Skip to main content
Log in

Sex matters? Association between foraging behaviour, diet, and physiology in Magellanic penguins

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Ecological segregation has been documented between males and females in different populations of seabirds. Moreover, foraging behaviour and diet have been associated with markers of oxidative status, and have been suggested to be a driver of sex-biased oxidative costs of reproduction in wild marine vertebrates. Nevertheless, the ecological role of sex driving such associations has been little studied. We, therefore, examined whether foraging habitat (δ13C), trophic level (δ15N), dietary antioxidants (retinol and α-tocopherol) and oxidative status (antioxidant capacity and oxidative damage, ROM) were ecologically segregated by sex in Magellanic penguins (Spheniscus magellanicus) breeding in Peninsula Valdés (Argentina) visualizing the isotopic, dietary antioxidant, and oxidative status Bayesian spaces as proxies for ecological niches. Our results suggest that specific sexual segregation by ecological niche partially drives the relation between foraging, dietary antioxidants, and oxidative status. The dietary antioxidant niche showed females with extremely low α-tocopherol levels relative to males, although retinol values seemed to be similar between sexes. Higher trophic levels preys (high δ15N) were positively associated with α-tocopherol in males suggesting that their greater dependence on the Argentinian hake (a benthopelagic fish rich in α-tocopherol) led to a higher absorption of specific dietary antioxidants than females. In addition, a positive relation between α-tocopherol and ROMs in males suggested that their benthic foraging was associated with greater oxidative damage, and that higher levels of alpha-tocopherol in benthopelagic fish were not sufficient to prevent higher levels of oxidative damage associated with the consumption of such fish. Overall, sex-biased dietary antioxidant niche linked with sex-specific ecological segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data generated and analysed during this study are available from the corresponding author on reasonable request.

References

  • Agnew DJ, Kerry KR (1995) Sexual dimorphism in penguins. In: Dann P, Norman I, Reilly P (eds) The penguins: ecology and management. Surrey Beatty & Sons, Chipping Norton, pp 299–318

    Google Scholar 

  • Amélineau F, Grémillet D, Bonnet D, Le Bot T, Fort J (2016) Where to forage in the absence of sea ice? Bathymetry as a key factor for an Arctic seabird. PLoS ONE 11(7):e0157764

    PubMed  PubMed Central  Google Scholar 

  • Barrionuevo M, Ciancio J, Steinfurth A, Frere E (2020) Geolocation and stable isotopes indicate habitat segregation between sexes in Magellanic penguins during the winter dispersion. J Avian Biol 51(2):e02325

    Google Scholar 

  • Beard E, Dienes Z, Muirhead C, West R (2016) Using Bayes factors for testing hypotheses about intervention effectiveness in addictions research. Addiction 111(12):2230–2247

    PubMed  PubMed Central  Google Scholar 

  • Beaulieu M, Ropert-Coudert Y, Le Maho Y, Ancel A, Criscuolo F (2010) Foraging in an oxidative environment: relationship between delta C-13 values and oxidative status in Adelie penguins. Proc R Soc B-Biol Sci 277:1087–1092

    CAS  Google Scholar 

  • Beaulieu M, Reichert S, Le Maho Y, Ancel A, Criscuolo F (2011) Oxidative status and telomere length in a long-lived bird facing a costly reproductive event. Funct Ecol 25:577–585

    Google Scholar 

  • Beaulieu M, González-Acuña D, Thierry A-M, Polito M (2015) Relationships between isotopic values and oxidative status: insights from populations of gentoo penguins. Oecologia 177:1211–1220

    PubMed  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    CAS  PubMed  Google Scholar 

  • Bertellotti M (2013) Magellanic penguin. Patagonian Ambassador. Vazquez Mazzini Editores, Ciudad Autónoma de Buenos Aires.

