Skip to main content
Log in

Nitric oxide in coronary artery disease: effects of antioxidants

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

In this review article we examine the main mechanisms leading to decreased nitric oxide (NO) bioavailability, and we present the current strategies available to increase NO levels, mainly by using antioxidants in patients with coronary artery disease. Decreased NO bioavailability in the vasculature is a key feature of all the classic risk factors for atherosclerosis, and it can be the result of NO's decreased synthesis and increased oxidative deactivation. Increased NO synthesis can be achieved by improving the intracellular redox state in endothelial cells, stabilizing endothelial NO synthase (eNOS) dimers, and maintaining sufficient intracellular levels of eNOS substrate L-arginine. Antioxidant treatment may have a dual role by increasing NO synthesis and decreasing its oxidative deactivation. However, in patients with coronary artery disease, although intracoronary infusions of vitamins or chronic vitamin treatment improve endothelial function, their effect on clinical outcome is questioned. In conclusion, in coronary artery disease, NO bioavailability can be increased mainly by reversing the causes of endothelial dysfunction via treatment of classic risk factors, while the use of antioxidant vitamins is controversial and the ideal antioxidant strategy is still unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  2. Rapoport RM, Murad F (1983) Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res 52:352–357

    PubMed  CAS  Google Scholar 

  3. Berkenboom G, Unger P, Fang ZY, Degre S, Fontaine J (1989) Comparison of the responses to acetylcholine and serotonin on isolated canine and human coronary arteries. Cardiovasc Res 23:780–787

    Article  PubMed  CAS  Google Scholar 

  4. Crossman DC, Larkin SW, Fuller RW, Davies GJ, Maseri A (1989) Substance P dilates epicardial coronary arteries and increases coronary blood flow in humans. Circulation 80:475–484

    PubMed  CAS  Google Scholar 

  5. Luscher TF, Boulanger CM, Yang Z, Noll G, Dohi Y (1993) Interactions between endothelium-derived relaxing and contracting factors in health and cardiovascular disease. Circulation 87(Suppl V):V36–V44

    CAS  Google Scholar 

  6. Toutouzas P, Tousoulis D, Davies GJ (1998) Nitric oxide synthesis in atherosclerosis. Eur Heart J 19:1504–1511

    Article  PubMed  CAS  Google Scholar 

  7. Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P (1986) Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 315:1046–1051

    Article  PubMed  CAS  Google Scholar 

  8. Collins P, Burman J, Chung HI, Fox K (1993) Hemoglobin inhibits endothelium-derived relaxation to acetylcholine in human coronary arteries in vivo. Circulation 87:80–86

    PubMed  CAS  Google Scholar 

  9. Luscher TF, Boulanger CM, Dohi Y, Yang Z (1992) Endothelium-derived contracting factors. Hypertension 19:117–130

    PubMed  CAS  Google Scholar 

  10. Vanhoutte PM, Shimokawa H (1989) Endothelium-derived relaxing factor and coronary vasospasm. Circulation 80:1–9

    PubMed  CAS  Google Scholar 

  11. Goumas G, Tentolouris C, Tousoulis D, Stefanadis C, Toutouzas P (2001) Therapeutic modification of the L-arginine-eNOS pathway in cardiovascular diseases. Atherosclerosis 154:255–267

    Article  PubMed  CAS  Google Scholar 

  12. Vanhoutte PM (1988) The endothelium. Modulator of vascular smooth muscle tone. N Engl J Med 319:512–513

    Article  PubMed  CAS  Google Scholar 

  13. Palmer RMJ, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666

    Article  PubMed  CAS  Google Scholar 

  14. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  15. Ignarro LJ (1989) Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res 65:1–21

    PubMed  CAS  Google Scholar 

  16. Chu A, Chambers DE, Lin C, Kuehl WD, Cobb FR (1990) Nitric oxide modulates epicardial coronary basal vasomotor tone in awake dogs. Am J Physiol 258:H1250–H1254

    PubMed  CAS  Google Scholar 

  17. Ôousoulis D, Antoniades C, Tentolouris C, Goumas G, Stefanadis C, Toutouzas P (2002) L-arginine in cardiovascular disease: dream or reality? Vasc Med 3:203–211

    Article  Google Scholar 

  18. Nunokawa Y, Ishida N, Tanaka S (1993) Cloning of inducible nitric oxide synthase in rat vascular smooth muscle cells. Biochem Biophys Res Commun 191:89–94

