Skip to main content

Advertisement

Log in

Group size varies with climate and oceanographic conditions in bottlenose dolphins

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

An understanding of animal grouping patterns is essential to increase knowledge about their social systems. We used a 5-year continuous dataset to investigate grouping behavior in a free-ranging highly social mammal, the bottlenose dolphin. Our objective was achieved by examining the relationships between a set of oceanographic, climatic, topographic, anthropogenic and social variables and bottlenose dolphin group size. Modeling analysis revealed that bottlenose dolphin group dynamics was linked to both small-scale oceanographic variation and large-scale climatic variation. Larger groups of bottlenose dolphins were predicted with an elevated concentration of dissolved oxygen in the water column, a moderate concentration of chlorophyll-a 60 days before each encounter, and a neutral NAO index. The observed link between environmental variables and dolphin group size is likely associated to changes in dolphin prey availability. Bottlenose dolphin group dynamics are likely driven by multiple factors, and social variables may act synergistically with environmental parameters. Larger groups of bottlenose dolphins were indeed also predicted with a greater number of dependent calves, likely because of enhanced care towards the calves. This study illustrates the value of using multiple variables at different scales to explore the factors that shape animal societies. The current study therefore contributes to the growing body of literature on how environmental change, occurring at different spatio-temporal scales, is indirectly related to the social behavior of a marine top predator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data will be provided under request.

Code availability

Not applicable.

References

  • Alexander RD (1974) The evolution of social behavior. Annu Rev Ecol Evol Syst 5(1):325–383

    Article  Google Scholar 

  • Álvarez I, Decastro M, Gomez-Gesteira M, Prego R (2005) Inter- and intra-annual analysis of the salinity and temperature evolution in the Galician Rías Baixas–ocean boundary (North-West Spain). J Geophys Res. https://doi.org/10.1029/2004JC002504

    Article  Google Scholar 

  • Álvarez I, Gomez-Gesteira M, deCastro M, Lorenzo MN, Crespo AJC, Dias JM (2011) Comparative analysis of upwelling influence between the western and northern coast of the Iberian Peninsula. Cont Shelf Res 31:388e399

    Article  Google Scholar 

  • Álvarez-Salgado XA, Rosón G, Pérez FF, Figueiras FG, Pazos Y (1996) Nitrogen cycling in an estuarine upwelling system, the Ria de Arousa (NW Spain). I. Short-time-scale patterns of hydrodynamic and biogeochemical circulation. Mar Ecol Prog Ser 135:259–273

    Article  Google Scholar 

  • Álvarez-Salgado XA, Labarta U, Fernández-Reiriz MJ, Figueiras FG, Rosón G, Piedracoba S, Filgueira R, Cabanas JM (2008) Renewal time and the impact of harmful algal blooms on the extensive mussel raft culture of the Iberian coastal upwelling system (SW Europe). Harmful Algae 7(6):849–855

    Article  Google Scholar 

  • Arístegui J, Alvarez-Salgado XA, Barton ED, Figueiras FG, Hernández-León S, Roy C, Santos AM (2004) Oceanography and fisheries of the Canary Current/Iberian region of the North Atlantic. In: Robinson AR, Brink K (eds) The global coastal ocean: interdisciplinary regional studies and syntheses (the sea: ideas and observations on progress in the study of the seas, vol 14. Harvard University Press, Boston, pp 877–931

    Google Scholar 

  • Attrill MJ, Power M (2002) Climatic influence on a marine fish assemblage. Nature 417(6886):275–278

    Article  CAS  Google Scholar 

  • Báez JC, Ortiz De Urbina JM, Real R, Macías D (2011) Cumulative effect of the North Atlantic Oscillation on age-class abundance of albacore (Thunnus alalunga). J Appl Ichthyol 27(6):1356–1359

    Article  Google Scholar 

  • Baird RW, Dill LM (1996) Ecological and social determinants of group size in transient killer whales. Behav Ecol 7:408–416

    Article  Google Scholar 

  • Bañón R, Villegas-Rios D, Serrano A, Mucientes G, Arronte JC (2010) Marine fishes from Galicia (NW Spain): an updated checklist. Zootaxa 2667:1–27

