Skip to main content

Advertisement

Log in

Effects of increasing temperature and aestivation on biogenic amines, signal transduction pathways and metabolic enzyme activities in the sea cucumber (Apostichopus japonicus)

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Marine invertebrates are facing increasing pressure from climate change, such as increasing temperature. Sea cucumber (Apostichopus japonicus) is an ectotherm and marine model organism for the study of aestivation, a state of dormancy caused by high temperature. The adaptive mechanism of successive temperature stress and aestivation remains unclear in A. japonicus. This study experimentally exposed A. japonicus to constant temperature (14 ℃) in 20 days, successive increasing temperature (14–20 and 14–26 ℃) in 15 days and then constant aestivation temperature (20 ℃ and 26 ℃) in 5 days, aiming to explore how biogenic amines and signal transduction pathways regulated energy metabolism to response to temperature increasing and aestivation in the A. japonicus. Together with correlation analysis, this experiment suggested that (1) when temperature increased, serotonin might react first to down-regulate cyclic AMP and protein kinase A signal transduction pathway through the receptor 5-HT1A, which led to the suppression of key metabolic enzymes; (2) during aestivation, calmodulin (CaM) and AMP-activated protein kinase (AMPK) increased, and then up-regulated the catabolism of carbohydrates and proteins to provide energy for aestivation. The sea cucumber on aestivation under the higher temperature stress (26 ℃) showed the higher contents of CaM and AMPK, and similar trends were found in glycogen phosphorylase and pyruvate kinase activities, meaning a higher energy catabolism; this implied that under the scenario of successive heatwaves happened in ocean, the aestivation mechanism itself might not be able to guarantee the sea cucumber's survival in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  • Abrass C, O’connor S, Scarpace P, Abrass I (1985) Characterization of the beta-adrenergic receptor of the rat peritoneal macrophage. J Immunol 135:1338–1341

    CAS  PubMed  Google Scholar 

  • Van As JG, Comhrinck C, Reinecke AJ (1980) An experimental evaluation of the influence of temperature on the natural rate of increase of Daphnia pulex De Geer. J Limnol Soc S Afr 6:1–4

    Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    CAS  PubMed  Google Scholar 

  • Barzkar N, Attaran Fariman G, Taheri A (2017) Proximate composition and mineral contents in the body wall of two species of sea cucumber from Oman Sea. Environ Sci Pollut Res 24:18907–18911. https://doi.org/10.1007/s11356-017-9379-5

    Article  CAS  Google Scholar 

  • Bi R, Ismar-Rebitz SMH, Sommer U, Zhang H, Zhao M (2020) Ocean-related global change alters lipid biomarker production in common marine phytoplankton. Biogeosciences 17:6287–6307. https://doi.org/10.5194/bg-17-6287-2020

    Article  CAS  Google Scholar 

  • Childress CC, Sacktor B (1970) Regulation of glycogen metabolism in insect flight muscle Purification and properties of phosphorylases in vitro and in vivo. J Biol Chem 245:2927–2936

    CAS  PubMed  Google Scholar 

  • Civelli O, Bunzow JR, Grandy DK (1993) Molecular diversity of the dopamine-receptors. Annu Rev Pharmacol Toxicol 33:281–307. https://doi.org/10.1146/annurev.pa.33.040193.001433

    Article  CAS  PubMed  Google Scholar 

  • Cowan KJ, MacDonald JA, Storey JM, Storey KB (2000) Metabolic reorganization and signal transduction during estivation in the spadefoot toad. Exp Biol Online 5:1–25

    Google Scholar 

  • Dahlke FT, Wohlrab S, Butzin M, Pörtner H-O (2020) Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369:65–70. https://doi.org/10.1126/science.aaz3658

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Dong S, Ji T (2008) Effect of different thermal regimes on growth and physiological performance of the sea cucumber Apostichopus japonicus Selenka. Aquaculture 275:329–334

