Skip to main content

Advertisement

Log in

Negative assortative mating and maintenance of shell colour polymorphism in Littorina (Neritrema) species

  • Short notes
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Colour polymorphism is a widespread phenomenon in natural populations of several species. In particular, it is especially common on marine gastropod species from the genus Littorina. Recently, it has been argued that intrapopulation shell colour polymorphism in Littorina fabalis could be caused by negative frequency-dependent sexual selection via a mechanism of mate choice (indirectly estimated through negative assortative mating). Here we try to determine the existence of negative assortative mating in three species of the subgenus Neritrema (L. fabalis, L. obtusata, L. saxatilis) that share a similar shell colour polymorphism, to ascertain if this mechanism could represent an ancestral character in this subgenus that could be contributing to the maintenance of the colour polymorphism observed in each species. We collected or reanalysed from previous studies a sample of mating pairs of these three species from seven locations from NW Spain and NE Russia and estimated assortative mating using the IPSI index. Our results suggest that all species and populations show a systematic tendency towards negative assortative mating when shell colour is grouped in the broad categories ‘light’ and ‘dark’. Moreover, a more detailed analysis of each colour separately suggests that shell colour may not be the main target of assortative mating, but perhaps a physically-linked trait to the real target of selection. This hypothesis opens interesting new lines of research in Littorina snails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

Data available at: https://doi.org/10.6084/m9.figshare.13295873.v1.

Code availability

New software has not been used.

References

  • Ayala FJ, Campbell CA (1974) Frequency-dependent selection. Annu Rev Ecol Systemat 5:115–138

    Article  Google Scholar 

  • Calderon I, Ventura CRR, Turon X, Lessios HA (2010) Genetic divergence and assortative mating between colour morphs of the sea urchin Paracentrotus gaimardi. Mol Ecol 19:484–493

    Article  CAS  PubMed  Google Scholar 

  • Carvajal-Rodríguez A, Rolán-Alvarez E (2006) JMATING: a software for the analysis of sexual selection and sexual isolation effects from mating frequency data. BMC Evol Biol 6:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clarke BC (1979) The evolution of genetic diversity. Proc R Soc B 205:453–474

    CAS  Google Scholar 

  • Conde-Padín P, Cruz R, Hollander J, Rolán-Alvarez E (2008) Revealing the mechanisms of sexual isolation in a case of sympatric and parallel ecological divergence. Biol J of Linn Soc 94:513–526

    Article  Google Scholar 

  • Cordero A (1989) Reproductive behaviour of Ischnura graellsii (Rambur) (Zygoptera: Coenagrionidae). Odonatologica 18:237–244

    Google Scholar 

  • Costa D, Sotelo G, Kaliontzopoulou A, Carvalho J, Butlin R, Hollander J, Faria R (2020) Hybridization patterns between two marine snails, Littorina fabalis and L. obtusata. Ecol Evol 10:1158–1179

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G, Hauber ME, Hill GE, Jablonski NG, Jiggins CD, Kelber A, Mappes J, Marshall J, Merrill R, Osorio D, Prum R, Roberts NW, Roulin A, Rowland HM, Sherratt TN, Skelhorn J, Speed MP, Stevens M, Stoddard MC, Stuart-Fox D, Talas L, Tibbetts E, Caro T (2017) The biology of color. Science 357:eaan0221

    Article  PubMed  CAS  Google Scholar 

  • De Lanuza GPI, Font E, Carazo P (2013) Color-assortative mating in a color-polymorphic lacertid lizard. Behav Ecol 24:273–279

    Article  Google Scholar 

  • Estévez D, Ng TPT, Fernández-Meirama M, Voois JM, Carvajal-Rodríguez A, Williams GA, Galindo J, Rolán-Alvarez E (2018) A novel method to estimate the spatial scale of mate choice in the wild. Behav Ecol Sociobiol 72:195

    Article  Google Scholar 

  • Estévez D, Kozminsky E, Caravajal-Rodríguez A, Caballero A, Faria R, Galindo J, Rolán-Alvarez E (2020) Mate choice via frequency-dependent sexual selection contributes to the maintenance of shell colour polymorphism in a marine snail. Front Mar Sci. https://doi.org/10.3389/fmars.2020.614237

    Article  Google Scholar 

  • Faria R, Chaube P, Morales H, Larsson T, Lemmon AR, Lemmo EM, Rafajlovic M, Panova M, Ravinet M, Johannesson K, Westram AM, Butlin RK (2019) Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes. Mol Ecol 28:1375–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fargevieille A, Gregoire A, Charmantier A, Granado MD (2017) Assortative mating by colored ornaments in blue tits: space and time matter. Ecol Evol 7:2069–2078

