Modelling habitat use suggests static spatial exclusion zones are a non-optimal management tool for a highly mobile marine mammal

Abstract

Understanding how animals use the space in which they are distributed is important for guiding management decisions in conservation, especially where human disturbance can be spatially managed. Here we applied distribution modelling to examine common dolphin (Delphinus sp.) habitat use in the Hauraki Gulf (36°S, 175°E), New Zealand. Given the known importance of the area for foraging and nursing, we assessed which variables affect Delphinus occurrence based on generalised additive models (GAMs), and modelled probability of encounter. Behavioural information was included to assess habitat use by feeding and nursing groups and determine whether persistent hotspots for such activities could be identified and meaningfully used as a spatial management tool. Using data collected from dedicated boat surveys during 2010–2012, depth and sea surface temperature (SST) were frequently identified as important variables. Overall, seasonal predictive occurrence maps for the larger population resembled predictive maps of feeding groups more than nursery groups, suggesting prey availability has important implications for the distribution of Delphinus in this region. In this case, static spatial exclusions would not be the best management option as the core areas of use identified for these activities were large and shifted temporally. It appears that at the scale examined, most of the Hauraki Gulf is important for feeding and nursing rather than specific smaller regions being used for these functions. In cases where static management is not the optimal tool, as suggested here for a highly mobile species, a dynamic approach requires more than a boundary line on a map.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Abrahms B, Welch H, Brodie S, Jacox MG, Becker EA, Bograd SJ, Irvine LM, Palacios DM, Mate BR, Hazen EL (2019) Dynamic ensemble models to predict distributions and anthropogenic risk exposure for highly mobile species. Divers Distrib. https://doi.org/10.1111/ddi.12940

    Article  Google Scholar 

  2. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  3. Asaro MJ (2012) Geospatial analysis of management areas implemented for protection of the North Atlantic right whale along the northern Atlantic coast of the United States. Mar Policy 36:915–921. https://doi.org/10.1016/j.marpol.2012.01.004

    Article  Google Scholar 

  4. Ashe E, Noren DP, Williams R (2010) Animal behaviour and marine protected areas: incorporating behavioural data into the selection of marine protected areas for an endangered killer whale population. Anim Conserv 13:196–203. https://doi.org/10.1111/j.1469-1795.2009.00321.x

    Article  Google Scholar 

  5. Au DWK, Perryman WL (1985) Dolphin habitats in the Eastern Tropical Pacific. Fish Bull 83:623–643

    Google Scholar 

  6. Azzellino A, Gaspari S, Airoldi S, Nani B (2008) Habitat use and preferences of cetaceans along the continental slope and the adjacent pelagic waters in the western Ligurian Sea. Deep-Sea Res Pt I 55:296–323. https://doi.org/10.1016/j.dsr.2007.11.006

    Article  Google Scholar 

  7. Bailey LL, Adams M (2005) Occupancy models to study wildlife. USGS Fact Sheet 2005–3096. https://fresc.usgs.gov/products/fs/fs2005-3096.pdf

  8. Baker AN (1972) Reproduction, early life history, and age-growth relationships of the New Zealand pilchard Sardinops neopilchardus (Steindachner). Fisheries Research Bulletin No. 5 (p. 64)

  9. Ballance LT (1992) Habitat use patterns and ranges of the bottlenose dolphin in the Gulf of California, Mexico. Mar Mammal Sci 8:262–274. https://doi.org/10.1111/j.1748-7692.1992.tb00408.x

    Article  Google Scholar 

  10. Barlow J, Oliver CW, Jackson TD, Taylor BL (1988) Harbor porpoise, Phocoena phocoena, abundance estimation for California, Oregon, and Washington: II. Aerial surveys. Fish Bull 86:433–444

    Google Scholar 

  11. Barlow J, Gerrodette T, Forcada J (2001) Factors affecting perpendicular sighting distances on shipboard line-transect surveys for cetaceans. J Cet Res Manag 3:201–212

    Google Scholar 

  12. Bearzi G, Politi E, Agazzi S, Bruno S, Costa M, Bonizzoni S (2005) Occurrence and present status of coastal dolphins (Delphinus delphis and Tursiops truncatus) in the eastern Ionian Sea. Aquat Conserv 15:243–257. https://doi.org/10.1002/aqc.667

    Article  Google Scholar 

  13. Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42:1–20. https://doi.org/10.4319/lo.1997.42.1.0001

    CAS  Article  Google Scholar 

  14. Bejder L (2005) Linking short and long-term effects of nature-based tourism on cetaceans. PhD thesis, Dalhousie University, Canada

  15. Beyer HL (2012) Geospatial modelling environment. https://spatialecology.com/gme.

  16. Black KP, Hume M, Bell RG, Oldman JW, Carter GS, Hume TM (2000) Features of 3-dimensional barotropic and baroclinic circulation in the Hauraki Gulf, New Zealand. New Zeal J Mar Fresh 34:1–28. https://doi.org/10.1080/00288330.2000.9516912