  • Bertellotti M, Tella JL, Godoy JA, Blanco G, Forero MG, Donázar JA, Ceballos O (2002) Determining sex of Magellanic penguins using molecular procedures and discriminant functions. Waterbirds 25:479–484

    Google Scholar 

  • Bize P, Criscuolo F, Metcalfe NB, Nasir L, Monaghan P (2009) Telomere dynamics rather than age predict life expectancy in the wild. Proc R Soc B 276:1679–1683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo J, Yorio P, Gatto A (2019) Shared dietary niche between sexes in Magellanic Penguins. Austral Ecol 44(4):635–647

    Google Scholar 

  • Clarke J, Manly B, Kerry K, Gardner H, Franchi E, Corsolini S, Focardi S (1998) Sex differences in Adélie penguin foraging strategies. Polar Biol 20:248–258

    Google Scholar 

  • Colominas-Ciuró R, Bertellotti M, Carabajal E, D’Amico VL, Barbosa A (2017a) Incubation increases oxidative imbalance compared to chick rearing in a seabird, the Magellanic penguin (Spheniscus magellanicus). Mar Biol 164:99

    Google Scholar 

  • Colominas-Ciuró R, Santos M, Coria N, Barbosa A (2017b) Reproductive effort affects oxidative status and stress in an Antarctic penguin species: an experimental study. PLoS ONE 12:e0117124

    Google Scholar 

  • Colominas-Ciuró R, Santos M, Coria N, Barbosa A (2018) Sex-specific foraging strategies of Adélie penguins (Pygoscelis adeliae): Females forage further and on more krill than males in the Antarctic Peninsula. Polar Biol 41:2635–2641

    Google Scholar 

  • Colominas-Ciuró R, Bertellotti M, D’Amico VL, Carabajal E, Benzal J, Vidal V, Motas M, Santos M, Coria N, Barbosa A (2021) Diet, antioxidants and oxidative status in pygoscelid penguins. Mar Ecol Prog Ser 665:201–216

    Google Scholar 

  • Cook TR, Cherel Y, Bost CA, Tremblay Y (2007) Chick-rearing Crozet shags (Phalacrocorax melanogenis) display sex-specific foraging behaviour. Antarct Sci 19:55–63

    Google Scholar 

  • Costantini D (2014) Oxidative stress and hormesis in evolutionary ecology and physiology. A marriage between mechanistic and evolutionary approaches. Springer-Verlag, Berlin

    Google Scholar 

  • Costantini D (2016) Oxidative stress ecology and the d-ROMs test: facts, misfacts and an appraisal of a decade’s work. Behav Ecol Sociobiol 70:809–820

    Google Scholar 

  • Costantini D (2019) Understanding diversity in oxidative status and oxidative stress: the opportunities and challenges ahead. J Exp Biol 222:jeb194688

    PubMed  Google Scholar 

  • Costantini D, Møller AP (2008) Carotenoids are minor antioxidants for birds. Funct Ecol 22:367–370

    Google Scholar 

  • Costantini D, Dell’ariccia G, Lipp HP (2008) Long flights and age affect oxidative status of homing pigeons (Columba livia). J Exp Biol 211:377–381

    CAS  PubMed  Google Scholar 

  • Davies KJA (2000) Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50:279–289

    CAS  PubMed  Google Scholar 

  • de Ayala RM, Martinelli R, Saino N (2006) Vitamin E supplementation enhances growth and condition of nestling barn swallows (Hirundo rustica). Behav Ecol Sociobiol 60:619–630

    Google Scholar 

  • Dehnhard N, Voigt CC, Poisbleau M, Demongin L, Quillfeldt P (2011) Stable isotopes in southern rockhopper penguins: foraging areas and sexual differences in the non-breeding period. Polar Biol 34(11):1763–1773

    Google Scholar 

  • Dehnhard N, Achurch H, Clarke J, Michel LN, Southwell C, Summer MD, Eens M, Emmerson L (2020) High inter- and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: generalist foraging as an adaptation to a highly variable environment? J Anim Ecol 89:104–119

    PubMed  Google Scholar 

  • Domalik AD, Hipfner JM, Studholme KR, Crossin GT, Green DJ (2018) At-sea distribution and fne-scale habitat use patterns of zooplanktivorous Cassin’s auklets during the chick-rearing period. Mar Biol 165:177

    Google Scholar 

  • Dunphy BJ, Vickers SI, Zhang J, Sagar RL, Landers TJ, Bury SJ, Hickey AJR, Rayner MJ (2020) Seabirds as environmental indicators: foraging behaviour and ecophysiology of common diving petrels (Pelecanoides urinatrix) reflect local-scale differences in prey availability. Mar Biol 167:53

    CAS  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    CAS  PubMed  Google Scholar 

  • Food and Nutrition Board (2001) Vitamin A .Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington, DC

    Google Scholar 

  • Forero MG, Hobson KA, Bortolotti GR, Donázar JA, Bertellotti M, Blanco G (2002) Food resource utilisation by the Magellanic penguin evaluated through stable-isotope analysis: segregation by sex and age and influence on offspring quality. Mar Ecol Prog Ser 234:289–299