    Google Scholar 

  • Dong J-H, Chen X, Cui M, Yu X, Pang Q, Sun J-P (2012) Beta2-adrenergic receptor and astrocyte glucose metabolism. J Mol Neurosci 48:456–463

    CAS  PubMed  Google Scholar 

  • Donohoe PH, Boutilier RG (1998) The protective effects of metabolic rate depression in hypoxic cold submerged frogs. Respir Physiol 111:325–336

    CAS  PubMed  Google Scholar 

  • Ellis G, Goldberg DM (1972) Optimal conditions for the kinetic assay of serum glutamate dehydrogenase activity at 37°C. Clin Chem 18:523–527

    CAS  PubMed  Google Scholar 

  • Fan W, Ye Y, Chen Z, Shao Y, Xie X, Zhang W, Liu H-p, Li C (2016) Metabolic product response profiles of Cherax quadricarinatus towards white spot syndrome virus infection. Dev Comp Immunol 61:236–241

    CAS  PubMed  Google Scholar 

  • Fan X, Jin WY, Wang YT (2014) The NMDA receptor complex: a multifunctional machine at the glutamatergic synapse. Front Cell Neurosci. https://doi.org/10.3389/fncel.2014.00160

    Article  PubMed  PubMed Central  Google Scholar 

  • Frolicher TL, Fischer EM, Gruber N (2018) Marine heatwaves under global warming. Nature 560:360–364

    CAS  PubMed  Google Scholar 

  • Fuery CJ, Withers PC, Hobbs AA, Guppy M (1998) The role of protein synthesis during metabolic depression in the Australian desert frog Neobatrachus centralis. Comp Biochem Physiol a: Mol Integr Physiol 119:469–476

    CAS  Google Scholar 

  • Fuso L, Baldi F, Di Perna A (2011) Therapeutic strategies in pulmonary hypertension. Front Pharmacol. https://doi.org/10.3389/fphar.2011.00021

    Article  PubMed  PubMed Central  Google Scholar 

  • Galeotti N, Ghelardini C, Bartolini A (1997) 5-HT1A agonists induce central cholinergic antinociception. Pharmacol Biochem Behav 57:835–841. https://doi.org/10.1016/S0091-3057(96)00401-7

    Article  CAS  PubMed  Google Scholar 

  • Ge J, Zhang C, Sun Y-C, Zhang Q, Lv M-W, Guo K, Li J-L (2019) Cadmium exposure triggers mitochondrial dysfunction and oxidative stress in chicken (Gallus gallus) kidney via mitochondrial UPR inhibition and Nrf2-mediated antioxidant defense activation. Sci Total Environ 689:1160–1171. https://doi.org/10.1016/j.scitotenv.2019.06.405

    Article  CAS  PubMed  Google Scholar 

  • Green MF, Anderson KA, Means AR (2011) Characterization of the CaMKKβ–AMPK signaling complex. Cell Signal 23:2005–2012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gruntenko NE, Ilinsky YY, Adonyeva NV, Burdina EV, Bykov RA, Menshanov PN, Rauschenbach IY (2017) Various Wolbachia genotypes differently influence host Drosophila dopamine metabolism and survival under heat stress conditions. BMC Evol Biol 17:252–252

    Google Scholar 

  • Guan C, Saha M, Weinberger F (2020) Simulated heatwaves lead to upregulated chemical defense of a marine foundation macrophyte against microbial colonizers. Front Mar Sci 7:463

    Google Scholar 

  • Hannah L, Pearce C, Cross S (2013) Growth and survival of California sea cucumbers (Parastichopus californicus) cultivated with sablefish (Anoplopoma fimbria) at an integrated multi-trophic aquaculture site. Aquaculture 406:34–42

    Google Scholar 

  • Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG (2005) Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9–19

    CAS  PubMed  Google Scholar 

  • Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19:121

    CAS  PubMed  Google Scholar 

  • Horn HG, Boersma M, Garzke J, Sommer U, Aberle N (2020) High CO2 and warming affect microzooplankton food web dynamics in a Baltic Sea summer plankton community. Mar Biol 167:69. https://doi.org/10.1007/s00227-020-03683-0