    Article  PubMed  CAS  Google Scholar 

  19. Rees DD, Palmer RMJ, Hodson HF, Moncada S (1989) A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br J Pharmacol 96:418–424

    PubMed  CAS  Google Scholar 

  20. Schulz R, Nava E, Moncada S (1992) Induction and potential biological relevance of a Ca2+-independent nitric oxide synthase in the myocardium. Br J Pharmacol 105:575–580

    PubMed  CAS  Google Scholar 

  21. Waldman SA, Murad F (1988) Biochemical mechanisms underlying vascular smooth muscle relaxation: the guanylate cyclase-cyclic GMP system. J Cardiovasc Pharmacol 12(Suppl 5):S115–S118

    PubMed  CAS  Google Scholar 

  22. Nava E, Palmer RMJ, Moncada S (1991) Inhibition of nitric oxide synthesis in septic shock: how much is beneficial? Lancet 338:1555–1557

    Article  PubMed  CAS  Google Scholar 

  23. Busse R, Mulsch A, Fleming I, Hecker M (1993) Mechanisms of nitric oxide release from the vascular endothelium. Circulation 87(Suppl V):V18–V25

    CAS  Google Scholar 

  24. Tentolouris C, Tousoulis D, Goumas G, Stefanadis C, Graham D, Toutouzas P (2000) L-arginine in coronary atherosclerosis. Int J Cardiol 75:123–128

    Article  PubMed  CAS  Google Scholar 

  25. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  26. Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012

    Article  PubMed  CAS  Google Scholar 

  27. Perrella MA, Hildebrand FL, Margulies KB, Burnett JC Jr (1991) Endothelium-derived relaxing factor in regulation of basal cardiopulmonary and renal function. Am J Physiol 261:R323–R328

    PubMed  CAS  Google Scholar 

  28. Horio Y, Yasue H, Rokutanda M, Nakamura N, Ogawa H, Takaoka K, Matsuyama K, Kimura T (1986) Effects of intracoronary injection of acetylcholine in atherosclerotic coronary arteries. Am J Cardiol 57:984–989

    Article  PubMed  CAS  Google Scholar 

  29. Tousoulis D, Crake T, Kaski JC, Rosen S, Haider AW, Davies G (1995) Enhanced vasomotor responses of complex stenoses to acetylcholine in patients with chronic stable angina. Am J Cardiol 75:725–728

    Article  PubMed  CAS  Google Scholar 

  30. Hodgson JM, Marshall JJ (1989) Direct vasoconstriction and endothelium-dependent vasodilation. Mechanisms of acetylcholine effects on coronary flow and arterial diameter in patients with nonstenotic coronary arteries. Circulation 79:1043–1051

    PubMed  CAS  Google Scholar 

  31. Newman CM, Maseri A, Hackett D, El-Tamimi HM, Davies GJ (1990) Response of angiographically normal and atherosclerotic left anterior descending coronary arteries to acetylcholine. Am J Cardiol 66:1070–1076

    Article  PubMed  CAS  Google Scholar 

  32. Zeiher AM, Drexler H, Wollschlager H, Just H (1991) Modulation of coronary vasomotor tone in humans: progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 83:391–401

    PubMed  CAS  Google Scholar 

  33. el-Tamimi H, Mansour M, Wargovich TJ, Hill JA, Kerensky RA, Conti CR, Pepine CJ (1994) Constrictor and dilator responses to intracoronary acetylcholine in adjacent segments of the same coronary artery in patients with coronary artery disease: endothelial function revisited. Circulation 89:45–51

    PubMed  CAS  Google Scholar 

  34. Tousoulis D, Davies G, Tentolouris C, Crake T, Toutouzas P (1997) Inhibition of nitric oxide synthesis during the cold pressor test in patients with coronary artery disease. Am J Cardiol 79:1676–1679

    Article  PubMed  CAS  Google Scholar 

  35. Tousoulis D, Tentolouris C, Crake T, Toutouzas P, Davies G (1997) Basal and flow-mediated nitric oxide production by atheromatous coronary arteries. J Am Coll Cardiol 29:1256–1262

    Article  PubMed  CAS  Google Scholar 

  36. Tousoulis D, Davies GJ, Tentolouris C, Crake T, Lefroy DC, Toutouzas P (1997) Effects of inhibition of nitric oxide synthesis in patients with coronary artery disease and stable angina. Eur Heart J 18:608–613

