Skip to main content

Did the animal move? A cross-wavelet approach to geolocation data reveals year-round whereabouts of a resident seabird

Abstract

Considerable progress in our understanding of long-distance migration has been achieved thanks to the use of small geolocator devices (GLS). The tracking of resident or short-distance migrant animals remains however challenging because geolocation errors are substantial and difficult to estimate. This study aims to examine the sex-specific marine space uses of a resident tropical seabird, the masked booby (Sula dactylatra), during its full annual life cycle at the Fernando de Noronha archipelago (Brazil). Masked boobies (n = 31) tagged with GLS recording light intensity, seawater immersion, and water temperature showed a resident behaviour over their entire annual cycle. A wavelet analysis of GLS data revealed oscillatory patterns of inferred longitude correlated with changes in immersion frequency. This synchronicity demonstrated that birds traveled away and back from the colony on consecutive trips of short length (\(\sim\) 2–4 days) and short range (\(\sim\) 100–300 km) eastward of the colony. Duration and range of trips depended on the sex of the individual and on the time of the year. Trip duration increased gradually from the end of the breeding period to the post-breeding period, probably due to the release of the central-place breeding constraints. During the pre-breeding period, females had farther ranges eastward and spent more time in water than males. Despite inherent limits of light-based geolocation, this study demonstrates the relevance of synchronicity analysis of GLS data for investigating year-round movements of resident or short-distance migrants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data/Code availability

Data and code are available on our github page: https://github.com/AmedeeRoy/WaveLightGLS.

Notes

  1. 1.

    https://resources.marine.copernicus.eu/(productidentifierSST_GLO_SST_L4_REP_OBSERVATIONS_010_001).

References

  1. Antas PTZ (1991) Status and conservation of seabirds breeding in Brazilian waters. ICBP Tech Publ 11:141–158

    Google Scholar 

  2. Ashmole N (1971) Seabird ecology and the marine environment. Avian Biol 1:223–286

    Google Scholar 

  3. Bächler E, Hahn S, Schaub M, Arlettaz R, Jenni L, Fox JW, Afanasyev V, Liechti F (2010) Year-round tracking of small trans-Saharan migrants using light-level geolocators. PLoS One 5:e9566. https://doi.org/10.1371/journal.pone.0009566

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Ballance LT, Pitman RL, Fiedler PC (2006) Oceanographic influences on seabirds and cetaceans of the eastern tropical Pacific: a review. Prog Oceanogr 69:360–390. https://doi.org/10.1016/j.pocean.2006.03.013

    Article  Google Scholar 

  5. Bertrand A, Gerlotto F, Bertrand S, Gutiérrez M, Alza L, Chipollini A, Díaz E, Espinoza P, Ledesma J, Quesquén R, Peraltilla S, Chavez F (2008) Schooling behaviour and environmental forcing in relation to anchoveta distribution: an analysis across multiple spatial scales. Prog Oceanogr 79:264–277. https://doi.org/10.1016/j.pocean.2008.10.018

    Article  Google Scholar 

  6. Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225. https://doi.org/10.1017/S1464793104006645

    Article  PubMed  Google Scholar 

  7. Cazelles B, Stone L (2003) Detection of imperfect population synchrony in an uncertain world. J Anim Ecol 72:231–242. https://doi.org/10.1046/j.1365-2656.2003.00763.x

    Article  Google Scholar 

  8. Cazelles B, Chavez M, Berteaux D, Ménard F, Vik JO, Jenouvrier S, Stenseth NC (2008) Wavelet analysis of ecological time series. Oecologia 156:287–304. https://doi.org/10.1007/s00442-008-0993-2

    Article  PubMed  Google Scholar 

  9. Cazelles B, Cazelles K, Chavez M (2014) Wavelet analysis in ecology and epidemiology: impact of statistical tests. J R Soc Interface 11:20130585. https://doi.org/10.1098/rsif.2013.0585

    Article  PubMed  PubMed Central  Google Scholar 

  10. Clayson CA, Weitlich D (2007) Variability of tropical diurnal sea surface temperature. J Clim 20:334–352. https://doi.org/10.1175/JCLI3999.1