    Article  Google Scholar 

  • Bearzi M (2005) Aspects of the ecology and behaviour of bottlenose dolphins (Tursiops truncatus) in Santa Monica Bay, California. J Cetacean Res Manag 7(1):75–83

    Google Scholar 

  • Bearzi G, Notarbartolo Di Sciara G, Politi E (1997) Social ecology of bottlenose dolphins in the Kvarnerić (northern Adriatic Sea). Mar Mamm Sci 13(4):650–668

    Article  Google Scholar 

  • Beekmans BWPM, Forcada J, Murphy EJ, de Baar HJW, Bathmann UV, Fleming AH (2010) Generalised additive models to investigate environmental drivers of Antarctic minke whale (Balaenoptera bonaerensis) spatial density in austral summer. J Cetacean Res Manag 11(2):115–129

    Google Scholar 

  • Berrow S, O’Brien J, Groth L, Foley A, Voigt K (2012) Abundance estimate of bottlenose dolphins (Tursiops truncatus) in the lower river Shannon candidate special area of conservation. Ireland Aquat Mamm 38(2):136

    Article  Google Scholar 

  • Bouveroux TN, Caputo M, Froneman PW, Plön S (2018) Largest reported groups for the Indo-Pacific bottlenose dolphin (Tursiops aduncus) found in Algoa Bay, South Africa: trends and potential drivers. Mar Mamm Sci 34(3):645–665

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New-York

    Google Scholar 

  • Clark CW, Mangel M (1986) The evolutionary advantages of group foraging. Theorotical Popul Biol 30(1):45–75

    Article  Google Scholar 

  • Connor RC, Wells RS, Mann J, Read AJ (2000) The bottlenose dolphin: social relationships in a fission–fusion society. In: Mann J, Connor R, Tyack PL, Whitehead H (eds) Cetacean societies: field studies of dolphins and whales. University of Chicago Press, Chicago, IL, USA, pp 91–126

    Google Scholar 

  • Delm MM (1990) Vigilance for predators: detection and dilution effects. Behav Ecol Sociobiol 26(5):337–342

    Article  Google Scholar 

  • Díaz López B (2006) Bottlenose dolphin (Tursiops truncatus) predation on a marine fin fish farm: some underwater observations. Aquat Mamm 32(3):305

    Article  Google Scholar 

  • Díaz López B (2009) The bottlenose dolphin Tursiops truncatus foraging around a fish farm: effects of prey abundance on dolphins’ behaviour. Curr Zool 55(4):243–248

    Article  Google Scholar 

  • Díaz López B (2012) Bottlenose dolphins and aquaculture: interaction and site fidelity on the north-eastern coast of Sardinia (Italy). Mar Biol 159(10):2161–2172

    Article  Google Scholar 

  • Díaz López B (2019) “Hot deals at sea”: responses of a top predator (Bottlenose dolphin, Tursiops truncatus) to human-induced changes in the coastal ecosystem. Behav Ecol 30(2):291–300

    Article  Google Scholar 

  • Díaz López B, Methion S (2017) The impact of shellfish farming on common bottlenose dolphins’ use of habitat. Mar Biol 164(4):83

    Article  Google Scholar 

  • Díaz López B, Addis A, Fabiano F (2013) Ecology of bottlenose dolphins along the North-Western Sardinian coastal waters (Italy). Thalassas 29(2):35–44

    Google Scholar 

  • Díaz López B, Grandcourt E, Methion S, Das H, Bugla I, Al Hameli M, Al Ameri H, Abdulla M, Al Blooshi A, Al DS (2018a) The distribution, abundance and group dynamics of Indian Ocean humpback dolphins (Sousa plumbea) in the Emirate of Abu Dhabi (UAE). J Mar Biol Assoc UK 98(5):1119–1127

    Article  Google Scholar 

  • Díaz López B, Methion S, Giralt Paradell O (2019) Living on the edge: overlap between a marine predator’s habitat use and fisheries in the Northeast Atlantic waters (NW Spain). Prog Oceanogr 175:115–123