    Google Scholar 

  • Gao S, Li R, Heng N, Chen Y, Wang L, Li Z, Guo Y, Sheng X, Wang X, Xing K, Ni H, Qi X (2020) Effects of dietary supplementation of natural astaxanthin fromHaematococcus pluvialison antioxidant capacity, lipidmetabolism, and accumulation in the egg yolk of laying hens. Poult Sci 99(11):5874–5882

    CAS  PubMed  PubMed Central  Google Scholar 

  • García-Tarrasón M, Sanpera C, Jover L, Costantini D (2014) Levels of antioxidants in breeding female Audouin’s gulls and their deposition in eggs across different environments. J Exp Mar Biol Ecol 453:116–122

    Google Scholar 

  • Garcia-Torchelsen L (2011) Caracterização do estoque de anchoita (Engraulis anchoita) da região sul do Brasil e utilização desta matéria-prima na elaboração de produto de alto valor agregado Msc. Enga. de Alimentos Universidade Federal do Rio Grande Rio Grande, RS

  • Gause GF (1934) The struggle for existence (Williams and Wilkins, Baltimore; reprinted by Hafner, New York, 1964)

  • Goutte A, Angelier F, Bech C, Clément-Chastel C, Dell’Omo G, Gabrielsen GW, Lendvai ÁZ, Moe B, Noreen E, Pinaud D (2014) Annual variation in the timing of breeding, pre-breeding foraging areas and corticosterone levels in an Arctic population of black-legged kittiwakes. Mar Ecol Prog Ser 496:233–247

    Google Scholar 

  • Halliwell BH, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Hartley RC, Kennedy MW (2004) Are carotenoids a red herring in sexual display? Trends Ecol Evol 19:353–354

    PubMed  Google Scholar 

  • Hasselquist D, Nilsson JÅ (2012) Physiological mechanisms mediating costs of immune responses: what can we learn from studies of birds? Anim Behav 83(6):1303–1312

    Google Scholar 

  • Hipfner JM, Dale J, McGraw KJ (2010) Yolk carotenoids and stable isotopes reveal links among environment, foraging behavior and seabird breeding success. Oecologia 163:351–360

    PubMed  Google Scholar 

  • Isaksson C (2009) The chemical pathway of carotenoids: from plants to birds. Ardea 97:125–128

    Google Scholar 

  • Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602

    PubMed  Google Scholar 

  • Jenkins E, Gulka J, Yurkowski DJ, Davoren GK, Gonzalez L (2020) Diet–tissue discrimination factors (δ15N and δ13C values) for blood components in Magellanic (Spheniscus magellanicus) and southern rockhopper (Eudyptes chrysocome) penguins. Rapid Commun Mass Spectrom 34:e8612. https://doi.org/10.1002/rcm.8612

    Article  CAS  PubMed  Google Scholar 

  • Kavelaars MM, Baert JM, Stienen EWM et al (2020) Breeding habitat loss reveals limited foraging flexibility and increases foraging effort in a colonial breeding seabird. Mov Ecol 8:45

    PubMed  PubMed Central  Google Scholar 

  • Kokubun N, Takahashi A, Mori Y, Watanabe S, Shin H-C (2010) Comparison of diving behavior and foraging habitat use between chinstrap and gentoo penguins breeding in the South Shetland Islands, Antarctica. Mar Biol 157:811–825

    Google Scholar 

  • Lee MD, Wagenmakers EJ (2014) Bayesian cognitive modeling: a practical course. Cambridge University Press, Cambridge

    Google Scholar 

  • Loizaga de Castro R, Saporiti F, Vales DG, García NA, Cardona L, Crespo EA (2016) What are you eating? A stable isotope insight into the trophic ecology of short-beaked common dolphins in the Southwestern Atlantic Ocean. Mamm Biol 81(6):571–578

    Google Scholar 

  • Ludynia K, Dehnhard N, Poisbleau M, Demongin L, Masello JF, Voigt CC, Quillfeldt P (2013) Sexual segregation in rockhopper penguins during incubation. Anim Behav 85(1):255–267

    Google Scholar 

  • Martínez A, Rodríguez-Gironés MA, Barbosa A, Costas M (2008) Donator acceptor map for carotenoids, melatonin and vitamins. J Phys Chem A 112:9037–9042

