Skip to main content

Advertisement

Log in

An evaluation of surge uptake capability in the giant kelp (Macrocystis pyrifera) in response to pulses of three different forms of nitrogen

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This study examined the capacity of the giant kelp, Macrocystis pyrifera, to exhibit surge uptake as a mechanism to enhance nitrogen assimilation during seasons when nitrate is depleted. Surge uptake of nitrate, ammonium, and urea was assessed in the spring and summer with whole-blade incubation experiments using 15 N tracers. The incubation experiments showed evidence of surge uptake lasting up to 5 min for ammonium and 1 min for nitrate during the summer only. Giant kelp showed little capacity for surge uptake of urea regardless of season. The ecological importance of the patterns of surge uptake observed for ammonium and nitrate, however, is questionable, given the small scale and ephemeral nature of ammonium pulses most likely experienced by giant kelp, and the longer duration pulses of nitrate associated with internal waves and upwelling. Rather it seems more likely that uptake of ammonium and urea at ambient concentrations, combined with normal uptake of nitrate during longer duration pulses of high concentrations, sustains giant kelp growth during seasons when ambient concentrations of nitrate are low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Data and metadata are available from the data portal of the Environmental Data Initiative at https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-sbc&identifier=142

Code availability

Not applicable.

References

  • Allen JA, Garrett MR (1971) The excretion of ammonia and urea by Mya arenaria L. (Mollusca: Bivalvia). Comp Biochem Phys Part A Physiol. 39:633–642

    Article  CAS  Google Scholar 

  • Allgeier JE, Burkepile DE, Layman CA (2017) Animal pee in the sea: consumer-mediated nutrient dynamics in the world’s changing oceans. Glob Change Biol 23:2166–2178

    Article  Google Scholar 

  • Baek SH, Kim D, Son M, Yun SM, Kim YO (2015) Seasonal distribution of phytoplankton assemblages and nutrient-enriched bioassays as indicators of nutrient limitation of phytoplankton growth in Gwangyang Bay, Korea. Estuar Coast Shelf Sci 163:265–278

    Article  CAS  Google Scholar 

  • Bell TW, Cavanaugh KC, Reed DC, Siegel DA (2015) Geographical variability in the controls of giant kelp biomass dynamics. J Biogeog 42:2010–2021

    Article  Google Scholar 

  • Borum J (1996) Shallow waters and land/sea boundaries. In: Barker Jorgensen B, Richardson K (eds) Eutrophication in coastal marine systems. American Geophysical Union, Washington DC, pp 179–203

    Chapter  Google Scholar 

  • Bracken MES (2004) Invertebrate-mediated nutrient loading increases growth of an intertidal macroalga. J Phycol 40:1032–1041

    Article  Google Scholar 

  • Bracken MES, Nielsen KJ (2004) Diversity of intertidal macroalgae increases with nitrogen loading by invertebrates. Ecology 85:2828–2836

    Article  Google Scholar 

  • Bray RN, Purcell LJ, Miller AC (1986) Ammonium excretion in a temperate-reef community by a planktivorous fish, Chromis punctipinnis (Pomacentridae), and potential uptake by young giant kelp, Macrocystis pyrifera (Laminariales). Mar Biol 90:327–334

    Article  Google Scholar 

  • Brinkhuis BH, Renzhi L, Chaoyuan W, Xun-sen J (1989) Nitrite uptake transients and consequences for in vivoalgal nitrate reductase assays. J Phycol 25:539–545

    Article  CAS  Google Scholar 

  • Brown MT, Nyman MA, Keogh JA, Chin NKM (1997) Seasonal growth of the giant kelp Macrocystis pyrifera in New Zealand. Mar Biol 129:417–424

    Article  Google Scholar 

  • Brzezinski MA, Washburn L (2011) Phytoplankton primary productivity in the Santa Barbara Channel: effects of wind-driven upwelling and mesoscale eddies. J Geophys Res 116:C12013. https://doi.org/10.1029/2011JC007397

