Skip to main content
Log in

Habitat use by iberian harbour porpoises: ecological and human factors

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The Iberian harbour porpoise (Phocoena phocoena meridionalis) population faces unique challenges, characterized by low population size and limited genetic diversity, underscoring the urgency of conservation efforts. However, a dearth of ecological information on this population hampers targeted conservation measures. This study addresses this knowledge gap by assessing the environmental and anthropogenic factors influencing the habitat use of Iberian harbour porpoises. Utilizing data collected from 195 daily boat surveys spanning 8 years along the north-western coast of Spain, we observed 287 harbour porpoise groups comprising 1383 individuals. Our analysis revealed a wide distribution of harbour porpoises along the continental shelf of the north-western Iberian Peninsula. Notably, this species exhibited a preference for areas characterized by high productivity, influenced by seasonal coastal upwelling phenomena and tidal flow. Our results emphasize the positive correlation between the presence of fishing boats and porpoise habitat use, highlighting the risks associated with bycatch in gear such as bottom-set gillnets and trammel nets, and the need for comprehensive mitigation measures. Additionally, our findings underscore the necessity for comprehensive conservation strategies to address risks associated with marine traffic and habitat alteration due to the expanding development of offshore wind farms in the region. This research also establishes a baseline for future environmental monitoring programs, contributing to the long-term conservation and management of the Iberian harbour porpoise population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data is available in a public repository: Díaz López, Bruno; Methion, Séverine (2024), “Dataset: Habitat Use by Iberian Harbour Porpoises: Ecological and Human Factors”, Mendeley Data, V1, https://doi.org/10.17632/4rw7ssp3y8.1

References

  • Ben Chehida Y, Stelwagen T, Hoekendijk J, Ferreira M, Eira C, Pereira A, Nicolau L, Thumloup J, Fontaine M (2021) Harbor porpoise losing its edges: genetic time series suggests a rapid population decline in Iberian waters over the last 30 years. BioRxiv. https://doi.org/10.1101/2021.08.19.456945

    Article  Google Scholar 

  • Benke H, Bräger S, Dähne M, Gallus A, Hansen S, Honnef CG, Jabbusch M, Koblitz JC, Krügel K, Liebschner A, Narberhaus I, Verfuß UK (2014) Baltic Sea harbour porpoise populations: status and conservation needs derived from recent survey results. Mar Ecol Prog Ser 495:275–290. https://doi.org/10.3354/meps10587

    Article  Google Scholar 

  • Birkun Jr A, Frantzis A (2008) Phocoena phocoena ssp. relicta. The IUCN Red List of Threatened Species, e.T17030A6737111.

  • Bjørge A, Skern-Mauritzen M, Rossman MC (2013) Estimated bycatch of harbour porpoise (phocoena phocoena) in two coastal gillnet fisheries in norway, 2006–2008. mitigation and implications for conservation. Biol Cons 161:164–173

    Article  Google Scholar 

  • Bland R, Methion S, Sharp SP, Díaz López B (2022) Assessing variability in marine traffic exposure between baleen whale species off the galician coast Spain. Mar Pollut Bull 186:114439. https://doi.org/10.1016/j.marpolbul.2022.114439

    Article  CAS  PubMed  Google Scholar 

  • Brandt MJ, Dragon AC, Diederichs A, Bellmann MA, Wahl V, Piper W, Nabe-Nielsen J, Nehls G (2018) Disturbance of harbour porpoises during construction of the first seven offshore wind farms in germany. Mar Ecol Prog Ser 596:213–232. https://doi.org/10.3354/meps12591

    Article  Google Scholar 

  • Brennecke D, Siebert U, Kindt-Larsen L, Midtiby HS, Egemose HD, Ortiz ST, Knickmeier K, Wahlberg M (2022) The fine-scale behavior of harbor porpoises towards pingers. Fish Res 255:106437. https://doi.org/10.1016/j.fishres.2021.106437