    Article  CAS  Google Scholar 

  • Huo D, Sun L, Zhang L, Ru X, Liu S, Yang H (2019) Metabolome responses of the sea cucumber Apostichopus japonicus to multiple environmental stresses: Heat and hypoxia. Mar Pollut Bull 138:407–420

    CAS  PubMed  Google Scholar 

  • Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280:29060–29066

    CAS  PubMed  Google Scholar 

  • Islam MJ, Kunzmann A, Bögner M, Meyer A, Thiele R, James Slater M (2020) Metabolic and molecular stress responses of European seabass, Dicentrarchus labrax at low and high temperature extremes. Ecol Ind 112:106118. https://doi.org/10.1016/j.ecolind.2020.106118

    Article  CAS  Google Scholar 

  • Ji T, Dong Y, Dong S (2008) Growth and physiological responses in the sea cucumber, Apostichopus japonicus Selenka: aestivation and temperature. Aquaculture 283:180–187

    CAS  Google Scholar 

  • Jones RM (1980) Metabolic consequences of accelerated urea synthesis during seasonal dormancy of spadefoot toads, Scaphiopus couchi and Scaphiopus multiplicatus. J Exp Zool 212:255–267

    CAS  Google Scholar 

  • Karelitz S, Lamare M, Patel F, Gemmell N, Uthicke S (2019) Parental acclimation to future ocean conditions increases development rates but decreases survival in sea urchin larvae. Mar Biol 167:2. https://doi.org/10.1007/s00227-019-3610-5

    Article  CAS  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    CAS  PubMed  Google Scholar 

  • Kim T-W, Cho Y-K, You K-W, Jung KT (2010) Effect of tidal flat on seawater temperature variation in the southwest coast of Korea. J Geophys Res Oceans 115:C02007. https://doi.org/10.1029/2009JC005593

    Article  Google Scholar 

  • Klauschies T, Bauer B, Aberle-Malzahn N, Sommer U, Gaedke U (2012) Climate change effects on phytoplankton depend on cell size and food web structure. Mar Biol 159:2455–2478. https://doi.org/10.1007/s00227-012-1904-y

    Article  Google Scholar 

  • Konstantinov AS, Pushkar’ VY, Aver’Yanova OV (2003) Effects of fluctuations of abiotic factors on the metabolism of some hydrobionts. Biol Bull Russ Acad Sci 30:610–616

    Google Scholar 

  • Leach T, BuyanUrt B, Hofmann G (2021) Exploring impacts of marine heatwaves: paternal heat exposure diminishes fertilization success in the purple sea urchin (Strongylocentrotus purpuratus). Mar Biol. https://doi.org/10.1007/s00227-021-03915-x

    Article  Google Scholar 

  • Levesque H, Bondy J, Short C, Ballantyne J, Driedzic W, Moon T (2005) Effects of seasonal temperature and photoperiod on Atlantic cod (Gadus morhua). II. Enzymes of intermediary metabolism. Can J Fish Aquat Sci 62:2864–2873

    CAS  Google Scholar 

  • Li FX, Liu YH, Song BX, Sun HL, Gu BX, Zhang XL (1996) Study on aestivating habit of sea cucumber Apostichopus japonicus Selenka: the factors relating to aestivation. J Fish Sci China 3:50–57 ((in Chinese with an English abstract))

    Google Scholar 

  • Liu J (2015) Chapter 5. Spatial distribution, population structures, management, and conservation. Developments in aquaculture and fisheries science, vol 39, pp 77–86

  • Liu S, Zhou Y, Ru X, Zhang M, Cao X, Yang H (2016) Differences in immune function and metabolites between aestivating and non-aestivating Apostichopus japonicus. Aquaculture 459:36–42

    CAS  Google Scholar 

  • Liu F, Xiao Y, Ji X-L, Zhang K-Q, Zou C-G (2017) The cAMP-PKA pathway-mediated fat mobilization is required for cold tolerance in C. elegans. Sci Rep 7:638

