Anderson R (1995) Population pharmacokinetics of stavudine (d4T) in patients with AIDS or advanced AIDS-related complex. Antimicrob Agents Chemother 39(10):2309–2315

    PubMed  CAS  Google Scholar 

  18. Harb G, Mandema J, Delahunty T, Benowitz N, Coleman R, Sheiner L, Jacobson M (1996) Population pharmacokinetics of didanosine in patients with human immunodeficiency virus infection. J Infect Dis 173(1):273

    PubMed  CAS  Google Scholar 

  19. Adams J, Shelton M, Hewitt R, DeRemer M, DiFrancesco R, Grasela T, Morse G (1998) Zalcitabine population pharmacokinetics: application of radioimmunoassay. Antimicrob Agents Chemother 42(2):409–413

    PubMed  CAS  Google Scholar 

  20. Moore K, Yuen G, Hussey E, Pakes G, Eron J, Bartlett J (1999) Population pharmacokinetics of lamivudine in adult human immunodeficiency virus-infected patients enrolled in two phase III clinical trials. Antimicrob Agents Chemother 43(12):3025–3029

    PubMed  CAS  Google Scholar 

  21. Weller S, Radomski K, Lou Y, Stein D (2000) Population pharmacokinetics and pharmacodynamic modeling of abacavir (1592U89) from a dose-ranging, double-blind, randomized monotherapy trial with human immunodeficiency virus-infected subjects. Antimicrob Agents Chemother 44(8):2052–2060

    Article  PubMed  CAS  Google Scholar 

  22. Zhou X, Sheiner L, D’Aquila R, Hughes M, Hirsch M, Fischl M, Johnson V, Myers M, Sommadossi J (1999) Population pharmacokinetics of nevirapine, zidovudine, and didanosine in human immunodeficiency virus-infected patients. The National Institute of Allergy and Infectious Diseases AIDS Clinical Trials Group Protocol 241 Investigators. Antimicrob Agents Chemother 43(1):121–128

    PubMed  CAS  Google Scholar 

  23. Jullien V, Tréluyer J, Rey E, Jaffray P, Krivine A, Moachon L, Louet ALL, Lescoat A, Dupin N, Salmon D, Pons G, Urien S (2005) Population pharmacokinetics of tenofovir in human immunodeficiency virus-infected patients taking highly active antiretroviral therapy. Antimicrob Agents Chemother 49(8):3361–3366

    Article  PubMed  CAS  Google Scholar 

  24. Angel J, Hussey E, Hall S, Donn K, Morris D, McCormack J, Montaner J, Ruedy J (1993) Pharmacokinetics of 3TC (GR109714X) administered with and without food to HIV-infected patients. Drug Invest 6(2):70–74

    Google Scholar 

  25. Moore K, Shaw S, Laurent A, Lloyd P, Duncan B, Morris D, O’Mara M, Pakes G (1999) Lamivudine/zidovudine as a combined formulation tablet: bioequivalence compared with lamivudine and zidovudine administered concurrently and the effect of food on absorption. J Clin Pharmacol 39(6):593–605

    Article  PubMed  CAS  Google Scholar 

  26. Aarnoutse RE, Schapiro JM, Boucher CAB, Hekster YA, Burger DM (2003) Therapeutic drug monitoring: an aid to optimising response to antiretroviral drugs? Drugs 63(8):741–753

    Article  PubMed  CAS  Google Scholar 

  27. Drusano G, Yuen G, Lambert J, Seidlin M, Dolin R, Valentine F (1992) Relationship between dideoxyinosine exposure, CD4 counts, and p24 antigen levels in human immunodeficiency virus infection. A phase I trial. Ann Intern Med 116(7):562–566

    PubMed  CAS  Google Scholar 

  28. Sasomsin P, Mentré F, Diquet B, Simon F, Brun-Vezinet F (2002) Relationship between exposure to zidovudine and decrease of P24 antigenemia in HIV-infected patients in monotherapy. Fundam Clin Pharmacol 16(5):347–352

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Agence Nationale de la Recherche sur le SIDA (ANRS), Paris, France.

We gratefully acknowledge all members of the scientific committee of the COPHAR1-ANRS102 trial: Prof V. Calvez (Hôpital Pitié-Salpétrière, Paris), Prof G. Chêne (INSERM U330, Bordeaux), Prof B. Diquet (Hôpital Pitié-Salpétrière, Paris), Prof C. Katlama (Hôpital Pitié-Salpétrière, Paris), Prof C. Leport (Hôpital Bichat, Paris), Mrs A. Metro (ANRS, Paris), Dr G. Peytavin (Hôpital Bichat, Paris), Prof F. Raffi (Hôpital Hôtel Dieu, Nantes), Dr A. Roux (Hôpital Ambroise Paré, Boulogne), and Prof D. Salmon-Ceron (Hôpital Cochin, Paris). We would like to thank the investigators in the clinical centres for including patients: J.M. Estavoyer, R. Laurent (Besançon), X. Bazin (Caen), C. Perrone (Garches), J.F. Delfraissy (Kremlin Bicêtre), F. Raffi (Nantes), E. Bouvet, F. Bricaire, S. Herson, W. Rozenbaum, D. Séréni, D. Sicard, A. Simon, J.L. Vildé (Paris), X. Lang (Strasbourg), and the pharmacological laboratories for performing drug assays: B. Royer, P. Muret (Besançon), M. Tod (Bobigny), A.M. Taburet (Kremlin Bicêtre), C. Solas (Marseille), D. Hillaire (Montpellier), E. Dailly (Nantes), B. Diquet, G. Peytavin, J.M. Poirier, E. Rey, H. Sauvageon (Paris), J.C. Alvarez (Versailles). We also thank the patients for their participation.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Xavière Panhard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panhard, X., Legrand, M., Taburet, AM. et al. Population pharmacokinetic analysisof lamivudine, stavudine and zidovudine in controlled HIV-infected patients on HAART. Eur J Clin Pharmacol 63, 1019–1029 (2007). https://doi.org/10.1007/s00228-007-0337-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-007-0337-x

Keywords

Navigation