    Article  Google Scholar 

  • Bridge C, Methion S, Díaz López B (2023) The impact of anthropogenic pollutants on the distribution of a marine top predator within a coastal estuarine system. Environ Monit Assess 195(7):898. https://doi.org/10.1007/s10661-023-10952-x

    Article  PubMed  Google Scholar 

  • Carstensen J, Henriksen OD, Teilmann J (2006) Impacts of offshore wind farm construction on harbour porpoises: acoustic monitoring of echolocation activity using porpoise detectors (T-PODs). Mar Ecol Prog Ser 321:295–308. https://doi.org/10.3354/meps321295

    Article  Google Scholar 

  • Díaz López B, Methion S (2017) The impact of shellfish farming on common bottlenose dolphins’ use of habitat. Mar Biol 164:83. https://doi.org/10.1007/s00227-017-3125-x

    Article  Google Scholar 

  • Díaz López B, Methion S (2018) Does interspecific competition drive patterns of habitat use and relative density in harbour porpoises? Mar Biol 165:92. https://doi.org/10.1007/s00227-018-3410-4

    Article  Google Scholar 

  • Díaz López B, Methion S (2019) Habitat drivers of endangered rorqual whales in a highly impacted upwelling region. Ecol Ind 103:610–616. https://doi.org/10.1016/j.ecolind.2019.03.070

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  • Dyndo M, Wiśniewska DM, Rojano-Doñate L, Madsen PT (2015) Harbour porpoises react to low levels of high-frequency vessel noise. Sci Rep 5:11083. https://doi.org/10.1038/srep11083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edrén S, Wisz MS, Teilmann J, Dietz R, Söderkvist J (2010) Modelling spatial patterns in harbour porpoise satellite telemetry data using maximum entropy. Ecography 33(4):698–708. https://doi.org/10.1111/j.1600-0587.2010.06405.x

    Article  Google Scholar 

  • Embling CB, Gillibrand PA, Gordon J, Shrimpton J, Stevick PT, Hammond PS (2010) Using habitat models to identify suitable sites for marine protected areas for harbour porpoises (phocoena phocoena). Biol Cons 143(2):267–279. https://doi.org/10.1016/j.biocon.2009.10.022

    Article  Google Scholar 

  • Embling CB, Illian J, Armstrong E, vander Kooij J, Sharples J, Camphuysen CJ, Scott BE (2012) Investigating fine-scale spatio-temporal predator-prey patterns in dynamic marine ecosystems: a functional data analysis approach. J Appl Ecol 49:481–492. https://doi.org/10.1111/j.1365-2664.2011.02092.x

    Article  Google Scholar 

  • Fernández R, MacLeod CD, Pierce GJ, Covelo P, López A, Torres-Palenzuela J, Valavanis V, Santos MB (2013) Inter-specific and seasonal comparison of the niches occupied by small cetaceans off north-west Iberia. Cont Shelf Res 64:88–98. https://doi.org/10.1016/j.csr.2013.05.002

    Article  Google Scholar 

  • Fontaine M (2016) Harbour porpoises, phocoena phocoena, in the mediterranean sea and adjacent regions: biogeographic relicts of the last glacial period. Adv Mar Biol 75:333–358. https://doi.org/10.1016/bs.amb.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  • Fontaine MC, Roland K, Calves I, Austerlitz F, Palstra FP, Tolley KA et al (2014) Postglacial climate changes and rise of three ecotypes of harbor porpoises, phocoena phocoena, in western palearctic waters. Mol Ecol 23:3306–3321. https://doi.org/10.1111/mec.12817

    Article  CAS  PubMed  Google Scholar 

  • Gilles A, Scheidat M, Siebert U (2009) Seasonal distribution of harbour porpoises and possible interference of offshore wind farms in the german north sea. Mar Ecol Prog Ser 383:295–307. https://doi.org/10.3354/meps08020

    Article  Google Scholar 

  • Giralt Paradell O, Díaz López B, Methion S (2019) Modelling common dolphin (delphinus delphis) coastal distribution and habitat use: insights for conservation. Ocean Coast Manag 179:104836. https://doi.org/10.1016/j.ocecoaman.2019.104836