    PubMed  PubMed Central  Google Scholar 

  • Macaulay SJ, Hageman KJ, Piggott JJ, Matthaei CD (2021) Time-cumulative effects of neonicotinoid exposure, heatwaves and food limitation on stream mayfly nymphs: A multiple-stressor experiment. Sci Total Environ 754:141941. https://doi.org/10.1016/j.scitotenv.2020.141941

    Article  CAS  PubMed  Google Scholar 

  • Marcelo KL, Means AR, York B (2016) The Ca2+/calmodulin/CaMKK2 axis: nature’s metabolic CaMshaft. Trends Endocrinol Metab 27:706–718

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGivan J, Chappell J (1975) On the metabolic function of glutamate dehydrogenase in rat liver. FEBS Lett 52:1–7

    CAS  PubMed  Google Scholar 

  • Minami K, Sawada H, Masuda R, Takahashi K, Shirakawa H, Yamashita Y (2018) Stage-specific distribution of Japanese sea cucumber Apostichopus japonicus in Maizuru Bay, Sea of Japan, in relation to environmental factors. Fish Sci 84:251–259

    CAS  Google Scholar 

  • Ministry of Agriculture (2018) China fishery statistical yearbook. China Agriculture Press, Beijing

    Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    CAS  PubMed  Google Scholar 

  • Moraes G, Altran A, Avilez I, Barbosa C, Bidinotto P (2005) Metabolic adjustments during semi-aestivation of the marble swamp eel (Synbranchus marmoratus, Bloch 1795)-a facultative air breathing fish. Braz J Biol 65:305–312

    CAS  PubMed  Google Scholar 

  • Morrongiello JR, Thresher RE, Smith DC (2012) Aquatic biochronologies and climate change. Nat Clim Chang 2:849–857

    Google Scholar 

  • Newgard CB, Hwang PK, Fletterick RJ (1989) The family of glycogen phosphorylases: structure and functio. Crit Rev Biochem Mol Biol 24:69–99

    CAS  PubMed  Google Scholar 

  • Oliver E, Donat MG, Burrows MT, Moore PJ, Smale DA, Alexander LV, Benthuysen JA, Feng M, Gupta AS, Hobday AJ (2018) Longer and more frequent marine heatwaves over the past century. Nat Commun 9:1324

    PubMed  PubMed Central  Google Scholar 

  • Østerlund T (2001) Structure–function relationships of hormone-sensitive lipase. Eur J Biochem 268:1899–1907

    PubMed  Google Scholar 

  • Payne MC, Brown CA, Reusser DA, Henry Lee II (2012) Ecoregional analysis of nearshore sea-surface temperature in the North Pacific. PLoS ONE 7:e30105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedler S, Fuery CJ, Withers PC, Flanigan J, Guppy M (1996) Effectors of metabolic depression in an estivating pulmonate snail (Helix aspersa): whole animal and in vitro tissue studies. J Comp Physiol B 166:375–381

    CAS  PubMed  Google Scholar 

  • Peers C, Hue L, Rider MH (2007) The AMP-activated protein kinase: more than an energy sensor. Essays Biochem 43:121–138

    Google Scholar 

  • Pequeux A (1995) Osmotic regulation in crustaceans. J Crustac Biol 15:1–60

    Google Scholar 

  • Péqueux A, Gilles R (1988) The transepithelial potential difference of isolated perfused gills of the Chinese crab Eriocheir sinensis acclimated to fresh water. Comp Biochem Physiol A Physiol 89:163–172

    Google Scholar 

  • Pershing AJ, Alexander MA, Hernandez CM, Kerr LA, Bris AL, Mills KE, Nye JA, Record NR, Scannell HA, Scott JD (2015) Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350:809–812

    CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45–e45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polter AM, Li X (2010) 5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal 22:1406–1412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell SW, Uthicke S, Byrne M, Conand C (2016) Ecological roles of exploited sea cucumbers. Oceanogr Mar Biol Annu Rev 54:367–386