    PubMed  CAS  Google Scholar 

  37. Tousoulis D, Crake T, Kaski JC, Rosen SD, Haider AW, Davies GJ (1995) Enhanced vasomotor responses of complex coronary stenoses to acetylcholine in stable angina pectoris. Am J Cardiol 75:725–728

    Article  PubMed  CAS  Google Scholar 

  38. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  CAS  Google Scholar 

  39. Tousoulis D, Tentolouris C, Crake T, Stefanadis C, Toutouzas P (1999) Effects of L- and D-arginine on the basal tone of human diseased coronary arteries and their responses to substance P. Heart 81:505–511

    PubMed  CAS  Google Scholar 

  40. Egashira K, Hirooka Y, Kuga T, Mohri M, Takeshita A (1996) Effects of L-arginine supplementation on endothelium-dependent coronary vasodilation in patients with angina pectoris and normal coronary angiograms. Circulation 94:130–134

    PubMed  CAS  Google Scholar 

  41. Tousoulis D, Davies G, Tentolouris C, Crake T, Toutouzas P (1997) Coronary stenosis dilation induced by L-arginine. Lancet 349:1812–1813

    Article  PubMed  CAS  Google Scholar 

  42. Tentolouris C, Tousoulis D, Crake T, Katsimaglis G, Stefanadis C, Davies G, Toutouzas P (1999) Inhibition of nitric oxide synthesis in human epicardial coronary arteries and stenosis in relation to serum lipid level. Atherosclerosis 147:285–292

    Article  PubMed  CAS  Google Scholar 

  43. Tentolouris C, Tousoulis D, Davies G, Toutouzas P (1999) Effects of acute administration of L-arginine in coronary atherosclerosis. Circulation 99:1646–1649

    Google Scholar 

  44. Tousoulis D, Davies GJ, Tentolouris C, Crake T, Katsimaglis G, Stefanadis C, Toutouzas P (1998) Effects of changing the availability of the substrate for nitric oxide synthase L-arginine on coronary vasomotor tone in angina patients with angiographically normal coronary arteries. Am J Cardiol 82:1110–1113

    Article  PubMed  CAS  Google Scholar 

  45. Tousoulis D, Tentolouris C, Crake T, Goumas G, Stefanadis C, Toutouzas P, Davies GJ (1998) Complex stenosis morphology and vasomotor response to inhibition of nitric oxide synthesis. Heart 84:529–534

    Article  Google Scholar 

  46. Taniyama Y, Griendling KK (2003) Reactive oxygen species in the vasculature. Molecular and cellular mechanisms. Hypertension 42:1075–1081

    Article  PubMed  CAS  Google Scholar 

  47. Mugge A, Elwell JH, Peterson TE, Hofmeyer TG, Heistad DD, Harrison DG (1991) Chronic treatment with polyethylene-glycolated superoxide dismutase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rabbits. Circ Res 69:1293–1300

    PubMed  CAS  Google Scholar 

  48. Li AE, Ito H, Rovira II, Kim KS, Takeda K, Yu ZY, Ferrans VJ, Finkel T (1999) A role for reactive oxygen species in endothelial cells anoikis. Circ Res 85:304–310

    PubMed  CAS  Google Scholar 

  49. Marui N, Offmermann MK, Swerlick R, Kunsch C, Rosen CA, Ahmad M, Alexander RW, Medford RM (1993) Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest 92:1866–1874

    Article  PubMed  CAS  Google Scholar 

  50. Maulik N, Das DK (2002) Redox signaling in vascular angiogenesis. Free Radic Biol Med 33:1047–1060

    Article  PubMed  CAS  Google Scholar 

  51. Antoniades C, Tousoulis D, Tentolouris C, Toutouzas P, Stefanadis C (2003) Oxidative stress, antioxidant vitamins and atherosclerosis: from basic research to clinical practice. Çerz 28:628–638

    Google Scholar 

  52. Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland SM, Harrison DG (2002) Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40:511–515

    Article  PubMed  CAS  Google Scholar 

  53. Radi R, Beckman JW, Bush KM, Freeman BA (1991) Peroxynitrite induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487

    Article  PubMed  CAS  Google Scholar 

  54. Zeiher AM, Schachinger V, Minners J (1995) Long term cigarette smoking impairs endothelium-dependent coronary arterial vasodilator function. Circulation 92:1094–1100