    Article  Google Scholar 

  • Díaz López B, López A, Methion S, Covelo P (2018b) Infanticide attacks and associated epimeletic behaviour in free-ranging common bottlenose dolphins (Tursiops truncatus). J Mar Biol Assoc UK 98(5):1159–1167

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46

    Article  Google Scholar 

  • Drinkwater KF, Belgrano A, Borja A, Conversi A, Edwards M, Greene CH, Ottersen G, Pershing AJ, Walker H (2003) The response of marine ecosystems to climate variability associated with the North Atlantic Oscillation. Geophys Monogr Am Geophys Union 134:211–234

    Google Scholar 

  • Dunbar RI (1992) Time: a hidden constraint on the behavioural ecology of baboons. Behav Ecol Sociobiol 31(1):35–49

    Article  Google Scholar 

  • Edwards P (2015) Aquaculture environment interactions: past, present and likely future trends. Aquaculture 447:2–14

    Article  Google Scholar 

  • Evans G, Prego R (2003) Rias, estuaries and incised valleys: is a ria an estuary? Mar Geol 196(3):171–175

    Article  Google Scholar 

  • Figueiras FG, Labarta U, Reiriz MF (2002) Coastal upwelling, primary production and mussel growth in the Rías Baixas of Galicia. In: Vadstein O, Olsen Y (eds) Sustainable increase of marine harvesting: fundamental mechanisms and new concepts. Springer, Dordrecht, pp 121–131

    Chapter  Google Scholar 

  • Fishlock V, Lee PC (2013) Forest elephants: fission–fusion and social arenas. Anim Behav 85(2):357–363

    Article  Google Scholar 

  • Gibson QA, Mann J (2008) The size, composition and function of wild bottlenose dolphin (Tursiops sp.) mother–calf groups in Shark Bay Australia. Anim Behav 76(2):389–405

    Article  Google Scholar 

  • Giralt Paradell O, Methion S, Rogan E, Díaz López B (2021) Modelling ecosystem dynamics to assess the effect of coastal fisheries on cetacean species J Environ Manage 285:112175. https://doi.org/10.1016/j.jenvman.2021.112175

    Article  Google Scholar 

  • Gowans S, Würsig B, Karczmarski L (2008) The social structure and strategies of delphinids: predictions based on anecological framework. Adv Mar Biol 53:195–294

    Article  Google Scholar 

  • Guisande C, Cabanas JM, Vergara AR, Riveiro I (2001) Effect of climate on recruitment success of Atlantic Iberian sardine Sardinia pilchardius. Mar Ecol Prog Ser 223:243–250

    Article  Google Scholar 

  • Hanson MT, Defran RH (1993) The behavior and feeding ecology of the Pacific coast bottlenose dolphin, Tursiops truncatus. Aquat Mamm 19:127–127

    Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalised Additive Models. Monographs on statistics and applied probabilities 46. Chapman & Hall, London, p 352

    Google Scholar 

  • Heithaus MR, Dill LM (2002) Food availability and tiger shark predation risk influence bottlenose dolphin habitat use. Ecology 83(2):480–491

    Article  Google Scholar 

  • Howell P, Simpson D (1994) Abundance of marine resources in relation to dissolved oxygen in Long Island Sound. Estuaries 17(2):394–402

    Article  Google Scholar 

  • Hurrell JW, Deser C (2010) North Atlantic climate variability: the role of the North Atlantic Oscillation. J Mar Syst 79(3–4):231–244

    Article  Google Scholar 

  • Instituto Galego de Estatística (Galician Institute for Statistics) Xunta de Galicia, 2018. Online statistics. http://www.ige.eu. Accessed 16 Dec 2020

  • Irvine AB, Scott MD, Wells RS, Kaufmann JH (1981) Movements and activities of the Atlantic bottlenose dolphin, Tursiops truncatus, near Sarasota, Florida. Fish Bull 79(4):671–688

    Google Scholar 

  • Islam MS, Tanaka M (2004) Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar Pollut Bull 48(7–8):624–649

    Article  CAS  Google Scholar 

  • Johnson CM, Norris KS (1986) Delphinid social organization and social behavior. In: Schusterman RJ, Thomas JA, Wood FG (eds) Dolphin cognition and behavior: a comparative approach. Lawrence Erlbaum Associates, New Jersey, pp 335–346