    Article  Google Scholar 

  • Giralt Paradell O, Díaz López B, Methion S (2020) Food-web interactions in a coastal ecosystem influenced by upwelling and terrestrial runoff off north-west spain. Mar Environ Res 157:104933. https://doi.org/10.1016/j.marenvres.2020.104933

    Article  CAS  PubMed  Google Scholar 

  • Giralt Paradell O, Methion S, Rogan E, Díaz López B (2021) Modelling ecosystem dynamics to assess the effect of coastal fisheries on cetacean species. J Environ Manage 1(265):112175. https://doi.org/10.1016/j.jenvman.2021.112175

    Article  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Watson R (2008) A global map of human impact on marine ecosystems. Science 319(5865):948–952. https://doi.org/10.1126/science.1149345

    Article  CAS  PubMed  Google Scholar 

  • Hammond PS, Macleod K, Berggren P, Borchers DL, Burt ML, Cañadas A et al (2013) Cetacean abundance and distribution in european atlantic shelf waters to inform conservation and management. Biol Cons 164:107–122. https://doi.org/10.1016/j.biocon.2013.04.010

    Article  Google Scholar 

  • Hammond PS, Bearzi G, Bjorge A, Forney KA, Karczmarski L, Kasuya T, Perrin W, Scott MD, Wang JY, Wells RS, Wilson B (2016) Phocoena Phocoena (Baltic Sea subpopulation) The IUCN Red List of Threatened Species e.T17031A98831650.

  • Hammond PS, Lacey C, Gilles A, Viquerat S, Börjesson P, Herr H, et al. (2017) Estimates of Cetacean Abundance in European Atlantic Waters in Summer 2016 From the SCANS-III Aerial and Shipboard Surveys. Retrieved from: https://synergy.st-andrews.ac.uk/scans3/files/2017/05/SCANS-IIIdesign-based-estimates-2017-05-12-final-revised.pdf

  • Hastie TJ, Tibshirani RJ (1990) Generalized Additive Models. Chapman and Hall, London

    Google Scholar 

  • Howard C, Stephens PA, Pearce-Higgins JW, Gregory RD, Willis SG (2014) Improving species distribution models: the value of data on abundance. Methods Ecol Evol 5(6):506–513

    Article  Google Scholar 

  • Hoyt E (2011) Marine Protected Areas for Whales, Dolphins and Porpoises: A World Handbook for Cetacean Habitat Conservation and Planning, 2nd edn. Earthscan Oceans, New York, p 464

    Google Scholar 

  • IJsseldijk LL, Camphuysen KC, Nauw JJ, Aarts G (2015) Going with the flow: tidal influence on the occurrence of the harbour porpoise (phocoena phocoena) in the marsdiep area, the netherlands. J Sea Res 103:129–137

    Article  Google Scholar 

  • Jones AR, Hosegood P, Wynn RB, De Boer MN, Butler-Cowdry S, Embling CB (2014) Fine-scale hydrodynamics influence the spatio-temporal distribution of harbour porpoises at a coastal hotspot. Prog Oceanogr 128:30–48. https://doi.org/10.1016/j.pocean.2014.08.002

    Article  Google Scholar 

  • Kindt-Larsen L, Glemarec G, Berg CW, Königson S, Kroner AM, Søgaard M, Lusseau D (2023) Knowing the fishery to know the bycatch: bias-corrected estimates of harbor porpoise bycatch in gillnet fisheries. Proc R Soc B 290:20222570. https://doi.org/10.1098/rspb.2022.2570

    Article  PubMed  PubMed Central  Google Scholar 

  • Kyhn LA, Jørgensen PB, Carstensen J, Bech NI, Tougaard J, Dabelsteen T, Teilmann J (2015) Pingers cause temporary habitat displacement in the harbour porpoise (phocoena phocoena). Mar Ecol Prog Ser 526:253–265. https://doi.org/10.3354/meps11181