    PubMed  CAS  Google Scholar 

  55. Reznick AZ, Cross CE, Hu ML, Suzuki YJ, Khwaja S, Safadi A, Motchnik PA, Packer L, Halliwell B (1992) Modification of plasma proteins by cigarette smoke as measured by protein carbonyl formation. Biochem J 286:607–611

    PubMed  CAS  Google Scholar 

  56. Galle J, Bengen J, Schollmeyer P, Wanner C (1995) Impairment of endothelium-dependent dilation in rabbit renal arteries by oxidized lipoprotein (a): role of oxygen derived radicals. Circulation 92:1582–1589

    PubMed  CAS  Google Scholar 

  57. Noguchi N (2002) Novel insights into the molecular mechanisms of antiatherosclerotic properties of antioxidants: the alternatives to radical scavenging. Free Radic Biol Med 33:1480–1489

    Article  PubMed  CAS  Google Scholar 

  58. Tousoulis D, Antoniades C, Tentolouris C, Tsioufis C, Toutouza M, Toutouzas P, Stefanadis C (2003) Antioxidant vitamins C and E administration in smokers: effects on endothelial function and adhesion molecules. Atherosclerosis 170:263–269

    Article  CAS  Google Scholar 

  59. Tousoulis D, Antoniades C, Tountas C, Bosinakou E, Kotsopoulou M, Toutouzas P, Stefanadis C (2003) Vitamin C affects thrombosis/fibrinolysis system and reactive hyperemia in patients with non-insulin dependent diabetes mellitus and coronary artery disease. Diabetes Care 26:2749–2753

    Article  PubMed  CAS  Google Scholar 

  60. Widlansky ME, Gokce N, Keaney JF Jr, Vita JA (2003) The clinical implications of endothelial dysfunction. J Am Coll Cardiol 42:1149–1160

    Article  PubMed  CAS  Google Scholar 

  61. Tousoulis D, Davies G, Crake T, Lerman A, Hasdai D, Holmes D (1998) Acetylcholine and endothelial function. Circulation 98:1587A–1590A

    PubMed  Google Scholar 

  62. Kugiyama K, Motoyama T, Hirashima O, Ohgushi M, Soejima H, Misumi K, Kawano H, Miyao Y, Yoshimura M, Ogawa H, Matsumura T, Sugiyama S, Yasue H (1998) Vitamin C attenuates abnormal vasomotor reactivity in spasm arteries in patients with coronary spastic angina. J Am Coll Cardiol 32:103–109

    Article  PubMed  CAS  Google Scholar 

  63. Solzbach U, Hornig B, Jeserich M, Just H (1997) Vitamin C improves endothelial dysfunction of epicardial coronary arteries in hypertensive patients. Circulation 96:1513–1519

    PubMed  CAS  Google Scholar 

  64. Richartz BM, Werner G, Ferrari M, Figulla HR (2001) Reversibility of coronary endothelial vasomotor dysfunction in idiopathic dilated cardiomyopathy: acute effects of vitamin C. Am J Cardiol 88:1001–1005

    Article  PubMed  CAS  Google Scholar 

  65. Channon KM, Qian HS, George SE (2000) Nitric oxide synthase in atherosclerosis and vascular injury. Arterioscler Thromb Vasc Biol 20:1873–1881

    PubMed  CAS  Google Scholar 

  66. Nunes GL, Sgoutas DS, Redden RA, Sigman SR, Gravanis MB, King SB III, Berk BC (1995) Combination of vitamins C and E alters the response to coronary balloon injury in the pig. Arterioscler Thromb Vasc Biol 15:156–165

    PubMed  CAS  Google Scholar 

  67. Rodes J, Cote G, Lesperance J, Bourassa MG, Doucet S, Bilodeau L, Bertrand OF, Harel F, Gallo R, Tardif JC (1998) Prevention of restenosis after angioplasty in small coronary arteries with probucol. Circulation 97:429–436

    PubMed  CAS  Google Scholar 

  68. Tardif JC, Cote G, Lesperance J, Bourassa M, Lambert J, Doucet S, Bilodeau L, Nattel S, de Guise P (1997) Probucol and multivitamins in the prevention of restenosis after coronary angioplasty. Multivitamins and Probucol Study Group. N Engl J Med 337:365–372

