Advertisement

Marine Biology

, Volume 136, Issue 5, pp 863–870 | Cite as

Respiration of the eggs of the giant cuttlefish Sepia apama

  • E. R. Cronin
  • R. S. Seymour

Abstract

On the roofs of subtidal crevices, the giant cuttlefish (Sepia apama) of southern Australia lays clutches of lemon-shaped eggs which hatch after 3 to 5 mo. Diffusion of oxygen through the capsule and chorion membrane to the perivitelline fluid and embryo was modelled using the equation O2 = G O2(P O2outP O2in), where O2 = rate of oxygen consumption, G O2 = oxygen conductance of the capsule, and P O2 values = oxygen partial pressures across the capsule. During development, O2 rose exponentially as the embryo grew, reaching 5.5 μl h−1 at hatching. Throughout development, the capsule dimensions enlarged by absorption of water into the perivitelline space, increasing G O2 by a combination of increasing surface area, and decreasing thickness of the capsule. These processes maintained P O2in high enough to allow unrestricted O2 until shortly before hatching. Diffusion limitation of respiration in hatching-stage embryos was demonstrated by (1) increased embryonic O2 when P O2out was experimentally raised, (2) greater O2 of resting individuals immediately after hatching, and (3) reduced O2 of hatchlings at experimental P O2 levels higher than P O2in before hatching. Thus, low P O2in may be the stimulus to hatch. Potential problems of diffusive gas-exchange are mitigated by the relatively low incubation temperature (12 °C), which may be a factor limiting the distribution of the species to cool, southern waters.

Keywords

Oxygen Respiration Partial Pressure Oxygen Consumption Potential Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • E. R. Cronin
    • 1
  • R. S. Seymour
    • 1
  1. 1.Department of Environmental Biology, University of Adelaide, Adelaide, South Australia 5005, Australia Fax: 0061 (0)8 8303-4364 email: roger.seymour@adelaide.edu.auAU

Personalised recommendations