    PubMed  Google Scholar 

  • Masello JF, Mundry R, Poisbleau M, Demongin L, Voigt CC, Wikelski M, Quillfeldt P (2010) Diving seabirds share foraging space and time within and among species. Ecosphere 1:1–28

    Google Scholar 

  • Masello JF, Barbosa A, Kato A, Mattern T, Medeiros R, Stockdale JE, Kümmel MN, Bustamante P, Belliure J, Benzal J, Colominas-Ciuró R, Menéndez-Blázquez J, Griep S, Goesmann A, Symondson WOC, Quillfeldt P (2021) How animals distribute themselves in space: energy landscapes of Antarctic avian predators. Mov Ecol 9:24

    PubMed  PubMed Central  Google Scholar 

  • Matrkova J, Remes V (2014) Vitamin E improves growth of collared flycatcher Ficedula albicollis young: a supplementation experiment. J Avian Biol 45:475–483

    Google Scholar 

  • McDonald RA (2002) Resource partitioning among British and Irish mustelids. J Anim Ecol 71:185–200

    Google Scholar 

  • Melin AM, Carbonneau MA, Maviel MJ, Perromat A, Clerc M (1990) Free radical inhibitor effect of retinol after carbon tetrachloride intoxication in the rat. Food Addit Contam 7(Suppl 1):S182-187

    PubMed  Google Scholar 

  • Michelot C, Pinaud D, Fortin M, Maes P, Callard B, Leicher M, Barbraud C (2017) Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet. Deep Sea Res Part II Top Stud Oceanogr 141:224–236

    Google Scholar 

  • Miller JK, Brzezinska-Slebodzinska E, Madsen FC (1993) Oxidative stress, antioxidants, and animal function. J Dairy Sci 76:2812–2823

    CAS  PubMed  Google Scholar 

  • Min YN, Sun TT, Niu ZY, Liu FZ (2016) Vitamin C and vitamin E supplementation alleviates oxidative stress induced by dexamethasone and improves fertility of breeder roosters. Anim Reprod Sci 171:1–6

    CAS  PubMed  Google Scholar 

  • Moreiras O, Carbajal A, Cabrera L, Cuadrado C (2013) Tablas de composición de alimentos. Guía de prácticas. Ediciones Pirámide. 16ª edición

  • Mori Y, Boyd IL (2004) Segregation of foraging between two sympatric penguin species does rate maximisation make the difference? Mar Ecol Prog Ser 275:241–249

    Google Scholar 

  • Mulder J, Gelissen JP (2018) Bayes factor testing of equality and order constraints on measures of association in social research. Retrieved from https://arxiv.org/abs/1807.05819

  • Navarro J, Votier SC, Aguzzi J, Chiesa JJ, Forero MG, Phillips, (2013) Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels. PLoS ONE 8(4):e62897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noguera JC, Monaghan P, Metcalfe NB (2015) Interactive effects of early and later nutritional conditions on the adult antioxidant defence system in zebra finches. J Exp Biol 218:2211–2217

    PubMed  Google Scholar 

  • Oliveros L, Vega V, Anzulovich AC, Ramirez D, Giménez MS (2000) Vitamin A deficiency modifies antioxidant defenses and essential element contents in rat heart. Nutr Res 20:1139–1150

    CAS  Google Scholar 

  • Pacifici RE, Davies KJA (1991) Protein, lipid and DNA repair systems in oxidative stress: the free-radical theory of aging revisited. Gerontology 37:166–180

    CAS  PubMed  Google Scholar 

  • Panda AK, Cherian G (2014) Role of vitamin E in counteracting oxidative stress in poultry. J Poult Sci 51:109–117

    CAS  Google Scholar 

  • Paredes R, Jones IL, Boness DJ, Tremblay Y, Renner M (2008) Sex-specific differences in diving behaviour of two sympatric Alcini species: thick-billed murres and razorbills. Can J Zool 86:610–622

    Google Scholar 

  • Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5:e9672

    PubMed  PubMed Central  Google Scholar 

  • Perez-Rodriguez L (2009) Carotenoids in evolutionary ecology: re-evaluating the antioxidant role. BioEssays 31:1116–1126

    CAS  PubMed  Google Scholar 

  • Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74

    CAS  Google Scholar 

  • Quillfeldt P, Schroff S, van Noordwijk HJ, Michalik A, Ludynia K, Masello JF (2011) Flexible foraging behaviour of a sexually dimorphic seabird: large males do not always dive deep. Mar Ecol Prog Ser 428:271–287