    Google Scholar 

  • Kerr KA, Defran RH, Campbell GS (2005) Bottlenose dolphins (Tursiops truncatus) in the Drowned Cayes, Belize: group size, site fidelity and abundance. Carib J Sci 41(1):172–177

    Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, Oxford, UK, p 224

    Google Scholar 

  • Lehmann J, Boesch C (2004) To fission or to fusion: effects of community size on wild chimpanzee (Pan troglodytes verus) social organisation. Behav Ecol Sociobiol 56(3):207–216

    Article  Google Scholar 

  • Li J, Heap AD (2008) A review of spatial interpolation methods for environmental scientists. Geoscience Australia, Record 2008/23Australian Government, Canberra, p 137

    Google Scholar 

  • Lorenzo MN, Taboada JJ (2005) Influences of atmospheric variability on freshwater input in Galician Rias in winter. J Atmos Ocean Sci 10(4):377–387

    Article  Google Scholar 

  • Lorenzo MN, Taboada JJ, Gimeno L (2008) Links between circulation weather types and teleconnection patterns and their influence on precipitation patterns in Galicia (NW Spain). Int J Climatol 28:1493–1505

    Article  Google Scholar 

  • Lu GY, Wong DW (2008) An adaptive inverse-distance weighting spatial interpolation technique. Comput Geosci 34:1044–1055

    Article  Google Scholar 

  • Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, DaSALon SM (2003) The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav Ecol Sociobiol 54(4):396–405

    Article  Google Scholar 

  • Lusseau D, Williams R, Wilson B, Grellier K, Barton TR, Hammond PS, Thompson PM (2004) Parallel influence of climate on the behaviour of Pacific killer whales and Atlantic bottlenose dolphins. Ecol Lett 7(11):1068–1076

    Article  Google Scholar 

  • Mann J, Sargeant B (2003) Like mother, like calf: the ontogeny of foraging traditions in wild Indian Ocean bottlenose dolphins (Tursiops aduncus). In: Fragaszy D, Perry S (eds) The biology of traditions: models and evidence. Cambridge University Press, Cambridge, pp 236–266

    Chapter  Google Scholar 

  • Mann J (2019) Maternal care and offspring development in odontocetes. In: Würsig B (ed) Ethology and behavioral ecology of odontocetes. Ethology and behavioral ecology of marine mammals. Springer, Cham, pp p95-116

    Chapter  Google Scholar 

  • Mas-Riera J, Lombarte A, Gordoa A, Macpherson E (1990) Influence of Benguela upwelling on the structure of demersal fish populations off Namibia. Mar Biol 104(2):175–182

    Article  Google Scholar 

  • Methion S, Díaz López B (2018) Abundance and demographic parameters of bottlenose dolphins in a highly affected coastal ecosystem. Mar Freshw Res 69(9):1355–1364

    Article  Google Scholar 

  • Methion S, Díaz López B (2019) Natural and anthropogenic drivers of foraging behaviour in bottlenose dolphins: influence of shellfish aquaculture. Aquat Conserv Mar Freshw Ecosyst 29(6):927–937

    Article  Google Scholar 

  • Methion S, Díaz López B (2020) Individual foraging variation drives social organization in bottlenose dolphin. Behav Ecol. https://doi.org/10.1093/beheco/arz160

    Article  Google Scholar 

  • Muller Z, Cantor M, Cuthill IC, Harris S (2018) Giraffe social preferences are context dependent. Anim Behav 146:37–49

    Article  Google Scholar 

  • Otto L (1975) Oceanography of the Ria de Arosa (NW Spain). Konink, Meteor International Medelingen en Verlan 96. Leiden University, Leiden, p 210

    Google Scholar 

  • Outeiro L, Byron C, Angelini R (2018) Ecosystem maturity as a proxy of mussel aquaculture carrying capacity in Ria de Arousa (NW Spain): a food web modeling perspective. Aquaculture 496:270–284

