Skip to main content

Advertisement

Log in

Growth patterns of two Red Sea mesopelagic fishes

  • Short Notes
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Growth patterns and hatch-date distributions of two mesopelagic Red Sea fishes, Vinciguerria mabahiss and Maurolicus mucronatus, were inferred from otolith microstructure analysis. Estimated somatic growth rates were lower than other mesopelagic fish at similar tropical and subtropical latitudes. Low zooplankton concentrations and high Red Sea water temperatures may explain the low growth rates observed. Maurolicus mucronatus grew faster (0.15 ± 0.005 mm day−1) than V. mabahiss (0.13 ± 0.003 mm day−1). Growth differences could be attributed to different vertical distributions and migration patterns. Significant differences in somatic growth between locations were also observed for V. mabahiss. Individuals at Kebrit (24°48’ N) grew significantly faster (0.16 ± 0.005 mm day−1) than those at the warmer, more southern (21°27’ N) Atlantis II station (0.12 ± 0.003 mm day−1). For V. mabahiss, otolith increment width at age was similar at hatching times throughout the late spring/summer and autumn. However, for M. mucronatus, growth trajectories were hatch-date dependent, with the earliest cohorts displaying the highest maximum growth rates. This study provides baseline data which will be essential for a better understanding of their population dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of data and materials

The datasets and material generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Antunes A, Ngugi DK, Stingl U (2011) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3(4):416–433. https://doi.org/10.1111/j.1758-2229.2011.00264.x

    Article  Google Scholar 

  • Baumann H, Gröhsler T, Kornilovs G, Makarchouk A, Feldmann V, Temming A (2006) Temperature-induced regional and temporal growth differences in Baltic young-of-the-year sprat Sprattus sprattus. Mar Ecol Prog Ser 317:225–236

    Article  Google Scholar 

  • Bellucco A, Hara A, Machado Almeida E, del Bianco Rossi-Wongtschowski CL (2004) Growth parameters estimates of Maurolicus stehmanni Parin and Kobyliansky 1996 (Teleostei, Sternoptichydae) from south and southeastern Brazilian waters. Braz J Oceanogr 52(3/4):195–205

    Article  Google Scholar 

  • Bogorodsky SV, Randall JE (2019) Endemic fishes of the Red Sea. In: Rasul NMA, Stewart ICF (eds) Oceanographic and biological aspects of the Red Sea. Springer Oceanography, Switzerland, pp 239–265

    Chapter  Google Scholar 

  • Böttger-Schnack R (1990) Community structure and vertical distribution of cyclopoid copepods in the Red Sea. Mar Biol 106:487–501

    Article  Google Scholar 

  • Caiger PE, Lefebve LS, Llopiz JK (2021) Growth and reproduction in mesopelagic fishes: a literature synthesis. ICES J Mar Sci 78(3):765–781. https://doi.org/10.1093/icesjms/fsaa247

    Article  Google Scholar 

  • Campana SE (1992) Measurement and interpretation of the microstructure of fish otoliths. Can Spec Publ Fish Aquat Sci 117:59

    Google Scholar 

  • Campana SE, Thorrold SR (2001) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can J Fish Aquat Sci 58:30–38

    Article  Google Scholar 

  • Dalpadado P, Gjøsæter J (1987) Observations on mesopelagic fish from the Red Sea. Mar Biol 96:173–183

    Article  Google Scholar 

  • de Busserolles F, De CF, Helvik JV, Davies WIL, Templin RM, Sullivan RKP, Michell CT, Mountford JK, Collin SP, Irigoien X, Kaartvedt S, Marshall NJ (2017) Pushing the limits of photoreception in twilight conditions: the rod-like cone retina of the deep-sea pearlsides. Sci Adv 3:eaa04709. https://doi.org/10.1126/sciadv.aao4709

    Article  CAS  Google Scholar 

  • Donnelly J, Torres JJ (1988) Oxygen consumption of midwater fishes and crustaceans from the eastern Gulf of Mexico. Mar Biol 97(4):483–494

    Article  Google Scholar 

  • Dypvik E, Kaartvedt S (2013) Vertical migration and diel feeding periodicity of the skinnycheek lanternfish (Benthosema pterotum) in the Red Sea. Deep Sea Res I 72:9–16. https://doi.org/10.1016/j.dsr.2012.10.012