    Google Scholar 

  • Quintana F, Wilson R, Dell’Arciprete P, Shepard E, Laich AG (2011) Women from Venus, men from Mars: inter-sex foraging differences in the imperial cormorant Phalacrocorax atriceps a colonial seabird. Oikos 120:350–358

    Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Raya Rey A, Putz K, Scioscia G, Luthi B, Schiavini A (2012) Sexual differences in the foraging behaviour of Magellanic Penguins related to stage of breeding. Emu 112:90–96

    Google Scholar 

  • Rosciano NG, Pütz K, Polito MJ, Raya Rey A (2018) Foraging behaviour of Magellanic Penguins during the early chick-rearing period at Isla de los Estados, Argentina. Ibis 160:327–341

    Google Scholar 

  • Sala JE, Wilson RP, Frere E, Quintana F (2012a) Foraging effort in Magellanic penguins in coastal Patagonia, Argentina. Mar Ecol Prog Ser 464:273–287

    Google Scholar 

  • Sala JE, Wilson RP, Quintana F (2012b) How much is too much? Assessment of prey consumption by Magellanic penguins in Patagonian colonies. PLoS ONE 7(12):e51487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schoener TW (1983) Field experiments on interspecific competition. Am Nat 122:240–285

    Google Scholar 

  • Selman C, Blount JD, Nussey DH, Speakman JR (2012) Oxidative damage, ageing, and life-history evolution: where now? Trends Ecol Evol 27:570–577

    PubMed  Google Scholar 

  • Thiebot JB, Cherel Y, Trathan PN, Bost CA (2012) Coexistence of oceanic predators on wintering areas explained by population-scale foraging segregation in space or time. Ecology 93:122–130

    PubMed  Google Scholar 

  • Vales DG, Cardona L, García NA, Zenteno L, Crespo E (2015) Ontogenetic dietary changes in male South American fur seals Arctocephalus australis in Patagonia. Mar Ecol Prog Sec 525:245–260

    CAS  Google Scholar 

  • Walker BG, Boersma PD (2003) Diving behavior of Magellanic Penguins (Spheniscus magellanicus) at Punta Tombo, Argentina. Can J Zool 81:1471–1483

    Google Scholar 

  • Williams TD (1995) The penguins, vol 2. Oxford University Press Inc, New York

    Google Scholar 

  • Wilson RP (2010) Resource partitioning and niche hyper-volume overlap in free-living Pygoscelid penguins. Funct Ecol 24:646–657

    Google Scholar 

  • Wilson RP, Scolaro JA, Gremillet D, Kierspel MAM, Laurenti S, Upton J, Gallelli H, Quintana F, Frere E, Muller G, Straten MT, Zimmer I (2005) How do Magellanic Penguins cope with variability in their access to prey? Ecol Monogr 75:379–401

    Google Scholar 

Download references

Acknowledgements

We thank D. A. Saban for field assistance. We thank three anonymous reviewers for their comments and suggestions that improved the manuscript. This study is a contribution to the PINGUCLIM project.

Funding

This study was funded by the Spanish Ministry of Economy and Competitiveness (CTM2011-24427 and CTM2015-64720) and Multiannual Research Projects-CONICET (PIP 112–20110100680). RCC held a Spanish Ministry of Economy and Competitiveness FPI and mobility grants (BES2012-059299 and EEBB-I-14–07887), and EC had a CONICET doctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

AB conceived and designed the study. AB, MB, and VLA were involved in securing funding and permits for the study. MB and VLA secured the necessary logistics in the field. RC-C, MB, VLD, and EC carried out the fieldwork. AB secured funding for the lab work. RC-C carried out the lab work. AB and RC-C analysed the data and drafted the manuscript. All authors were involved in discussing the final manuscript by provided comments and suggestions, and approved the final manuscript.

Corresponding author

Correspondence to Roger Colominas-Ciuró.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest on connection with this study.

Ethical approval

This article does not contain any studies with human participants. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All animal handling and experimental procedures were approved by the Office of Tourism and Protected Areas of Chubut Province and Fauna and Flora Department, Argentina.

Additional information

Responsible Editor: V. Paiva.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 79 KB)

Supplementary file2 (TIF 57 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colominas-Ciuró, R., Bertellotti, M., D’Amico, V.L. et al. Sex matters? Association between foraging behaviour, diet, and physiology in Magellanic penguins. Mar Biol 169, 21 (2022). https://doi.org/10.1007/s00227-021-04003-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-021-04003-w

Keywords

Navigation