    Article  Google Scholar 

  11. Campelo RPS, Bonou FK, de Melo Júnior M, Diaz XFG, Bezerra LEA, Neumann-Leitão S (2019) Zooplankton biomass around marine protected islands in the tropical Atlantic Ocean. J Sea Res 154:101810. https://doi.org/10.1016/j.seares.2019.101810

    Article  Google Scholar 

  12. Del Hoyo J, Elliott A, Sargatal J (1992) Handbook of the birds of the world, vol 1. Lynx Editions, Barcelona

    Google Scholar 

  13. Diamond AW (1978) Feeding strategies and population size in tropical seabirds. Am Nat 112:215–223

    Article  Google Scholar 

  14. Egevang C, Stenhouse IJ, Phillips RA, Petersen A, Fox JW, Silk JRD (2010) Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proc Natl Acad Sci 107:2078–2081. https://doi.org/10.1073/pnas.0909493107

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ekstrom P (2007) Error measures for template-fit geolocation based on light. Deep Sea Res Part II Top Stud Oceanogr 54:392–403. https://doi.org/10.1016/j.dsr2.2006.12.002

    Article  Google Scholar 

  16. Fablet R, Chaigneau A, Bertrand S (2013) Multiscale analysis of geometric planar deformations: application to wild animal electronic tracking and satellite ocean observation data. IEEE Trans Geosci Remote Sens 52:3627–3636. https://doi.org/10.1109/TGRS.2013.2274157

    Article  Google Scholar 

  17. Friesen VL, Burg TM, McCOY KD (2007) Mechanisms of population differentiation in seabirds. Mol Ecol 16:1765–1785. https://doi.org/10.1111/j.1365-294X.2006.03197.x

    CAS  Article  PubMed  Google Scholar 

  18. Garthe S, Ludynia K, Hüppop O, Kubetzki U, Meraz JF, Furness RW (2012) Energy budgets reveal equal benefits of varied migration strategies in northern gannets. Mar Biol 159:1907–1915. https://doi.org/10.1007/s00227-012-1978-6

    Article  Google Scholar 

  19. González-Solís J, Croxall JP, Oro D, Ruiz X (2007) Trans-equatorial migration and mixing in the wintering areas of a pelagic seabird. Front Ecol Environ 5:297–301. https://doi.org/10.1890/1540-9295(2007)5[297:TMAMIT]2.0.CO;2

    Article  Google Scholar 

  20. Guilford T, Meade J, Willis J, Phillips R, Boyle D, Roberts S, Collett M, Freeman R, Perrins C (2009) Migration and stopover in a small pelagic seabird, the Manx shearwater Puffinus puffinus: insights from machine learning. Proc R Soc Lond B Biol Sci 276:1215–1223. https://doi.org/10.1098/rspb.2008.1577

    CAS  Article  Google Scholar 

  21. Hill RD (1994) Theory of geolocation by light levels. In: Le Boeuf BJ, Laws RM (eds) Elephant seals: population ecology, and physiology. University of California Press, Berkeley, pp 227–236

    Chapter  Google Scholar 

  22. Jaquemet S, Le Corre M, Weimerskirch H (2004) Seabird community structure in a coastal tropical environment: importance of natural factors and fish aggregating devices (FADs). Mar Ecol Prog Ser 268:281–292

    Article  Google Scholar 

  23. Jenouvrier S, Weimerskirch H, Barbraud C, Park YH, Cazelles B (2005) Evidence of a shift in the cyclicity of Antarctic seabird dynamics linked to climate. Proc R Soc Lond B Biol Sci 272:887–895. https://doi.org/10.1098/rspb.2004.2978

    Article  Google Scholar 

  24. Kepler CB (1969) The breeding biology of the blue-faced booby (Sula dactylatra personata) on Green Island, Kure atoll. Publications of the Nuttall Ornithologists Club, p 8