    Article  PubMed  PubMed Central  Google Scholar 

  • Field DL, Barrett SCH (2012) Disassortative mating and the maintenance of sexual polymorphism in painted maple. Mol Ecol 21:3640–3643

    Article  PubMed  Google Scholar 

  • Fitzpatrick MJ, Feder E, Rowe L, Sokolowski MB (2007) Maintaining a behaviour polymorphism by frequency-dependent selection on a single gene. Nature 447:210–212

    Article  CAS  PubMed  Google Scholar 

  • Gade MR, Hill M, Saporito RA (2016) Color assortative mating in a mainland population of the poison frog Oophaga pumilio. Ethology 122:851–858

    Article  Google Scholar 

  • Galindo J, Grahame JW (2014) Ecological speciation and the intertidal snail Littorina saxatilis. Adv Ecol 2014:239251

    Google Scholar 

  • Galindo J, Carvalho J, Sotelo G, Duvetorp M, Costa D, Kemppainen P, Panova M, Kaliontzopoulou A, Johannesson K, Faria R (2020) Genetic and morphological divergence between Littorina fabalis ecotypes in Northern Europe. J Evol Biol 34:1–17

    Google Scholar 

  • Gilbert DG, Starmer WT (1985) Statistics of sexual isolation. Evolution 39:1380–1383

    Article  CAS  PubMed  Google Scholar 

  • Hartl DL, Clark AG (2006) Principles of population genetics, 4th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Hedrick PW, Smith DW, Stahler DR (2016) Negative-assortative mating for color in wolves. Evolution 70:757–766

    Article  PubMed  Google Scholar 

  • Hedrick PW, Tuttle EM, Gonser RA (2018) Negative-assortative mating in the white-throated sparrow. J Heredity 109:223–231

    Article  Google Scholar 

  • Holman S, van Zweden LJ, Linksvayer TA, d’Ettorre P (2013) Crozier’s paradox revisited: maintenance of genetic recognition systems by disassortative mating. BMC Evol Biol 13:211

    Article  PubMed  PubMed Central  Google Scholar 

  • Hugall AF, Stuart-Fox D (2012) Accelerated speciation in colour-polymorphic birds. Nature 485:631–634

    Article  CAS  PubMed  Google Scholar 

  • Jamie GA, Meier JI (2020) The persistence of polymorphisms across species radiations. Trends Ecol Evol 35:795–808

    Article  PubMed  Google Scholar 

  • Janicke T, Marie-Orleach L, Aubier TG, Perrier C, Morrow EH (2019) Assortative mating in animals and its role in speciation. Am Nat 194:865–875

    Article  PubMed  Google Scholar 

  • Jiang Y, Bolnick DI, Kirkpatrick M (2013) Assortative mating in animals. Am Nat 181:125–138

    Article  Google Scholar 

  • Johannesson K (2003) Evolution in Littorina: ecology matters. J Sea Res 49:107–117

    Article  Google Scholar 

  • Johannesson K, Ekendahl A (2002) Selective predation favouring cryptic individuals of marine snails (Littorina). Biol J Linn Soc 76:137–144

    Article  Google Scholar 

  • Johannesson K, Butlin RK (2017) What explains rare ans conspicuous colour in a snail? A test of time-series data against models of drift, migration or selection. Heredity 118:21–30

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kopp M, Servedio MR, Mendelson TC, Safran RJ, Rodríguez RL, Hauber ME, Scordato EC, Symes LB, Balakrishnan CN, Zonana DM et al (2018) Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research. Am Nat 191:1–20

    Article  PubMed  Google Scholar 

  • Lewontin RC (1974) The genetic basis of evolutionary change. Columbia University Press, New York

    Google Scholar 

  • McKinnon JS, Pierotti MER (2010) Colour polymorphism and correlated characters: genetic mechanisms and evolution. Mol Ecol 19:5101–5125

    Article  PubMed  Google Scholar 

  • Morales HE, Faria R, Johannesson K, Larsson T, Panova M, Westram AM, Butlin RK (2019) Genomic architecture of parallel ecological divergence: beyond a single environmental contrast. Sci Adv 5:eaav9963

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218

    Article  CAS  PubMed  Google Scholar 

  • Nilsson DE (2013) Eye evolution and its functional basis. Vis Neurosci 30:5–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng TPT, Williams GA, Davies M, Stafford R, Rolán-Alvarez E (2016) Sampling scale can cause bias in positive assortative mating estimates: evidence from two intertidal snails. Biol J of Linn Soc 119:414–419