    Article  Google Scholar 

  • Pardo PC, Padín XA, Gilcoto M, Farina-Busto L, Pérez FF (2011) Evolution of upwelling systems coupled to the long-term variability in sea surface temperature and Ekman transport. Clim Res 48(2–3):231–246

    Article  Google Scholar 

  • Prego R, Fraga F (1992) A simple model to calculate the residual flosal in a Spanish ria Hydrographic consequences in the ria of Vigo. Estuar Coast Shelf Sci 34(6):603–615

    Article  Google Scholar 

  • QGIS Development Team (2016) QGIS geographic information system. Open source geospatial foundation project. http://www.qgis.org. Accessed 15 Apr 2020

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 15 Apr 2020

  • Rayment W, Webster T (2009) Observations of Hector’s dolphins (Cephalorhynchus hectori) associating with inshore fishing trawlers at Banks Peninsula, New Zealand. New Zealand J Mar Freshw Res 43(4):911–916

    Article  Google Scholar 

  • Robinson KP, Sim TM, Culloch RM, Bean TS, Cordoba Aguilar I, Eisfeld SM, Filan M, Haskins GN, Williams G, Pierce GJ (2017) Female reproductive success and calf survival in a North Sea coastal bottlenose dolphin (Tursiops truncatus) population. PLoS ONE 12(9):e0185000

    Article  Google Scholar 

  • Rodríguez GR, Villasante S, do Carme García-Negro M (2011) Are red tides affecting economically the commercialization of the Galician (NW Spain) mussel farming? Mar Policy 35(2):252–257

    Article  Google Scholar 

  • Santos MB, Fernández R, López A, Martínez JA, Pierce GJ (2007) Variability in the diet of bottlenose dolphin, Tursiops truncatus, in Galician waters, North-Western Spain, 1990–2005. J Mar Biol Assoc UK 87(01):231–241

    Article  Google Scholar 

  • Santos F, Gómez-Gesteira M, Alvarez I (2011) Upwelling along the western coast of the Iberian Peninsula: dependence of trends on fitting strategy. Clim Res 48(2–3):213–218

    Article  Google Scholar 

  • Smith JE, Kolowski JM, Graham KE, Dawes SE, Holekamp KE (2008) Social and ecological determinants of fission–fusion dynamics in the spotted hyaena. Anim Behav 76(3):619–636

    Article  Google Scholar 

  • Stevens PW, Blewett DA, Casey JP (2006) Short-term effects of a low dissolved oxygen event on estuarine fish assemblages following the passage of hurricane Charley. Estuar Coast 29(6):997–1003

    Article  Google Scholar 

  • Sueur C, King AJ, Conradt L, Kerth G, Lusseau D, Mettke-Hoffman C, Schaffner CM, Williams L, Zinner D, Aureli F (2011) Collective decision-making and fission–fusion dynamics: a conceptual framework. Oikos 120:1608–1617

    Article  Google Scholar 

  • Sundaresan SR, Fischhoff IR, Dushoff J, Rubenstein DI (2007) Network metrics reveal differences in social organization between two fission–fusion species Grevy’s Zebra and Onager. Oecologia 151(1):140–149

    Article  Google Scholar 

  • Surís-Regueiro JC, Santiago JL (2014) Characterization of fisheries dependence in Galicia (Spain). Mar Policy 47:99–109

    Article  Google Scholar 

  • Takahata Y, Suzuki S, Okayasu N, Hill D (1994) Troop extinction and fusion in wild Japanese macaques of Yakushima Island, Japan. Am J Primatol 33:317–332

    Article  Google Scholar 

  • Tardin RH, Especie MA, Nery MF, D’Azeredo FT, Simão SM (2011) Coordinated feeding tactics of the Guiana dolphin, Sotalia guianensis (Cetacea: Delphinidae), in Ilha Grande Bay, Rio de Janeiro Brazil. Zoologia (curitiba) 28(3):291–296

    Article  Google Scholar 

  • Tenore KR, Alonso-Noval M, Alvarez-Ossorio M, Atkinson LP, Cabanas JM, Cal RM, Campos HJ, Castillejo F, Chesney EJ, Gonzalez N, Hanson RB (1995) Fisheries and oceanography off Galicia, NW Spain: mesoscale spatial and temporal changes in physical processes and resultant patterns of biological productivity. J Geophys Res 100(C6):10943–10966