    Book  Google Scholar 

  25. Leal GR, Furness RW, McGill RAR, Santos RA, Bugoni L (2017) Feeding and foraging ecology of Trindade petrels Pterodroma arminjoniana during the breeding period in the South Atlantic Ocean. Mar Biol 164:211. https://doi.org/10.1007/s00227-017-3240-8

    Article  Google Scholar 

  26. Lerma M, Serratosa J, Luna-Jorquera G, Garthe S (2020) Foraging ecology of masked boobies (Sula dactylatra) in the world’s largest “oceanic desert”. Mar Biol 167:87. https://doi.org/10.1007/s00227-020-03700-2

    Article  Google Scholar 

  27. Lewis S, Schreiber EA, Daunt F, Schenk GA, Orr K, Adams A, Wanless S, Hamer KC (2005) Sex-specific foraging behaviour in tropical boobies: does size matter? Ibis 147:408–414. https://doi.org/10.1111/j.1474-919x.2005.00428.x

    Article  Google Scholar 

  28. Lisovski S, Hewson CM, Klaassen RHG, Korner-Nievergelt F, Kristensen MW, Hahn S (2012) Geolocation by light: accuracy and precision affected by environmental factors. Methods Ecol Evol 3:603–612. https://doi.org/10.1111/j.2041-210X.2012.00185.x

    Article  Google Scholar 

  29. Lisovski S, Wotherspoon S, Sumner M (2016) TwGeos: basic data processing for light-level geolocation archival tags. R package version 0.1.2. https://github.com/slisovski/TwGeos

  30. Lisovski S, Schmaljohann H, Bridge ES, Bauer S, Farnsworth A, Gauthreaux SA, Hahn S, Hallworth MT, Hewson CM, Kelly JF, Liechti F, Marra PP, Rakhimberdiev E, Ross JD, Seavy NE, Sumner MD, Taylor CM, Winkler DW, Wotherspoon SJ, Wunder MB (2018) Inherent limits of light-level geolocation may lead to over-interpretation. Curr Biol 28:R99–R100. https://doi.org/10.1016/j.cub.2017.11.072

    CAS  Article  PubMed  Google Scholar 

  31. Lisovski S, Bauer S, Briedis M, Davidson SC, Dhanjal-Adams KL, Hallworth MT, Karagicheva J, Meier CM, Merkel B, Ouwehand J, Pedersen L, Rakhimberdiev E, Roberto-Charron A, Seavy NE, Sumner MD, Taylor CM, Wotherspoon SJ, Bridge ES (2019) Light-level geolocator analyses: a user’s guide. J Anim Ecol 89:221–236. https://doi.org/10.1111/1365-2656.13036

    Article  PubMed  Google Scholar 

  32. Longhurst AR, Pauly D (1987) Ecology of tropical oceans. Academic Press, San Diego (574.52636 L6)

    Google Scholar 

  33. Mancini PL, Bond AL, Hobson KA, Duarte LS, Bugoni L (2013) Foraging segregation in tropical and polar seabirds: testing the intersexual competition hypothesis. J Exp Mar Biol Ecol 449:186–193. https://doi.org/10.1016/j.jembe.2013.09.011

    Article  Google Scholar 

  34. Mancini PL, Hobson KA, Bugoni L (2014) Role of body size in shaping the trophic structure of tropical seabird communities. Mar Ecol Prog Ser 497:243–257. https://doi.org/10.3354/meps10589

    Article  Google Scholar 

  35. Mancini PL, Serafini PP, Bugoni L (2016) Breeding seabird populations in Brazilian oceanic islands: historical review, update and a call for census standardization. Rev Brasil Ornitol 24:94–115. https://doi.org/10.1007/BF03544338

    Article  Google Scholar 

  36. Merkel B, Phillips RA, Descamps S, Yoccoz NG, Moe B, Strøm H (2016) A probabilistic algorithm to process geolocation data. Mov Ecol 4:26. https://doi.org/10.1186/s40462-016-0091-8

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci USA 105:19052–19059. https://doi.org/10.1073/pnas.0800375105

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nelson B (2005) Pelicans, cormorants, and their relatives: the Pelecaniformes. Oxford University Press, Oxford