    Article  Google Scholar 

  • Lewison RL, Crowder LB, Read AJ, Freeman SA (2004) Understanding impacts of fisheries bycatch on marine megafauna. Trends Ecol Evol 19(11):598–604. https://doi.org/10.1016/j.tree.2004.09.004

    Article  Google Scholar 

  • Li J, Heap AD (2008) A review of spatial interpolation methods for environmental scientists. Geoscience Australia, Record 200823. Canberra, Australian Government, p 137

    Google Scholar 

  • López A, Santos MB, Pierce GJ, González AF, Valeiras X, Guerra A (2002) Trends in strandings and by-catch of marine mammals in northwest spain during the 1990s. J Mar Biol Assoc UK 82:513–521. https://doi.org/10.1017/S0025315402005805

    Article  Google Scholar 

  • López A, Pierce GJ, Santos MB, Gracia J, Guerra A (2003) Fishery by-catches of marine mammals in galician waters: results from on-board observations and an interview survey of fishermen. Biol Cons 111:25–40. https://doi.org/10.1016/S0006-3207(02)00244-6

    Article  Google Scholar 

  • López A, Pierce GJ, Valeiras X, Santos MB, Guerra A (2004) Distribution patterns of small cetaceans in galician waters. J Mar Biol Assoc UK 84(1):283–294. https://doi.org/10.1017/S0025315404009166h

    Article  Google Scholar 

  • Maxwell SM, Hazen EL, Bograd SJ, Halpern BS, Breed GA, Nickel B, Teutschel NM, Crowder LB, Benson S, Dutton PH (2013) Cumulative human impacts on marine predators. Nat Commun 4:2688. https://doi.org/10.1038/ncomms3688

    Article  CAS  PubMed  Google Scholar 

  • Methion S, Díaz López B (2018) Abundance and demographic parameters of bottlenose dolphins in a highly affected coastal ecosystem. Mar Freshw Res 69:1355. https://doi.org/10.1071/MF17346

    Article  Google Scholar 

  • Methion S, Díaz López B (2019a) Natural and anthropogenic drivers of foraging behaviour in bottlenose dolphins: influence of shellfish aquaculture. Aquat Conserv Mar Freshwat Ecosyst 29:927–937. https://doi.org/10.1002/aqc.3116

    Article  Google Scholar 

  • Methion S, Díaz López B (2019b) First record of atypical pigmentation pattern in fin whale (balaenoptera physalus) in the atlantic ocean. Dis Aquat Org 135:121–125. https://doi.org/10.3354/dao03385

    Article  Google Scholar 

  • Methion S, Díaz López B (2020) Individual foraging variation drives social organization in bottlenose dolphins. Behav Ecol 31(1):97–106. https://doi.org/10.1093/beheco/arz160

    Article  Google Scholar 

  • Methion S, Díaz López B (2021) Spatial segregation and interspecific killing of common dolphins (delphinus delphis) by bottlenose dolphins (tursiops truncatus). Acta Ethologica 24(2):95–106. https://doi.org/10.1007/s10211-021-00363-0

    Article  Google Scholar 

  • Methion S, Giralt Paradell O, Padín XA, Corrège T, Díaz López B (2023) Group size varies with climate and oceanographic conditions in bottlenose dolphins. Mar Biol 170:7. https://doi.org/10.1007/s00227-022-04154-4

    Article  Google Scholar 

  • Murray KT, Read AJ, Solow AR (2000) The use of time/area closures to reduce bycatches of harbour porpoises: lessons from the gulf of maine sink gillnet fishery. J Cetacean Res Manage 2(2):135–141

    Article  Google Scholar 

  • Nielsen NH, Teilmann J, Sveegard S, Hansen RG, Sinding MHS, Dietz R, Heid-Jørgensen MP (2018) Oceanic movements, site fidelity, and deep diving in harbour porpoises from greenland show limited similarities to animals from the north sea. Mar Ecol Prog Ser 597:259–272. https://doi.org/10.3354/meps12588