    Article  Google Scholar 

  • Brzezinski MA, Reed DC, Harrer S, Rassweiler A, Melack JM, Goodridge BM, Dugan JE (2013) Multiple sources and forms of nitrogen sustain year-round kelp growth on the inner continental shelf of the Santa Barbara Channel. Oceanogr 26:114–123

    Article  Google Scholar 

  • Buschmann AH, Väsquez JA, Osorio P, Reyes E, Filún L, Hernández-González MC, Vega A (2004) The effect of water movement, temperature and salinity on abundance and reproductive of patterns of Macrocystis spp. (Phaeophyta) at different latitudes in Chile. Mar Biol 145:849–862

    Article  Google Scholar 

  • Chapman ARO, Craigie JS (1977) Seasonal growth in Laminaria longicruris: Relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar Biol 40:197–205

    Article  CAS  Google Scholar 

  • Chavez FP, Messié M (2009) A comparison of eastern boundary upwelling ecosystems. Prog Oceanogr 83:80–96

    Article  Google Scholar 

  • Colombo-Pallotta MF, García-Mendoza E, Ladah LB (2006) Photosynthetic performance, light absorption, and pigment composition of Macrocystis pyrifera (Laminariales, phaeophyceae) blades from different depths. J Phycol 42:1225–1234

    Article  CAS  Google Scholar 

  • Corner EDS, Newell BS (1967) On the nutrition and metabolism of zooplankton IV. The forms of nitrogen excreted by Calanus. J Mar Biol Assoc UK 47:113–120

    Article  CAS  Google Scholar 

  • Cudaback CN, McPhee-Shaw E (2009) Diurnal-period internal waves near point conception, California. Estuar Coast Shelf Sci 83:349–359

    Article  Google Scholar 

  • D’Elia CF, DeBoer JA (1978) Nutritional studies of two red algae. II. kinetics of ammonium and nitrate uptake. J Phycol 14:266–272

    Article  Google Scholar 

  • Ding S, Chen M, Gong M, Fan X, Qin B, Xu H, Gao SS, Jin Z, Tsang DCW, Zhang C (2018) Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Sci Total Envir 625:872–884

    Article  CAS  Google Scholar 

  • Dy DT, Yap HT (2001) Surge ammonium uptake of the cultured seaweed, Kappaphycus alvarezii (Doty) Doty (Rhodophyta: Gigartinales). J Exp Mar Biol Ecol 265:89–100

    Article  CAS  Google Scholar 

  • Eppley RW, Render EH, Harrison WG, Cullen JJ (1979) Ammonium distribution in southern California coastal waters and its role in the growth of phytoplankton. Limnol Oceanogr 24:495–509

    Article  CAS  Google Scholar 

  • Fernandez PA, Roleda MY, Leal PP, Hurd HCD, CL, (2017) Tissue nitrogen status does not alter the physiological responses of Macrocystis pyrifera to ocean acidification. Mar Biol 164:177

    Article  CAS  Google Scholar 

  • Fram JP, Stewart HL, Brzezinski MA, Gaylord B, Reed DC, Williams SL, MacIntyre S (2008) Physical pathways and utilization of nitrate supply to the giant kelp, Macrocystis pyrifera. Limnol Oceanogr 53:1589–1603

    Article  CAS  Google Scholar 

  • Gerard VA (1982a) Growth and utilization of internal nitrogen reserves by the giant kelp Macrocystis pyrifera in a low-nitrogen environment. Mar Biol 66:27–35

    Article  CAS  Google Scholar 

  • Gerard VA (1982b) In situ rates of nitrate uptake by giant kelp, Macrocystis pyrifera (L.) C. Agardh: tissue differences, environmental effects, and predictions of nitrogen-limited growth. J Exp Mar Biol Ecol 62:211–224

    Article  CAS  Google Scholar 

  • González-Fragoso J, Ibarra-Obando SE, North WJ (1991) Frond elongation rates of shallow water Macrocystis pyrifera (L.) Ag. in northern Baja California Mexico. J Appl Phycol 3:311–318