    Google Scholar 

  39. Newton I (2008) The migration ecology of birds. Academic Press, London

    Google Scholar 

  40. Nunes GT, Bertrand S, Bugoni L (2018) Seabirds fighting for land: phenotypic consequences of breeding area constraints at a small remote archipelago. Sci Rep 8:665. https://doi.org/10.1038/s41598-017-18808-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Olson PA, Ballance LT, Hough KR, Dutton PH, Reilly SB (2001) Summary of seabird, marine turtle, and surface fauna data collected during a survey in the eastern tropical pacific ocean July 8–December 9, 2000. NOAA Techn Memo NMFS NOAA-TM-NMFS-SWFSC-304

  42. Phillips R, Silk J, Croxall J, Afanasyev V, Briggs D (2004) Accuracy of geolocation estimates for flying seabirds. Mar Ecol Prog Ser 266:265–272. https://doi.org/10.3354/meps266265

    Article  Google Scholar 

  43. Poli CL, Harrison AL, Vallarino A, Gerard PD, Jodice PGR (2017) Dynamic oceanography determines fine scale foraging behavior of masked boobies in the Gulf of Mexico. PLoS One 12:18. https://doi.org/10.1371/journal.pone.0178318

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Pollet IL, Hedd A, Taylor PD, Montevecchi WA, Shutler D (2014) Migratory movements and wintering areas of Leachs storm-petrels tracked using geolocators. J Field Ornithol 85:321–328. https://doi.org/10.1111/jofo.12071

    Article  Google Scholar 

  45. Ropert-Coudert Y, Wilson RP, Daunt F, Kato A (2004) Patterns of energy acquisition by a central place forager: benefits of alternating short and long foraging trips. Behav Ecol 15:824–830. https://doi.org/10.1093/beheco/arh086

    Article  Google Scholar 

  46. Rosch A, Schmidbauer H (2018) WaveletComp R package version 1.1. https://cran.r-project.org/package=WaveletComp

  47. Rouyer T, Fromentin JM, Stenseth NC, Cazelles B (2008) Analysing multiple time series and extending significance testing in wavelet analysis. Mar Ecol Prog Ser 359:11–23. https://doi.org/10.3354/meps07330

    Article  Google Scholar 

  48. Sazima I, de Almeida LB (2008) The bird kraken: octopus preys on a sea bird at an oceanic island in the tropical West Atlantic. Mar Biodivers Rec 1:e47. https://doi.org/10.1017/S1755267206005458

    Article  Google Scholar 

  49. Schacter CR, Jones IL (2018) Confirmed year-round residence and land roosting of whiskered auklets (Aethia pygmaea) at Buldir Island, Alaska. Auk 135:706–715. https://doi.org/10.1642/AUK-17-235.1

    Article  Google Scholar 

  50. Serrano-Meneses MA, Székely T (2006) Sexual size dimorphism in seabirds: sexual selection, fecundity selection and differential niche-utilisation. Oikos 113:385–394. https://doi.org/10.1111/j.0030-1299.2006.14246.x

    Article  Google Scholar 

  51. Shaffer SA, Tremblay Y, Weimerskirch H, Scott D, Thompson DR, Sagar PM, Moller H, Taylor GA, Foley DG, Block BA, Costa DP (2006) Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer. Proc Natl Acad Sci USA 103:12799–12802. https://doi.org/10.1073/pnas.0603715103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Sommerfeld J, Kato A, Ropert-Coudert Y, Garthe S, Hindell MA (2013) Foraging parameters influencing the detection and interpretation of area-restricted search behaviour in marine predators: a case study with the masked booby. PLoS One 8:e63742. https://doi.org/10.1371/journal.pone.0063742

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Stenhouse IJ, Egevang C, Phillips RA (2012) Trans-equatorial migration, staging sites and wintering area of Sabine’s gulls Larus sabini in the Atlantic Ocean. Ibis 154:42–51. https://doi.org/10.1111/j.1474-919X.2011.01180.x