    Article  Google Scholar 

  • Pérez FF, Padín XA, Pazos Y, Gilcoto M, Cabanas M, Pardo PC, Doval MD, Farina-Busto L (2010) Plankton response to weakening of the Iberian coastal upwelling. Glob Change Biol 16(4):1258–1267

    Article  Google Scholar 

  • Pierce GJ, Santos MB, Murphy S, Learmonth JA, Zuur AF, Rogan E, Bustamante P, Caurant F, Lahaye V, Ridoux V, Zegers BN (2008) Bioaccumulation of persistent organic pollutants in female common dolphins (delphinus delphis) and harbour porpoises (phocoena phocoena) from western european seas: geographical trends, causal factors and effects on reproduction and mortality. Environ Pollut 153(2):401–415

    Article  CAS  PubMed  Google Scholar 

  • Pierce GJ, Caldas M, Cedeira J, Santos MB, Llavona A, Covelo P, Martinez G, Torres J, Sacau M, López A (2010) Trends in cetacean sightings along the galician coast, north–west spain, 2003–2007, and inferences about cetacean habitat preferences. Journal of Marine Biological Association of the UK 90(08):1547–1560

    Article  Google Scholar 

  • Pierce GJ, Weir C, Gutierrez P, Verutes G, Fontaine MC, Gonzalez AH et al. (2020) Is Iberian harbour porpoise (Phocoena phocoena) threatened by interactions with fisheries? Paper Presented at the Scientific Committee of the International Whaling Commission SC/68B/SM04 Rev2.

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (http://www.Rproject.org/)

    Google Scholar 

  • Scheidat M, Tougaard J, Brasseur S, Carstensen J, van Polanen Petel T, Teilmann J, Reijnders P (2011) Harbour porpoises (phocoena phocoena) and wind farms: a case study in the dutch north sea. Environ Res Lett 6(2):025102. https://doi.org/10.1088/1748-9326/6/2/025102

    Article  Google Scholar 

  • Spanish Royal Decree 139/2011. Listado de Especies Silvestres en Régimen de Protección Especial y del Catálogo Español de Especies Amenazadas. Ministerio de Medio Ambiente, y Medio Rural y Marino «BOE» núm. 46, de 23 de febrero de 2011. https://www.boe.es/buscar/pdf/2011/BOE-A-2011-3582-consolidado.pdf

  • Spanish Royal Decree 150/2023. Aprobación de los planes de ordenación del espacio marítimo de las cinco demarcaciones marinas españolas. Ministerio para la Transición Ecológica y el Reto Demográfico «BOE» núm. 54, de 28 de febrero de 2023. https://www.boe.es/eli/es/rd/2023/02/28/150/dof/spa/pdf

  • Spyrakos E, Santos-Diniz TC, Martinez-Iglesias G, Torres-Palenzuela JM, Pierce GJ (2011) Spatiotemporal patterns of marine mammal distribution in coastal waters of galicia, NW Spain. Hydrobiologia 670:87–109

    Article  CAS  Google Scholar 

  • Surís-Regueiro JC, Santiago JL (2014) Characterization of fisheries dependence in galicia (spain). Mar Policy 47:99–109. https://doi.org/10.1016/j.marpol.2014.02.006

    Article  Google Scholar 

  • Teilmann J, Carstensen J (2012) Negative long-term effects on harbour porpoises from a large-scale offshore wind farm in the baltic—evidence of slow recovery. Environ Res Lett 7(4):045101

    Article  Google Scholar 

  • Thompson PM, Lusseau D, Barton T, Simmons D, Rusin J, Bailey H (2010) Assessing the responses of coastal cetaceans to the construction of offshore wind turbines. Mar Pollut Bull 60(8):1200–1208

    Article  CAS  PubMed  Google Scholar 

  • Torres R, Barton ED, Miller P, Fanjul E (2003) Spatial patterns of wind and sea surface temperature in the galician upwelling region. J Geophys Res 108:3130. https://doi.org/10.1029/2002JC001361