    Google Scholar 

  • Qin DH (2003) Facts, impact, adaptation and mitigation strategy of Climate change. Bulletin of National Natural Science Foundation of China, pp 1–3

  • Rabinovitch RC, Samborska B, Faubert B, Ma EH, Gravel S-P, Andrzejewski S, Raissi TC, Pause A, Pierre JS, Jones RG (2017) AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species. Cell Rep 21:1–9

    CAS  PubMed  Google Scholar 

  • Rasmussen R (2001) Quantification on the lightcycler. In: Meuer S, Wittwer C, Nakagawara KI (eds) Rapid cycle real-time PCR. Springer, Berlin, pp 21–34. https://doi.org/10.1007/978-3-642-59524-0_3

    Chapter  Google Scholar 

  • Rasmussen BA, Breen DM, Ping L, Cheung G, Yang CS, Sun B, Kokorovic A, Rong W, Lam T (2012) Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats. Gastroenterology 142:834-843.e833

    CAS  PubMed  Google Scholar 

  • Rausch JL, Johnson ME, Kasik KE, Stahl SM (2006) Temperature regulation in depression: functional 5HT1A receptor adaptation differentiates antidepressant response. Neuropsychopharmacology 31:2274–2280. https://doi.org/10.1038/sj.npp.1301088

    Article  CAS  PubMed  Google Scholar 

  • Reeves RE (1968) A new enzyme with the glycolytic function of pyruvate kinase. J Biol Chem 243:3202–3204

    CAS  PubMed  Google Scholar 

  • Rehman Zu, Chand N, Khan RU (2017) The effect of vitamin E, l-carnitine, and ginger on production traits, immune response, and antioxidant status in two broiler strains exposed to chronic heat stress. Environ Sci Pollut Res 24:26851–26857. https://doi.org/10.1007/s11356-017-0304-8

    Article  CAS  Google Scholar 

  • Reid S, Moon T, Perry S (1992) Rainbow trout hepatocyte beta-adrenoceptors, catecholamine responsiveness, and effects of cortisol. Am J Physiol-Regulat Integr Comp Physiol 262:R794–R799

    CAS  Google Scholar 

  • Ren Y, Liu W, Pearce CM (2018) Effects of stocking density, ration and temperature on growth, survival and metamorphosis of auricularia larvae of the California sea cucumber, Parastichopus californicus. Aquac Res 49:517–525

    CAS  Google Scholar 

  • Russell BD, Connell SD, Mellin C, Brook BW, Burnell OW (2012) Predicting the distribution of commercially important invertebrate stocks under future climate. PLoS ONE 7:e46554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanford E (2002) Water temperature, predation, and the neglected role of physiological rate effects in rocky intertidal communities. Integr Comp Biol 42(4):881–891

    PubMed  Google Scholar 

  • Sheridan MA (1987) Effects of epinephrine and norepinephrine on lipid mobilization from coho salmon liver incubated in vitro. Endocrinology 120:2234–2239

    CAS  PubMed  Google Scholar 

  • Shihabi ZK, Bishop C (1971) Simplified turbidimetric assay for lipase activity. Clin Chem 17:1150–1153

    CAS  PubMed  Google Scholar 

  • Si L, Pan L, Zhang X, Wang H, Wei C (2019) Evidence that dopamine is involved in neuroendocrine regulation, gill intracellular signaling pathways and ion regulation in Litopenaeus vannamei. J Exp Biol 222(15):204073

    Google Scholar 

  • da Silva PR, Borges-Martins M, Oliveira GT (2020) Melanophryniscus admirabilis tadpoles’ responses to sulfentrazone and glyphosate-based herbicides: an approach on metabolism and antioxidant defenses. Environ Sci Pollut Res 28(4):4156–4172

    Google Scholar 

  • Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Change Biol 14:1199–1208. https://doi.org/10.1111/j.1365-2486.2008.01571.x

    Article  Google Scholar 

  • Stoof J, Kebabian J (1984) Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci 35:2281–2296