    Article  Google Scholar 

  • Graham MH, Vasquez JA, Buschmann AH (2007) Global ecology of the giant kelp Macrocystis: from ecotypes to ecosystems. Oceanogr Mar Biol Ann Rev 45:39–88

    Google Scholar 

  • Haines KC, Wheeler PA (1978) Ammonium and nitrate uptake by the marine macrophytes Hypnea musciformis (rhodophyta) and Macrocystis pyrifera (phaeophyta). J Phycol 14:319–324

    Article  CAS  Google Scholar 

  • Han T, Qi Z, Huang H, Fu G (2017) Biochemical and uptake responses of the macroalga Gracilaria lemaneiformis under urea enrichment conditions. Aquatic Bot 136:197–204

    Article  CAS  Google Scholar 

  • Hepburn CD, Hurd CL, Frew RD (2006) Colony structure and seasonal differences in light and nitrogen modify the impact of sessile epifauna on the giant kelp Macrocystis pyrifera (L.) C Agardh. Hydrobiologia 560:373–384

    Article  Google Scholar 

  • Hepburn C, Holborow J, Wing S, Frew R, Hurd C (2007) Exposure to waves enhances the growth rate and nitrogen status of the giant kelp Macrocystis pyrifera. Mar Ecol Prog Ser 339:99–108

    Article  CAS  Google Scholar 

  • Herbert RA (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23:563–590

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Kraemer GP, Neefus CD, Chung IK, Yarish C (2007) Effects of temperature and ammonium on growth, pigment production and nitrogen uptake by four species of Porphyra (Bangiales, Rhodophyta) native to the New England coast. J Appl Phycol 19:431–440

    Article  CAS  Google Scholar 

  • Ladah LB, Filonov A, Lavín MF, Leichter JJ, Zertuche-González JA, Pérez-Mayorga DM (2012) Cross-shelf transport of sub-thermocline nitrate by the internal tide and rapid (3–6h) incorporation by an inshore macroalga. Continental Shelf Res 42:10–19

    Article  Google Scholar 

  • Ladah LB, Leichter JJ, Filonov A, Tereshchenko I (2017) Diurnal frequency internal waves in the southern part of the California Current ecosystem as a nutrient source. Cienc Mar 43:203–215

    Article  Google Scholar 

  • Legendre L, Gosselin M (1997) Estimation of N or C uptake rates by phytoplankton using 15N or 13C: revisiting the usual computation formulae. J Plankton Res 19:263–271

    Article  Google Scholar 

  • Lerczak JA, Hendershott MC, Winant CD (2001) Observations and modeling of coastal internal waves driven by a diurnal sea breeze. J Geophys Res: Oceans 106:19715–19729

    Article  Google Scholar 

  • Lucas AJ, Dupont CL, Tai V, Largier JL, Palenik B, Franks PJS (2011) The green ribbon: multiscale physical control of phytoplankton productivity and community structure over a narrow continental shelf. Limnol Oceanogr 56:611–626

    Article  CAS  Google Scholar 

  • McPhee-Shaw EE, Siegel DA, Washburn L, Brzezinski MA, Jones JL, Leydecker A, Melack J (2007) Mechanisms for nutrient delivery to the inner shelf: observations from the Santa Barbara Channel. Limnol Oceanogr 52:1748–1766

    Article  CAS  Google Scholar 

  • Messié M, Chavez FP (2015) Seasonal regulation of primary production in eastern boundary upwelling systems. Progr Oceanogr 134:1–18

    Article  Google Scholar 

  • Paerl HW, Dennis RL, Whitall DR (2002) Atmospheric deposition of nitrogen: implications for nutrient over-enrichment of coastal waters. Estuaries 25:677–693

    Article  CAS  Google Scholar 

  • Pedersen MF (1994) Transient ammonium uptake in the macroalga Ulva lactuca (Chlorophyta): nature, regulation, and the consequences for choice of measuring technique. J Phycol 30:980–986