    Article  Google Scholar 

  • Folkvord A, Johannessen A, Moksness E (2004) Temperature-dependent otolith growth in Norwegian spring-spawning herring (Clupea harengus L.) larvae. Sarsia 89:297–310

    Article  Google Scholar 

  • Folkvord A, Gundersen G, Albretsen J, Asplin L, Kaartvedt S, Giske J (2016) Impact of hatch date on early life growth and survival of Mueller’s pearlside (Maurolicus muelleri) larvae and life-history consequences. Can J Fish Aquat Sci 73(2):163–176. https://doi.org/10.1139/cjfas-2015-0040

    Article  Google Scholar 

  • Fox CJ, Folkvord A, Geffen AJ (2003) Otolith micro-increment formation in herring Clupea harengus larvae in relation to growth rate. Mar Ecol Prog Ser 264:83–94

    Article  Google Scholar 

  • García-Seoane E, Meneses I, Silva A (2015) Microstructure of the otoliths of the glacier lanternfish Benthosema Glaciale. Mar Freshw Res 66(1):70–77

    Article  Google Scholar 

  • Gartner JV (1991) Life histories of three species of lanternfishes (Pisces: Myctophidae) from the eastern Gulf of Mexico. Mar Biol 111(1):11–20

    Article  Google Scholar 

  • Golani D, Bogorodsky S (2010) The fishes of the Red Sea - reappraisal and updated checklist. Zootaxa 2463:1–135. https://doi.org/10.11646/ZOOTAXA.2463.1.1

    Article  Google Scholar 

  • Grimaldo G, Grimsmo L, Alvarez P, Herrmann B, Tveit GM, Tiller R et al (2020) Investigating the potential for a commercial fishery in the Northeast Atlantic utilizing mesopelagic species. ICES J Mar Sci. https://doi.org/10.1093/icesjms/fsaa114

    Article  Google Scholar 

  • Hayashi A, Kawaguchi K, Watanabe H, Ishida M (2001a) Daily growth increment formation and its lunar periodicity in otoliths of the myctophid fish Myctophum asperum (Pisces: Myctophidae). Fish Sci 67(5):811–817

    Article  CAS  Google Scholar 

  • Hayashi A, Watanabe H, Ishida M, Kawaguchi K (2001b) Growth of Myctophum asperum (Pisces: Myctophidae) in the Kuroshio and transitional waters. Fish Sci 67(5):983–984

    Article  CAS  Google Scholar 

  • Hays GC (2003) A review of the adaptive significance and ecosystem consequences of zooplankton vertical migration. Hydrobiologia 503:163–170

    Article  Google Scholar 

  • Hernández-León S, Franchy G, Moyano M, Menéndez I, Schmoker C, Putzeys S (2010) Carbon sequestration and zooplankton lunar cycles: could we be missing a major component of the biological pump? Limnol Oceanogr 55(6):2503–2512. https://doi.org/10.4319/lo.2010.55.6.2503

    Article  Google Scholar 

  • Isari S, Pearman JK, Casas L, Michell CT, Curdia J, Berumen ML, Irigoien X (2017) Exploring the larval fish community of the central Red Sea with an integrated morphological and molecular approach. PLoS ONE 12(8):e0182503. https://doi.org/10.1371/journal.pone.0182503

    Article  CAS  Google Scholar 

  • Kaartvedt S, Røstad A, Aksnes DL (2017) Changing weather causes behavioral responses in the lower mesopelagic. Mar Ecol Prog Ser 574:259–263. https://doi.org/10.3354/meps12185

    Article  Google Scholar 

  • Klevjer TA, Torres DJ, Kaartvedt S (2012) Distribution and diel vertical movements of mesopelagic scattering layers in the Red Sea. Mar Biol 159:1833–1841. https://doi.org/10.1007/s00227-012-1973-y

    Article  Google Scholar 

  • Klevjer TA, Irigoien X, Røstad A, Fraile-Nuez E, Benítez-Barrios VM, Kaartvedt S (2016) Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci Rep 6:19873. https://doi.org/10.1038/srep19873

    Article  CAS  Google Scholar 

  • Lancraft TM, Hopkins TL, Torres JJ (1988) Aspects of the ecology of the mesopelagic fish Gonostoma elongatum (Gonostomatidae, Stomiiformes) in the eastern Gulf of Mexico. Mar Ecol Prog Ser 49:27–40