    CAS  PubMed  Google Scholar 

  • Storey KB (2002) Life in the slow lane: molecular mechanisms of estivation. Comp Biochem Physiol A Mol Integr Physiol 133:733–754

    PubMed  Google Scholar 

  • Storey KB, Storey JM (2010) Metabolic regulation and gene expression during aestivation. In: Navas CA, Carvalho JE (eds) Aestivation: molecular and physiological aspects. Springer, BerlinHeidelberg, pp 25–46. https://doi.org/10.1007/978-3-642-02421-4_2

    Chapter  Google Scholar 

  • Stuart JA, Gillis TE, Ballantyne JS (1998) Compositional correlates of metabolic depression in the mitochondrial membranes of estivating snails. Am J Physiol 275:R1977

    CAS  PubMed  Google Scholar 

  • Thamm M, Balfanz S, Scheiner R, Baumann A, Blenau W (2010) Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior. Cell Mol Life Sci 67:2467–2479

    CAS  PubMed  Google Scholar 

  • Tong R, Wei C, Pan L, Zhang X (2020) Effects of dopamine on immune signaling pathway factors, phagocytosis and exocytosis in hemocytes of Litopenaeus vannamei. Dev Comp Immunol 102:103473

    CAS  PubMed  Google Scholar 

  • Wang HY, Sun Y, Tang B (2002) Study on fluorescence property of dopamine and determination of dopamine by fluorimetry. Talanta 57:899–907

    CAS  PubMed  Google Scholar 

  • Wang D, Zhang Y, Chi Q, Hu X, Li S, Li S (2019) Ammonia exposure induced abnormal expression of cytokines and heat shock proteins via glucose metabolism disorders in chicken neutrophils. Environ Sci Pollut Res 26:10529–10536. https://doi.org/10.1007/s11356-019-04516-4

    Article  CAS  Google Scholar 

  • Wang T, Yang Z, Zhou N, Sun L, Lv Z, Wu C (2017) Identification and functional characterisation of 5-HT4 receptor in sea cucumber Apostichopus japonicus (Selenka). Sci Rep 7:40247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wernberg T, Bennett S, Babcock RC, Bettignies TD, Cure K, Depczynski M, Dufois F, Fromont J, Fulton CJ, Hovey RK (2016) Climate-driven regime shift of a temperate marine ecosystem. Science 353:169

    CAS  PubMed  Google Scholar 

  • Woods A, Dickerson K, Heath R, Hong S-P, Momcilovic M, Johnstone SR, Carlson M, Carling D (2005) Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2:21–33

    CAS  PubMed  Google Scholar 

  • Wright PA, Perry SF, Moon TW (1989) Regulation of hepatic gluconeogenesis and glycogenolysis by catecholamines in rainbow trout during environmental hypoxia. J Exp Biol 147:169–188

    CAS  PubMed  Google Scholar 

  • Xiang X, Chen M, Wu C, Zhu A, Yang J, Lv Z, Wang T (2016) Glycolytic regulation in aestivation of the sea cucumber Apostichopus japonicus: evidence from metabolite quantification and rate-limiting enzyme analyses. Mar Biol 163:167. https://doi.org/10.1007/s00227-016-2936-5

    Article  CAS  Google Scholar 

  • Xin X, Yang S, Li X, Liu X, Zhang L, Ding X, Zhang S, Li G, Guo H (2020) Proteomics insights into the effects of MSTN on muscle glucose and lipid metabolism in genetically edited cattle. Gen Comp Endocrinol 291:113237

    CAS  PubMed  Google Scholar 

  • Xu C, Li X, Shi H, Liu J, Zhang L, Liu W (2018) AMP-activated protein kinase α1 in Megalobrama amblycephala: Molecular characterization and the transcriptional modulation by nutrient restriction and glucose and insulin loadings. Gen Comp Endocrinol 267:66–75

    CAS  PubMed  Google Scholar 

  • Yang HS, Yuan XT, Zhou Y, Mao YZ, Zhang T, Liu Y (2005) Effects of body size and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicus (Selenka) with special reference to aestivation. Aquac Res 36:1085–1092. https://doi.org/10.1111/j.1365-2109.2005.01325.x