    Article  Google Scholar 

  • Pedersen MF, Borum J (1997) Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Mar Ecol Prog Ser 161:155–163

    Article  Google Scholar 

  • Pérez-Mayorga DM, Ladah LB, Zertuche-González JA, Leichter JJ, Filonov AE, Lavín MF (2011) Nitrogen uptake and growth by the opportunistic macroalga Ulva lactuca (Linnaeus) during the internal tide. J Exp Mar Biol Ecol 406:108–115

    Article  CAS  Google Scholar 

  • Peters JR, Reed DC, Burkepile DE (2019) Climate and fishing drive regime shifts in consumer-mediated nutrient cycling in kelp forests. Glob Change Biol 25:3179–3192

    Article  Google Scholar 

  • Phillips JC, Hurd CL (2004) Kinetics of nitrate, ammonium, and urea uptake by four intertidal seaweeds from New Zealand. J Phycol 40:534–545

    Article  CAS  Google Scholar 

  • Pineda J (1995) An internal tidal bore regime at nearshore stations along western U.S.A.: predictable upwelling within the lunar cycle. Continental Shelf Res 15:1023–1041

    Article  Google Scholar 

  • Raikar V, Wafar M (2006) Surge ammonium uptake in macroalgae from a coral atoll. J Exp Mar Biol Ecol 339:236–240

    Article  CAS  Google Scholar 

  • Rassweiler A, Reed DC, Harrer SL, Nelson JC (2018) Improved estimates of net primary production, growth, and standing crop of Macrocystis pyrifera in Southern California. Ecology 99:2132

    Article  PubMed  Google Scholar 

  • Reed DC, Ebeling AW, Anderson TW, Anghera M (1996) Differential reproductive responses to fluctuating resources in two seaweeds with different reproductive strategies. Ecology 77:300–316

    Article  Google Scholar 

  • Reed DC, Rassweiler A, Arkema KK (2008) Biomass rather than growth rate determines variation in net primary production by giant kelp. Ecology 89:2493–2505

    Article  PubMed  Google Scholar 

  • Regnault M (1987) Nitrogen excretion in marine and fresh-water Crustacea. Biol Rev 62:1–24

    Article  Google Scholar 

  • Remsen CC (1971) The distribution of urea in coastal and oceanic waters. Limnol Oceanog 16:732–740

    Article  CAS  Google Scholar 

  • Rosenberg G, Probyn TA, Mann KH (1984) Nutrient uptake and growth kinetics in brown seaweeds: response to continuous and single additions of ammonium. J Exp Mar Biol Ecol 80:125–146

    Article  CAS  Google Scholar 

  • Ryther JH, Dunstan WM (1971) Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science 171:1008–1013

    Article  CAS  PubMed  Google Scholar 

  • Schiel DR, Foster MS (2015) The biology and ecology of giant kelp forests. University of California Press, Oakland

    Book  Google Scholar 

  • Sharples J, Moore CM, Abraham ER (2001) Internal tide dissipation, mixing, and vertical nitrate flux at the shelf edge of NE New Zealand. J Geophys Res 106:14069–14081

    Article  CAS  Google Scholar 

  • Smith JM, Brzezinski MA, Melack JM, Miller RJ, Reed DC (2018) Urea as a source of nitrogen to giant kelp (Macrocystis pyrifera). Limnol Oceanogr Lett 3:365–373

    Article  CAS  Google Scholar 

  • Smith JM, Blasco G, Brzezinski MA, Melack JM, Reed DC, Miller RJ (2021) Factors influencing urea use by giant kelp (Macrocystis pyrifera, Phaeophyceae). Limnol Oceanogr 66:1190–1200

    Article  CAS  Google Scholar 

  • Stewart H, Fram J, Reed D, Williams S, Brzezinski M, MacIntyre S, Gaylord B (2009) Differences in growth, morphology and tissue carbon and nitrogen of Macrocystis pyrifera within and at the outer edge of a giant kelp forest in California, USA. Mar Ecol Prog Ser 375:101–112