    Article  Google Scholar 

  • Landaeta MF, Bustos CA, Contreras JE, Salas-Berríos F, Palacios-Fuentes P, Alvarado-Niño M, Balbontín F (2015) Larval fish feeding ecology, growth and mortality from two basins with contrasting environmental conditions of an inner sea of northern Patagonia, Chile. Mar Environ Res 106:19–29. https://doi.org/10.1016/j.marenvres.2015.03.003

    Article  CAS  Google Scholar 

  • Meekan MG, Fortier L (1996) Selection for fast growth during the larval life of Atlantic cod Gadus morhua on the Scotian Shelf. Mar Ecol Prog Ser 137:25–37

    Article  Google Scholar 

  • Meekan MG, Carleton JH, McKinnon AD, Flynn K, Furnas M (2003) What determines the growth of tropical reef fish larvae in the plankton: food or temperature? Mar Ecol Prog Ser 256:193–204

    Article  Google Scholar 

  • Moku M, Hayashi A, Mori K, Watanabe Y (2005) Validation of daily otolith increment formation in the larval myctophid fish Diaphus slender-type spp. J Fish Biol 67:1481–1485

    Article  Google Scholar 

  • Molina-Valdivia V, Bustos CA, Castillo MI, Search FV, Plaza G, Landaeta MF (2021) Oceanographic influences on the early life stages of a mesopelagic fish across the Chilean Patagonia. Prog Oceanogr 195:102572. https://doi.org/10.1016/j.pocean.2021.102572

    Article  Google Scholar 

  • Morales-Nin B (2000) Review of the growth regulation processes of otolith daily increment formation. Fish Res 46:53–67

    Article  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/

  • Robinson C, Steinberg DK, Anderson TR, Arístegui J, Carlson CA, Frost JR et al (2010) Mesopelagic zone ecology and biogeochemistry - a synthesis. Deep-Sea Res II 57:1504–1518. https://doi.org/10.1016/j.dsr2.2010.02.018

    Article  CAS  Google Scholar 

  • Schismenou E, Giannoulaki M, Tsiaras K, Lefkaditou E, Triantafyllou G, Somarakis S (2014) Disentangling the effects of inherent otolith growth and model-simulated ecosystem parameters on the daily growth rate of young anchovies. Mar Ecol Prog Ser 515:227–237

    Article  Google Scholar 

  • Schismenou E, Palmer M, Giannoulaki M, Alvarez I, Tsiaras K, Triantafyllou G, Somarakis S (2016) Seasonal changes in otolith increment width trajectories and the effect of temperature on the daily growth rate of young sardines. Fish Oceanogr 25(4):362–372

    Article  Google Scholar 

  • Tomás J, Panfili J (2000) Otolith microstructure examination and growth patterns of Vinciguerria nimbaria (Photichthyidae) in the tropical Atlantic ocean. Fish Res 46:131–145

    Article  Google Scholar 

  • Weikert H (1982) The vertical distribution of zooplankton in relation to habitat zones in the area of the Atlantis II deep, central Red Sea. Mar Ecol Prog Ser 8:129–143

    Article  Google Scholar 

  • Wishner KF (1980) The biomass of the deep-sea benthopelagic plankton. Deep-Sea Res 27:203–204

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the reviewers and the associate editor for their constructive comments and suggestions that improved this manuscript. This paper is contribution No. 1142 from AZTI, Marine Research, Basque Research and Technology Alliance (BRTA).

Funding

The research was supported by baseline funding provided by KAUST to Prof. Xabier Irigoien.

Author information

Authors and Affiliations

Authors

Contributions

XI and NA conceived and designed the research. SK coordinated the sampling. NA performed the analyses and wrote the first draft of the manuscript, and all the authors discussed the results. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Naroa Aldanondo.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

The authors declare that all applicable guidelines for sampling, care and experimental use of animals in the study have been followed.

Additional information

Responsible Editor: E. Hunter .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 139 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldanondo, N., Kaartvedt, S. & Irigoien, X. Growth patterns of two Red Sea mesopelagic fishes. Mar Biol 170, 8 (2023). https://doi.org/10.1007/s00227-022-04144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-022-04144-6

Keywords

Navigation