    Article  Google Scholar 

  • Ng TPT, Rolán-Alvarez E, Dahlén SS, Davies MS, Estévez D, Stafford R, Williams GA (2019) The causal relationship between sexual selection and sexual sex dimorphism in marine gastropods. Anim Behav 148:53–62

    Article  Google Scholar 

  • Olsson M, Stuart-Fox D, Ballen C (2013) Genetics and evolution of colour patterns in reptiles. Semin Cell Dev Biol 24:529–541

    Article  PubMed  Google Scholar 

  • Otero-Schmitt J, Cruz R, García C, Rolán-Alvarez E (1997) Feeding strategy and habitat choice in Littorina saxatilis (Gastropoda: Prosobranchia) and their role in the origin and maintenance of a sympatric polymorphism. Ophelia 46:205–216

    Article  Google Scholar 

  • Panova M, Blakeslee AMH, Miller AW, Mäkinen T, Ruiz GM, Johannesson K, André C (2011) Glacial history of the North Atlantic marine snail, Littorina saxatilis, inferred from distribution of mitochondrial DNA lineages. PLoS ONE 5:e17511

    Article  Google Scholar 

  • Pérez-Figueroa A, Caballero A, Rolán-Alvarez E (2005) Comparing the estimation properties of different statistics for measuring sexual isolation from mating frequencies. Biol J Linn Soc 85:307–318

    Article  Google Scholar 

  • Pérez-Figueroa A, Uña-Alvarez J, Conde-Padín P, Rolán-Alvarez E (2008) Comparison of two methods for analysing the biological factors contributing to assortative mating or sexual isolation. Evol Ecol Res 10:1201–1216

    Google Scholar 

  • Phifer-Rixey M, Heckman M, Trussell GC, Schmidt PS (2008) Maintenance of clinal variation for shell colour phenotype in the flat periwinkle Littorina obtusata. J Evol Biol 21:966–978

  • Pryke SR (2010) Sex chromosome linkage of mate preference and color signal maintains assortative mating between interbreeding finch morphs. Evolution 64:1301–1310

    PubMed  Google Scholar 

  • Pusey A, Wolf M (1996) Inbreeding avoidance in animals. Trends Ecol Evol 11:201–206

    Article  CAS  PubMed  Google Scholar 

  • Reid DG (1996) Systematics and evolution of Littorina. The Ray Society, Andover

    Google Scholar 

  • Reid DG, Dyal P, Williams ST (2012) A global molecular phylogeny of 147 periwinkle species (Gastropoda, Littorininae). Zool Scr 41:125–136

    Article  Google Scholar 

  • Rolán-Alvarez E, Ekendahl A (1996) Sexual selection and non-random mating for shell colour in a natural population of the snail Littorina mariae (Gastropoda: Prosobranchia). Genetica 97:39–46

    Article  Google Scholar 

  • Rolán-Alvarez E, Caballero A (2000) Estimating sexual selection and sexual isolation effects from mating frequencies. Evolution 54:30–36

    PubMed  Google Scholar 

  • Rolán-Alvarez E, Erlandsson J, Johannesson K, Cruz R (1999) Mechanisms of incomplete prezygotic reproductive isolation in an intertidal snail: testing behavioural models in wild populations. J Evol Biol 12:879–890

    Article  Google Scholar 

  • Rolán-Alvarez E, Saura M, Diz AP, Rivas MJ, Alvarez M, Cortés B, de Coo A, Estévez D, Iglesias L (2012) Can sexual selection and disassortative mating contribute to the maintenance of a shell color polymorphism in an intertidal marine snail? Curr Zool 58:463–474

    Article  Google Scholar 

  • Rolán-Alvarez E, Austin CJ, Boulding EG (2015a) The contribution of the genus Littorina to the field of evolutionary ecology. In: Hughes RN, Hughes DJ, Smith IP, Dale AC (eds) Oceanography and marine biology: an annual review, vol 53. CRC Press, Boca Ratón, pp 157–214

    Google Scholar 

  • Rolán-Alvarez E, Carvajal-Rodríguez A, de Coo A, Cortés B, Estévez D, Ferreira M, González R, Briscoe A (2015b) The scale-of-choice effect and how estimates of assortative mating in the wild can be biased due to heterogeneous samples. Evolution 69:1845–1857

    Article  PubMed  Google Scholar 

  • Saltin SH, Schade H, Johannesson K (2013) Preferences of males for large females causes a partial mating barrier between a large and a small ecotype of Littorina fabalis (W. Turton, 1825). J Molluscan Stud 79:128–132

    Article  Google Scholar 

  • Seyer JO (1992) Resolution and sensitivity in the eye of the winkle Littorina littorea. J Exp Biol 170:57–69