    Article  PubMed  CAS  Google Scholar 

  69. Schindler TH, Nitzsche EU, Munzel T, Olschewski M, Brink I, Jeserich M, Mix M, Buser PT, Pfisterer M, Solzbach U, Just H (2003) Coronary vasoregulation in patients with various risk factors in response to cold pressor testing: contrasting myocardial blood flow responses to short- and long-term vitamin C administration. J Am Coll Cardiol 42:814–822

    Article  PubMed  Google Scholar 

  70. Carr AC, Zhu BZ, Frei B (2000) Potential antiatherogenic mechanisms of ascorbate (vitamin C) and α-tocopherol (vitamin E). Circ Res 87:349–354

    PubMed  CAS  Google Scholar 

  71. Keaney JF, Guo Y, Cunningham D, Shwaery GT, Xu A, Vita JA (1996) Vascular incorporation of α-tocopherol prevents endothelial dysfunction due to oxidized LDL by inhibiting protein kinase C stimulation. J Clin Invest 98:386–394

    Article  PubMed  CAS  Google Scholar 

  72. Tousoulis D, Xenakis C, Tentolouris C, Davies G, Pitsavos C, Antoniades C, Toutouzas P, Stefanadis C (2005) Effects of vitamin C and L-arginine co-administration on nitric oxide bioactivity in atherosclerotic coronary arteries. Heart [in press]

  73. Kinlay S, Fang JC, Hikita H, Ho I, Delagrange DM, Frei B, Jung S, Gerhard M, Creager MA, Selwyn AP, Ganz P (1999) Plasma alpha-tocopherol and coronary endothelium-dependent vasodilator function. Circulation 100:219–221

    PubMed  CAS  Google Scholar 

  74. Miwa K, Igawa A, Nakagawa K, Hirai T, Inoue H (1999) Consumption of vitamin E in coronary circulation in patients with variant angina. Cardiovasc Res 41:291–298

    Article  PubMed  CAS  Google Scholar 

  75. Jorge PA, Osaki MR, de Almeida E, Credidio Neto L, Metze K (1996) Effects of vitamin E on endothelium-dependent coronary flow in hypercholesterolemic dogs. Atherosclerosis 126:43–51

    Article  PubMed  CAS  Google Scholar 

  76. Andersson TL, Matz J, Ferns GA, Anggard EE (1994) Vitamin E reverses cholesterol-induced endothelial dysfunction in the rabbit coronary circulation. Atherosclerosis 111:39–45

    Article  PubMed  CAS  Google Scholar 

  77. DeMaio SJ, King SB III, Lembo NJ, Roubin GS, Hearn JA, Bhagavan HN, Sgoutas DS (1992) Vitamin E supplementation, plasma lipids and incidence of restenosis after percutaneous transluminal coronary angioplasty (PTCA). J Am Coll Nutr 11:68–73

    PubMed  CAS  Google Scholar 

  78. Violi F, Cangemi R, Sabatino G, Pignatelli P (2004) Vitamin E for the treatment of cardiovascular disease: is there a future? Ann N Y Acad Sci 1031:292–304

    Article  PubMed  CAS  Google Scholar 

  79. Lee IM, Cook NR, Gaziano JM, Gordon D, Ridker PM, Manson JE, Hennekens CH, Buring JE (2005) Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women's Health Study: a randomized controlled trial. JAMA 294:56–65

    Article  PubMed  CAS  Google Scholar 

  80. Miller ER III, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E (2005) Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 142:37–46

    PubMed  CAS  Google Scholar 

  81. Hare JM, Stamler JS (2005) NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 115:509–517

    Article  PubMed  CAS  Google Scholar 

  82. Williams KJ, Fisher EA (2005) Oxidation, lipoproteins, and atherosclerosis: which is wrong, the antioxidants or the theory? Curr Opin Clin Nutr Metab Care 8:139–146

    Article  PubMed  CAS  Google Scholar 

  83. Kabe Y, Ando K, Hirao S, Yoshida M, Handa H (2005) Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal 7:395–403

    Article  PubMed  CAS  Google Scholar 

  84. Shah AM, Channon KM (2004) Free radicals and redox signalling in cardiovascular disease. Heart 90:486–487

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Tousoulis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tousoulis, D., Antoniades, C. & Stefanadis, C. Nitric oxide in coronary artery disease: effects of antioxidants. Eur J Clin Pharmacol 62 (Suppl 1), 101–107 (2006). https://doi.org/10.1007/s00228-005-0019-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-005-0019-5

Keywords

Navigation