Skip to main content

Advertisement

Log in

Influence of UGT1A8 and UGT2B7 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

UGT1A8 and UGT2B7 are important uridine diphosphate-glucuronosyltransferase isoforms for the glucuronidation of mycophenolic acid (MPA). The aim of this investigation was to elucidate MPA pharmacokinetics in UGT1A8 and UGT2B7 genotypes in Japanese renal transplant recipients.

Methods

Seventy-two recipients received repeated doses of mycophenolate mofetil and tacrolimus. On day 28 after renal transplantation, plasma MPA concentrations were measured for the next 24 h using high-performance liquid chromatography. UGT1A8*2 (A173G) and UGT2B7*2 (Y268) were detected using a PCR-RFLP-based procedure.

Results

There were no significant differences in daytime and nighttime pharmacokinetics of MPA between UGT1A8 or UGT2B7 genotypes. The mean daytime dose-adjusted AUC0–12 of MPA in UGT1A8*1/*1, *1/*2 and *2/*2 were 2.47, 2.33 and 2.57 ng·h/ml/mg/kg (P = 0.7711), and the mean nighttime AUC0–12 were 2.15, 2.00 and 2.08 ng·h/ml/mg/kg (P = 0.4656). The mean daytime and nighttime dose-adjusted AUC0–12 of MPA in UGT2B7*1/*1, *1/*2 and *2/*2 were 2.61, 2.24 and 2.03 ng·h/ml/mg/kg and 2.18, 1.94, and 1.45 ng·h/ml/mg/kg, respectively (P = 0.3475 and 0.2575). The mean nighttime Cmax, tmax, and AUC6–12/AUC0–12 ratio (enterohepatic circulation and recirculation ratio) of MPA in all UGT1A8 and UGT2B7 genotypes were lower, longer, and higher, respectively, than the daytime values.

Conclusions

Both UGT1A8 and UGT2B7 allelic variants seem not to affect Japanese interindividual variability for plasma MPA concentration. Regardless of UGT1A8 and UGT2B7 genetic polymorphisms, the absorption of MPA through enterohepatic recirculation is higher at night.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Roth D, Colona J, Burke GW, Ciancio G, Esquenazi V, Miller J (1998) Primary immunosuppression with tacrolimus and mycophenolate mofetil for renal allograft recipients. Transplantation 27:248–252

    Article  Google Scholar 

  2. Squifflet JP, Backman L, Claesson K, Dietl KH, Ekberg H, Forsythe JL, Kunzendorf U, Heemann U, Land W, Morales JM, Muhlbacher F, Talbot D, Taube D, Tyden G, van Hooff J, Schleibner S, Vanrenterghem Y (2001) European Tacrolimus-MMF Renal Study Group. Dose optimization of mycophenolate mofetil when administered with a low dose of tacrolimus in cadaveric renal transplant recipients. Transplantation 15:63–69

    Article  Google Scholar 

  3. Bullingham RE, Nicholls AJ, Kamm BR (1998) Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 34:429-455

    Article  PubMed  CAS  Google Scholar 

  4. Shaw LM, Holt DW, Oellerich M, Meiser B, van Gelder T (2001) Current issues in therapeutic drug monitoring of mycophenolic acid: report of a roundtable discussion. Ther Drug Monit 23:305–315

    Article  PubMed  CAS  Google Scholar 

  5. Guillemette C (2003) Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacogenomics J 3:136–158

    Article  PubMed  CAS  Google Scholar 

  6. Bernard O, Guillemette C (2004) The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab Dispos 32:775-778

    Article  PubMed  CAS  Google Scholar 

  7. Picard N, Ratanasavanh D, Premaud A, Le Meur Y, Marquet P (2005) Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos 33:139–146

    Article  PubMed  CAS  Google Scholar 

  8. Kuypers DR, Naesens M, Vermeire S, Vanrenterghem Y (2005) The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients. Clin Pharmacol Ther 78:351–361

    Article  PubMed  CAS  Google Scholar 

  9. Saeki M, Saito Y, Jinno H, Sai K, Ozawa S, Kurose K, Kaniwa N, Komamura K, Kotake T, Morishita H, Kamakura S, Kitakaze M, Tomoike H, Shirao K, Tamura T, Yamamoto N, Kunitoh H, Hamaguchi T, Yoshida T, Kubota K, Ohtsu A, Muto M, Minami H, Saijo N, Kamatani N, Sawada JI (2006) Haplotype structures of the UGT1A gene complex in a Japanese population. Pharmacogenomics J 6:63–75

    Article  PubMed  CAS  Google Scholar 

  10. Huang YH, Galijatovic A, Nguyen N, Geske D, Beaton D, Green J, Green M, Peters WH, Tukey RH (2002) Identification and functional characterization of UDP-glucuronosyltransferases UGT1A8*1, UGT1A8*2 and UGT1A8*3. Pharmacogenetics 12:287–297

    Article  PubMed  CAS  Google Scholar 

  11. Radominska-Pandya A, Little JM, Czernik PJ (2001) Human UDP-glucuronosyltransferase 2B7. Curr Drug Metab 2:283–298

    Article  PubMed  CAS  Google Scholar 

  12. Bhasker CR, McKinnon W, Stone A, Lo AC, Kubota T, Ishizaki T, Miners JO (2000) Genetic polymorphism of UDP-glucuronosyltransferase 2B7 (UGT2B7) at amino acid 268: ethnic diversity of alleles and potential clinical significance. Pharmacogenetics 10:679–685