    Article  Google Scholar 

  • Sokolova IM, Berger VJ (2000) Physiological variation related to shell colour polymorphism in White sea Littorina saxatilis. J Exp Mar Biol Ecol 245:1–23

    Article  Google Scholar 

  • Sotelo G, Duvetorp M, Costa D, Panova M, Johannesson K, Faria R (2020) Phylogeographic history of flat periwinkles, Littorina fabalis and L. obtusata. BMC Evol Biol 20:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svensson EI (2017) Back to basics: using colour polymorphisms to study evolutionary processes. Mol Ecol 26:2204–2211

    Article  PubMed  Google Scholar 

  • Svensson EI, Connallon T (2019) How frequency-dependent selection affects population fitness, maladaptation and evolutionary rescue. Evol Appl 12:1243–1258

    Article  PubMed  Google Scholar 

  • Taborsky B, Guyer L, Taborsky M (2009) Size-assortative mating in the absence of mate choice. Anim Behav 77:439–448

    Article  Google Scholar 

  • Takashi T, Hori M (2008) Evidence of disassortative mating in a Tanganyikan cichlid fish and its role in the maintenance of intrapopulation dimorphism. Biol Lett 4:497–499

    Article  Google Scholar 

  • de Waal FBM (1999) Anthropomorphism and anthropodenial: consistency in our thinking about humans and other animals. Philos Top 27:255–280

    Article  Google Scholar 

  • Wellenreuther M, Bernatchez L (2018) Eco-evolutionary genomics of chromosomal inversions. Trends Ecol Evol 33:427–440

    Article  PubMed  Google Scholar 

  • Westram AM, Rafajlović M, Chaube P, Faria R, Larsson T, Panova M, Ravinet M, Blomberg A, Mehlig B, Johannesson K, Butlin R (2018) Clines on the seashore: the genomic architecture underlying rapid divergence in the face of gene flow. Evol Lett 2:297–309

    Article  PubMed  PubMed Central  Google Scholar 

  • White TE, Kemp DJ (2016) Colour polymorphism. Curr Biol 26:R517–R518

    Article  PubMed  Google Scholar 

  • Williams ST (2017) Molluscan shell colour. Biol Rev 92:1039–1058

  • Wright SG (1977) Evolution and the genetics of populations: experimental results and evolutionary deductions, vol 3. University of Chicago Press, Chicago

    Google Scholar 

  • Wyeth RC (2019) Olfactory navigation in aquatic gastropods. J Exp Biol 222:185843

    Article  Google Scholar 

  • Yang YS, Richards-Zawacki CL, Devar A, Dugas MB (2016) Poison frog color morphs express assortative mate preferences in allopatry but not sympatry. Evolution 7:2778–2788

    Article  Google Scholar 

Download references

Acknowledgements

We thank Raquel Sampedro for technical contribution and Mary Ryadigos for administrative contribution. This work has received financial support from the Ministerio de Economía, Industria y Competitividad (CGL2016-75482-P) and Xunta de Galicia (Centro singular de investigación de Galicia accreditation 2019-2022) and the European Union (European Regional Development Fund-ERDF). J Galindo was funded by a JIN project (Ministerio de Ciencia, Innovación y Universidades, code RTI2018-101274-J-I00). I Novo was founded by a FPU grant (Ministerio de Ciencia, Innovación y Universidades, code FPU18/04642). S Blanco was founded by a Xunta de Galicia grant (ED481A-2020/142). J Gefaell was founded by a University of Vigo Predoctoral Research grant (PREUVIGO/00VI 131H 641.02).

Funding

This study has been funded by CGL2016-75482-P, Program and ERDF Operational European Union Program Galicia 2014-2020, RTI2018-101274-J-I00.

Author information

Authors and Affiliations

Authors

Contributions

ERA, JG and JG contributed to experimental design and idea and wrote a first draft. All authors contributed to sampling and data preparation and revision of manuscript versions. JG, JG, CM, VN, ERA have contributed to analysis and data discussion.

Corresponding author

Correspondence to E. Rolán-Alvarez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for sampling, care and experimental use of organisms for the study have been followed.

Consent to participate

All included authors have given their consent to participate.

Additional information

Responsible Editor: O. Puebla.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by undisclosed experts.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 700 KB)

Supplementary file2 (PDF 715 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gefaell, J., Galindo, J., Malvido, C. et al. Negative assortative mating and maintenance of shell colour polymorphism in Littorina (Neritrema) species. Mar Biol 168, 151 (2021). https://doi.org/10.1007/s00227-021-03959-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-021-03959-z

Navigation