    Article  Google Scholar 

  • Taylor DI, Nixon SW, Granger SL, Buckley BA (1999) Responses of coastal lagoon plant communities to levels of nutrient enrichment: a mesocosm study. Estuaries 22:1041–1056

    Article  Google Scholar 

  • Thomas TE, Harrison PJ (1987) Rapid ammonium uptake and nitrogen interactions in five intertidal seaweeds grown under field conditions. J Exp Mar Biol Ecol 107:1–8

    Article  Google Scholar 

  • Topinka JA, Robbins JV (1976) Effects of nitrate and ammonium enrichment on growth and nitrogen physiology in Fucus spiralis. Limnol Oceanogr 21:659–664

    Article  CAS  Google Scholar 

  • Van Tussenbroek BI (1989) Seasonal growth and composition of fronds of Macrocystis pyrifera in the Falkland Islands. Mar Biol 100:419–430

    Article  Google Scholar 

  • Villamaña M, Mouriño-Carballido B, Marañón E, Cermeño P, Chouciño P, da Silva JCB, Díaz PA, Fernández-Castro B, Gilcoto M, Graña R, Latasa M, Magalhaes JM, Luis Otero-Ferrer J, Reguera B, Scharek R (2017) Role of internal waves on mixing, nutrient supply and phytoplankton community structure during spring and neap tides in the upwelling ecosystem of Ría de Vigo (NW Iberian Peninsula). Limnol Oceanogr 62:1014–1030

    Article  Google Scholar 

  • Washburn L, McPhee-Shaw E (2013) Coastal transport processes affecting inner-shelf ecosystems in the California Current System. Oceanography 26:34–43

    Article  Google Scholar 

  • Wheeler WN, Srivastava LM (1984) Seasonal nitrate physiology of Macrocystis integrifolia Bory. J Exp Mar Biol Ecol 76:35–50

    Article  CAS  Google Scholar 

  • Wheeler PA, North WJ, Keck WM (1981) Nitrogen supply, tissue composition and frond growth rates for Macrocystis pyrifera off the coast of Southern California. Mar Biol 64:59–69

    Article  CAS  Google Scholar 

  • Zimmerman RC, Kremer JN (1984) Episodic nutrient supply to a kelp forest ecosystem in Southern California. J Mar Res 42:591–604

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jason Smith for stimulating discussions on nitrogen physiology in marine algae and guidance during our preliminary investigations of surge uptake, and C. Nelson and S. Sampson for assistance with field and laboratory sampling and logistics. We are grateful to G. Paradis for providing access and technical training in EA-IRMS. Funding was provided by the U. S. National Science Foundation in support of the Santa Barbara Coastal Long Term Ecological Research program and the U. S, Department of Energy Advanced Research Projects Agency–Energy (ARPA-E) MARINER program.

Funding

Funding was provided by the U. S. National Science Foundation in support of the Santa Barbara Coastal Long Term Ecological Research program and the U. S, Department of Energy Advanced Research Projects Agency–Energy (ARPA-E) MARINER program.

Author information

Authors and Affiliations

Authors

Contributions

THC performed the experiments and chemical analyses. THC and DCR analyzed the data. All authors contributed to the study design and manuscript preparation.

Corresponding author

Correspondence to Daniel C. Reed.

Ethics declarations

Conflict of interest

Giant kelp blades used in experiments were collected under the California Department of Fish and Wildlife Scientific Collecting Permit no. 11964 to SBC LTER.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Responsible Editor: M.Y. Roleda.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cedeno, T.H., Brzezinski, M.A., Miller, R.J. et al. An evaluation of surge uptake capability in the giant kelp (Macrocystis pyrifera) in response to pulses of three different forms of nitrogen. Mar Biol 168, 166 (2021). https://doi.org/10.1007/s00227-021-03975-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-021-03975-z

keywords

Navigation