    Article  PubMed  CAS  Google Scholar 

  13. Holthe M, Klepstad P, Zahlsen K, Borchgrevink PC, Hagen L, Dale O, Kaasa S, Krokan HE, Skorpen F (2002) Morphine glucuronide-to-morphine plasma ratios are unaffected by the UGT2B7 H268Y and UGT1A1*28 polymorphisms in cancer patients on chronic morphine therapy. Eur J Clin Pharmacol 58:353–356

    Article  PubMed  CAS  Google Scholar 

  14. Sawyer MB, Innocenti F, Das S, Cheng C, Ramirez J, Pantle-Fisher FH, Wright C, Badner J, Pei D, Boyett JM, Cook E Jr, Ratain MJ (2003) A pharmacogenetic study of uridine diphosphate-glucuronosyltransferase 2B7 in patients receiving morphine. Clin Pharmacol Ther 73:566–574

    Article  PubMed  CAS  Google Scholar 

  15. Kuypers DR, Vanrenterghem Y, Squifflet JP, Mourad M, Abramowicz D, Oellerich M, Armstrong V, Shipkova M, Daems J (2003) Twelve-month evaluation of the clinical pharmacokinetics of total and free mycophenolic acid and its glucuronide metabolites in renal allograft recipients on low dose tacrolimus in combination with mycophenolate mofetil. Ther Drug Monit 25:609–622

    Article  PubMed  CAS  Google Scholar 

  16. Shaw LM, Korecka M, Venkataramanan R, Goldberg L, Bloom R, Brayman KL (2003) Mycophenolic acid pharmacodynamics and pharmacokinetics provide a basis for rational monitoring strategies. Am J Transplant 3:534–542

    Article  PubMed  CAS  Google Scholar 

  17. Kuypers DR, Claes K, Evenepoel P, Maes B, Coosemans W, Pirenne J, Vanrenterghem Y (2003) Long-term changes in mycophenolic acid exposure in combination with tacrolimus and corticosteroids are dose dependent and not reflected by trough plasma concentration: a prospective study in 100 de novo renal allograft recipients. J Clin Pharmacol 43:866–880

    Article  PubMed  CAS  Google Scholar 

  18. van der Logt EM, Bergevoet SM, Roelofs HM, van Hooijdonk Z, te Morsche RH, Wobbes T, de Kok JB, Nagengast FM, Peters WH (2004) Genetic polymorphisms in UDP-glucuronosyltransferases and glutathione S-transferases and colorectal cancer risk. Carcinogenesis 25:2407–2415

    Article  PubMed  Google Scholar 

  19. Lin GF, Guo WC, Chen JG, Qin YQ, Golka K, Xiang CQ, Ma QW, Lu DR, Shen JH (2005) An association of UDP-glucuronosyltransferase 2B7 C802T (His268Tyr) polymorphism with bladder cancer in benzidine-exposed workers in China. Toxicol Sci 85:502–506

    Article  PubMed  CAS  Google Scholar 

  20. Bernard O, Tojcic J, Journault K, Perusse L, Guillemette C (2006) Influence of nonsynonymous polymorphisms of UGT1A8 and UGT2B7 metabolizing enzymes on the formation of phenolic and acyl glucuronides of mycophenolic acid. Drug Metab Dispos 34:1539–1545

    Article  PubMed  CAS  Google Scholar 

  21. Holt DW (2002) Monitoring mycophenolic acid. Ann Clin Biochem 39:173–183

    Article  PubMed  CAS  Google Scholar 

  22. Mourad M, Wallemacq P, Konig J, de Frahan EH, Eddour DC, De Meyer M, Malaise J, Squifflet JP (2002) Therapeutic monitoring of mycophenolate mofetil in organ transplant recipients: is it necessary? Clin Pharmacokinet 41:319–327

    Article  PubMed  CAS  Google Scholar 

  23. Guengerich FP, Parikh A, Johnson EF, Richardson TH, von Wachenfeldt C, Cosme J, Jung F, Strassburg CP, Manns MP, Tukey RH, Pritchard M, Fournel-Gigleux S, Burchell B (1997) Heterologous expression of human drug-metabolizing enzymes. Drug Metab Dispos 25:1234–1241

    PubMed  CAS  Google Scholar 

  24. Bhasker CR, McKinnon W, Stone A, Lo AC, Kubota T, Ishizaki T, Miners JO (2000) Genetic polymorphism of UDP-glucuronosyltransferase 2B7 (UGT2B7) at amino acid 268: ethnic diversity of alleles and potential clinical significance. Pharmacogenetics 10:679–685

    Article  PubMed  CAS  Google Scholar 

  25. Shaw LM, Mick R, Nowak I, Korecka M, Brayman KL (1998) Pharmacokinetics of mycophenolic acid in renal transplant patients with delayed graft function. J Clin Pharmacol 38:268–275

    PubMed  CAS  Google Scholar 

  26. Basu NK, Kole L, Kubota S, Owens IS (2004) Human UDP-glucuronosyltransferases show atypical metabolism of mycophenolic acid and inhibition by curcumin. Drug Metab Dispos 32:768–773

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (No.18923015) from the Japan Society for the Promotion of Science, Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatomo Miura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagaya, H., Inoue, K., Miura, M. et al. Influence of UGT1A8 and UGT2B7 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol 63, 279–288 (2007). https://doi.org/10.1007/s00228-006-0248-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-006-0248-2

Keywords

Navigation