    Article  Google Scholar 

  • Trigo RM, Pozo-Vázquez D, Osborn TJ, Castro-Díez Y, Gámiz-Fortis S, Esteban-Parra MJ (2004) North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. Int J Climatol 24(8):925–944

    Article  Google Scholar 

  • van Schaik CP (1999) The socioecology of fission–fusion sociality in orangutans. Primates 40:69–86

    Article  Google Scholar 

  • Varela M, Prego R, Pazos Y, Moroño Á (2005) Influence of upwelling and river runoff interaction on phytoplankton assemblages in a Middle Galician Ria and Comparison with northern and southern rias (NW Iberian Peninsula). Estuarine Coast Shelf Sci 64(4):721–737

    Article  Google Scholar 

  • Vaughn R, Würsig B, Packard J (2010) Dolphin prey herding: prey ball mobility relative to dolphin group and prey ball sizes, multispecies associates, and feeding duration. Mar Mamm Sci 26(1):213–225

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Random and mixed effects. In: Venables WN, Ripley BD (eds) Modern applied statistics with S. Springer, New York, pp 271–300

    Chapter  Google Scholar 

  • Ver Hoef JM, Boveng PL (2007) Quasi-Poisson vs. negative binomial regression: how should we model overdispersed count data? Ecology 88(11):2766–2772

    Article  Google Scholar 

  • Ware DM, Thomson RE (2005) Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific. Science 308(5726):1280–1284

    Article  CAS  Google Scholar 

  • Wood SN (2006) Generalized additive models, an introduction with R. Chapman & Hall/CRC, London, UK, p 476

    Book  Google Scholar 

  • Würsig B (1978) Occurrence and group organization of Atlantic bottlenose porpoises (Tursiops truncatus) in an Argentine bay. Biol Bull 154(2):348–359

    Article  Google Scholar 

  • Zeileis A, Hothorn T (2002) Diagnostic checking in regression relationships. R News 2(3):7–10. http://CRAN.R-project.org/doc/Rnews/. Accessed 15 Apr 2020

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1(1):3–14

    Article  Google Scholar 

Download references

Acknowledgements

This research is part of a long-term study supported by funding from the Bottlenose Dolphin Research Institute (http://www.thebdri.com). We thank Niki Karagouni, Victoria Hope, Olga Mosca, Sara de Almeida Simões, and BDRI volunteers for their contribution to support field and laboratory work. We thank INTECMAR for making public the oceanographic data from their stations in the Ría de Arousa. Thank you to Olga Mosca for reviewing the English grammar of the manuscript. We also thank Ursula Siebert, Bernd Würsig and one anonymous reviewer for their helpful comments and suggestions on the manuscript. Data collection complies with the current laws of Spain, the country in which it was performed.

Funding

This work was supported by funding from the Bottlenose Dolphin Research Institute (http://www.thebdri.com).

Author information

Authors and Affiliations

Authors

Contributions

SM, BDL and TC conceived the research idea. SM and BDL obtained funding, designed the field study, and collected field data. OGP assisted with field data collection in 2017 and 2018. XAP processed the oceanographic data from the INTECMAR observation network (Instituto Tecnolóxico para o Control do Medio Mariño, http://www.intecmar.gal). BDL and OGP carried out GIS analysis. SM and BDL analyzed the data. SM wrote the manuscript. SM, BDL, OGP, XAP and TC reviewed, read, and approved the final manuscript.

Corresponding author

Correspondence to Séverine Methion.

Ethics declarations

Conflict of interest

None declared.

Ethical approval

This is an observational study and no ethical approval was required.

Consent to participate

Not applicable.

Consent for publication

All authors consent to publish.

Additional information

Responsible Editor: Ursula Siebert .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Methion, S., Giralt Paradell, O., Padín, X.A. et al. Group size varies with climate and oceanographic conditions in bottlenose dolphins. Mar Biol 170, 7 (2023). https://doi.org/10.1007/s00227-022-04154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-022-04154-4

Keywords

Navigation