    Article  Google Scholar 

  • Yang HS, Zhou Y, Zhang T, Yuan XT, Li XX, Liu Y, Zhang FS (2006) Metabolic characteristics of sea cucumber Apostichopus japonicus (Selenka) during aestivation. J Exp Mar Biol Ecol 330:505–510. https://doi.org/10.1016/j.jembe.2005.09.010

    Article  CAS  Google Scholar 

  • Yang L, Zhang Z, Wen H, Tao Y (2019) Characterization of channel catfish (Ictalurus punctatus) melanocortin-3 receptor reveals a potential network in regulation of energy homeostasis. Gen Comp Endocrinol 277:90–103

    CAS  PubMed  Google Scholar 

  • Yuan X, Yang H, Zhou Y, Mao Y, Zhang T, Liu Y (2006) The influence of diets containing dried bivalve feces and/or powdered algae on growth and energy distribution in sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Aquaculture 256:457–467. https://doi.org/10.1016/j.aquaculture.2006.01.029

    Article  Google Scholar 

  • Zatta P (1987) Dopamine, noradrenaline and serotonin during hypo-osmotic stress of Carcinus maenas. Mar Biol 96:479–481

    CAS  Google Scholar 

  • Zhang L, Pan L, Xu L, Si L (2018) Effects of ammonia-N exposure on the concentrations of neurotransmitters, hemocyte intracellular signaling pathways and immune responses in white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 75:48–57

    CAS  PubMed  Google Scholar 

  • Zhang P, Li C, Zhang P, Jin C, Pan D, Bao Y (2014) iTRAQ-based proteomics reveals novel members involved in pathogen challenge in sea cucumber Apostichopus japonicus. PLoS ONE 9:e100492

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, Pan L, Wei C, Tong R, Li Y, Ding M, Wang H (2020) Crustacean hyperglycemic hormone (CHH) regulates the ammonia excretion and metabolism in white shrimp, Litopenaeus vannamei under ammonia-N stress. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.138128

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Yang H, Chen M, Liu S (2011) Heat stress-mediated gene expression in the body wall of the Japanese sea cucumber Apostichopus japonicus. Aquat Biol 12:23–31

    Google Scholar 

  • Zhou S, Ren Y, Pearce CM, Dong S, Tian X, Gao Q, Wang F (2017) Ecological effects of co-culturing the sea cucumber Apostichopus japonicus with the Chinese white shrimp Fenneropenaeus chinensis in an earthen pond. Chin J Oceanol Limnol 35:122–131

    Google Scholar 

Download references

Acknowledgements

We appreciated the staff at the Laboratory of Environmental Physiology of Aquatic Animal for helping to sample and take care of the sea cucumbers. Useful suggestions given by reviewers are also acknowledged.

Funding

This work was supported by the National Marine Public Industry Research Project “large-scale park aquaculture environment engineering ecological optimization technology integration and demonstration” (201305005).

Author information

Authors and Affiliations

Authors

Contributions

YL: conceptualization, methodology, formal analysis, investigation, and writing—original draft. YD: validation, visualization, investigation, data curation, and writing—review and editing. LP: supervision, funding acquisition, and project administration.

Corresponding author

Correspondence to Luqing Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

This study was conducted in conformity with institutional guidelines for the care and use of laboratory animals, in compliance with the Animal Care and Use Committee in Ocean University of China, Qingdao, China.

Consent for publication

Manuscript is approved by all authors for publication and informed consent for publication was obtained from all participants.

Additional information

Responsible Editor: A.E. Todgham.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ding, Y. & Pan, L. Effects of increasing temperature and aestivation on biogenic amines, signal transduction pathways and metabolic enzyme activities in the sea cucumber (Apostichopus japonicus). Mar Biol 169, 9 (2022). https://doi.org/10.1007/s00227-021-03981-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-021-03981-1

Keywords

Navigation