    Article  Google Scholar 

  54. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  55. Wakefield E, Phillips R, Matthiopoulos J (2009) Quantifying habitat use and preferences of pelagic seabirds using individual movement data: a review. Mar Ecol Prog Ser 391:165–182. https://doi.org/10.3354/meps08203

    Article  Google Scholar 

  56. Weimerskirch H, Wilson RP (2000) Oceanic respite for wandering albatrosses. Nature 406:955–956. https://doi.org/10.1038/35023068

    CAS  Article  PubMed  Google Scholar 

  57. Weimerskirch H, Le Corre M, Gadenne H, Pinaud D, Kato A, Ropert-Coudert Y, Bost CA (2009) Relationship between reversed sexual dimorphism, breeding investment and foraging ecology in a pelagic seabird, the masked booby. Oecologia 161:637–649. https://doi.org/10.1007/s00442-009-1397-7

    Article  PubMed  Google Scholar 

  58. Wilkinson BP, Haynes-Sutton AM, Meggs L, Jodice PGR (2020) High spatial fidelity among foraging trips of masked boobies from Pedro Cays, Jamaica. PLoS One 15:e0231654. https://doi.org/10.1371/journal.pone.0231654

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Wilson RP, Culik BM, Kosiorek P, Adelung D (1998) The over-winter movements of a chinstrap penguin (Pygoscelis antarctica). Polar Rec 34:107–112. https://doi.org/10.1017/S0032247400015242

    Article  Google Scholar 

  60. Wilson R, Grémillet D, Syder J, Kierspel M, Garthe S, Weimerskirch H, Schäfer-Neth C, Scolaro J, Bost C, Plötz J, Nel D (2002) Remote-sensing systems and seabirds: their use, abuse and potential for measuring marine environmental variables. Mar Ecol Prog Ser 228:241–261. https://doi.org/10.3354/meps228241

    Article  Google Scholar 

  61. Woodward PW (1972) The natural history of Kure Atoll, northwestern Hawaiian islands. Atoll Res Bull 164:1-317. https://doi.org/10.5479/si.00775630.164.1

    Article  Google Scholar 

  62. Wotherspoon SJ, Sumner MD, Lisovski S (2016) SGAT: solar/satellite geolocation for animal tracking. R package version 0.1.3. https://github.com/SWotherspoon/SGAT

  63. Young H, Shaffer S, McCauley D, Foley D, Dirzo R, Block B (2010) Resource partitioning by species but not sex in sympatric boobies in the central Pacific Ocean. Mar Ecol Prog Ser 403:291–301. https://doi.org/10.3354/meps08478

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all people involved in the fieldwork activities. Fieldwork activities received the administrative and logistical support from the Fernando de Noronha administration, the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio, Brazil), the military firemen from Fernando de Noronha and the TAMAR Project. We also want to express grateful thanks to anonymous reviewers and to colleagues from IFREMER and IRD for having helped us significantly on the manuscript.

Funding

This work is a contribution to the TRIATLAS project (funding by the European Union’s Horizon 2020 research and innovation program—Grant agreement No. 817578). This project has received funding from the Paddle Rise project—European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 734271. This study was partially funded by IRD (Mixed International Laboratory Tapioca), CPER Celimer (France), Fundação O Boticário (Brazil), Young Team IRD Programm Tabasco (JEAI) and Brazilian National Research Council (CNPq, No. 422759/2016-3). L.B. is research fellow from CNPq (PQ 311409/2018-0).

Author information

Affiliations

Authors

Contributions

AR, SB and KD conceived the ideas and AR performed the analysis; AR, GT, KD, CB, KD and SB have been on fieldworks for collecting the data; AR led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Amédée Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This work was conducted with the approval of the Brazilian Ministry of Environment—Instituto Chico Mendes de Conservação da Biodiversidade (Authorization No 52583-5).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewers: undisclosed experts.

Responsible Editor: V. Paiva.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Delord, K., Nunes, G.T. et al. Did the animal move? A cross-wavelet approach to geolocation data reveals year-round whereabouts of a resident seabird. Mar Biol 168, 114 (2021). https://doi.org/10.1007/s00227-021-03923-x

Download citation