    Article  Google Scholar 

  • Torres-Pereira A, Ferreira M, Eira C, López A, Sequeira M (2023) ‘Phocoena phocoena boto’ In : Mathias ML (coord.), Fonseca C, Rodrigues L, Grilo C, Lopes-Fernandes M, Palmeirim JM, Santos-Reis M, Alves PC, Cabral JA, Ferreira M, Mira A, Eira C, Negrões N, Paupério J, Pita R, Rainho A, Rosalino LM, Tapisso JT, Vingada J (eds.) ‘Livro Vermelho dos Mamíferos de Portugal Continental’ FCiências.ID, ICNF, Lisboa

  • Tougaard J, Wright AJ, Madsen PT (2015) Cetacean noise criteria revisited in the light of proposed exposure limits for harbour porpoises. Mar Pollut Bull 90(1–2):196–208

    Article  CAS  PubMed  Google Scholar 

  • van Beest FM, Kindt-Larsen L, Bastardie F, Bartolino V, Nabe-Nielsen J (2017) Predicting the population-level impact of mitigating harbor porpoise bycatch with pingers and time-area fishing closures. Ecosphere 8(4):e01785

    Article  Google Scholar 

  • van Berkel J, Burchard H, Christensen A, Mortensen LO, Petersen OS, Thomsen F (2020) The effects of offshore wind farms on hydrodynamics and implications for fishes. Oceanography 33(4):108–117

    Article  Google Scholar 

  • van den Heuvel-Greve MJ, van den Brink AM, Kotterman MJ, Kwadijk CJ, Geelhoed SC, Murphy S, van den Broek J, Heesterbeek H, Gröne A, IJsseldijk LL (2021) Polluted porpoises: generational transfer of organic contaminants in harbour porpoises from the southern north Sea. Sci Total Environ 796:148936

    Article  PubMed  Google Scholar 

  • Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society (b) 73(1):3–36

    Article  Google Scholar 

  • Zeileis A, Leisch F, Hornik K, Kleiber C (2002) An r package for testing for structural change in linear regression models. J Stat Softw 7(2):1–38 (http://www.jstatsoft.org/v07/i02/)

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgements

This research forms part of a long-term study supported by funding from the Bottlenose Dolphin Research Institute (www.thebdri.com). We express our gratitude to Oriol Giralt Paradell, Sara Simoes, Olga Mosca, Nathalie Dunel Roig, Joyce Neves, and the dedicated BDRI volunteers for their invaluable contributions to our marine biodiversity research campaigns conducted from 2014 to 2021. The campaigns during the last 2 years (2020 and 2021) were conducted under the BALAENATUR project in collaboration with the Spanish Ministry for Ecological Transition and the Demographic Challenge. We are also grateful for the annual authorizations provided by the Spanish Government, enabling our annual observation campaigns. Thank you to the editor and the two anonymous reviewers for contributions, which have enhanced the manuscript.

Funding

This research forms part of a long-term study supported by funding from the Bottlenose Dolphin Research Institute (www.thebdri.com).

Author information

Authors and Affiliations

Authors

Contributions

Bruno Díaz López conceived the research idea. Bruno Díaz López and Séverine Methion obtained funding, designed the field study, and collected field data. Bruno Díaz López analyzed the data. Bruno Díaz López wrote the manuscript with input from Séverine Methion. Bruno Díaz López and Séverine Methion reviewed, read and approved the final manuscript.

Corresponding author

Correspondence to Bruno Díaz López.

Ethics declarations

Conflict of interest

None declared.

Financial support:

This work was supported by funding from the Bottlenose Dolphin Research Institute (www.thebdri.com).

Consent for publication

All authors consent to publish.

Additional information

Responsible Editor: V. Paiva .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz López, B., Methion, S. Habitat use by iberian harbour porpoises: ecological and human factors. Mar Biol 171, 113 (2024). https://doi.org/10.1007/s00227-024-04438-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-024-04438-x

Keywords

Navigation