    Article  Google Scholar 

  17. Bräger S, Harraway JA, Manly BF (2003) Habitat selection in a coastal dolphin species (Cephalorhynchus hectori). Mar Biol 143:233–244. https://doi.org/10.1007/s00227-003-1068-x

    Article  Google Scholar 

  18. Breiman L (1996) Heuristics of instability and stabilization in model selection. Ann Statist 24:2350–2383. https://doi.org/10.1214/aos/1032181158

    Article  Google Scholar 

  19. Buckstaff KC (2004) Effects of watercraft noise on the acoustic behavior of bottlenose dolphins, Tursiops truncatus, in Sarasota Bay, Florida. Mar Mammal Sci 20:709–725. https://doi.org/10.1111/j.1748-7692.2004.tb01189.x

    Article  Google Scholar 

  20. Cañadas A, Hammond PS (2008) Abundance and habitat preferences of the short-beaked common dolphin Delphinus delphis in the southwestern Mediterranean: implications for conservation. Endanger Species Res 4:309–331. https://doi.org/10.3354/esr00073

    Article  Google Scholar 

  21. Cañadas A, Sagarminaga R, De Stephanis R, Urquiola E, Hammond PS (2005) Habitat preference modelling as a conservation tool: proposals for marine protected areas for cetaceans in southern Spanish waters. Aquat Conserv 15:495–521. https://doi.org/10.1002/aqc.689

    Article  Google Scholar 

  22. Chang FH, Zeldis J, Gall M, Hall J (2003) Seasonal and spatial variation of phytoplankton assemblages, biomass and cell size from spring to summer across the north-eastern New Zealand continental shelf. J Plankton Res 25:737–758. https://doi.org/10.1093/plankt/25.7.737

    CAS  Article  Google Scholar 

  23. Dawson S, Wade P, Slooten E, Barlow J (2008) Design and field methods for sighting surveys of cetaceans in coastal and riverine habitats. Mammal Rev 38:19–49. https://doi.org/10.1111/j.1365-2907.2008.00119.x

    Article  Google Scholar 

  24. Dawson S, Fletcher D, Slooten E (2013) Habitat use and conservation of an endangered dolphin. Endanger Species Res 21:45–54. https://doi.org/10.3354/esr00508

    Article  Google Scholar 

  25. Derksen S, Keselman HJ (1992) Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables. Br J Math Stat Psychol 45:265–282. https://doi.org/10.1111/j.2044-8317.1992.tb00992.x

    Article  Google Scholar 

  26. Dormann CF (2007) Promising the future? Global change projections of species distributions. Basic Appl Ecol 8:387–397. https://doi.org/10.1016/j.baae.2006.11.001

    Article  Google Scholar 

  27. Dwyer SL (2014) Spatial ecology and conservation of cetaceans using the Hauraki Gulf, New Zealand. PhD thesis, Massey University, New Zealand

  28. Dwyer SL, Clement D, Pawley MDM, Stockin KA (2016) Distribution and relative density of cetaceans in the Hauraki Gulf, New Zealand. New Zeal J Mar Fresh 50:457–480. https://doi.org/10.1080/00288330.2016.1160942

    CAS  Article  Google Scholar 

  29. Eierman L, Connor RC (2014) Foraging behavior, prey distribution, and microhabitat use by bottlenose dolphins Tursiops truncatus in a tropical atoll. Mar Ecol Prog Ser 503:279–288. https://doi.org/10.3354/meps10721

    Article  Google Scholar 

  30. Embling CB, Gillibrand PA, Gordon J, Shrimpton J, Stevick PT, Hammond PS (2010) Using habitat models to identify suitable sites for marine protected areas for harbour porpoises (Phocoena phocoena). Biol Conserv 143:267–279. https://doi.org/10.1016/j.biocon.2009.09.005

    Article  Google Scholar 

  31. Ferguson MC, Barlow J, Fiedler P, Reilly SB, Gerrodette T (2006) Spatial models of delphinid (family Delphinidae) encounter rate and group size in the eastern tropical Pacific Ocean. Ecol Model 193:645–662. https://doi.org/10.1016/j.ecolmodel.2005.10.034

    Article  Google Scholar 

  32. Fernandez M, Yesson C, Gannier A, Miller PI, Azevedo JMN (2017) The importance of temporal resolution for niche modelling in dynamic marine environments. J Biogeogr 44:2816–2827. https://doi.org/10.1111/jbi.13080

    Article  Google Scholar 

  33. Filby NE, Bossley M, Sanderson KJ, Martinez E, Stockin KA (2010) Distribution and population demographics of common dolphins (Delphinus delphis) in the Gulf St. Vincent, South Australia. Aquat Mamm 36:33–45. https://doi.org/10.1578/AM.36.1.2010.33

    Article  Google Scholar 

  34. Fisheries New Zealand (2018) Fisheries Assessment Plenary, May 2018: stock assessment and stock status. Compiled by the Fisheries Science and Information Group. Fisheries New Zealand, Wellington, p 1660

    Google Scholar 

  35. Forney KA (2000) Environmental models of cetacean abundance: reducing uncertainty in population trends. Conserv Biol 14:1271–1286. https://doi.org/10.1046/j.1523-1739.2000.99412.x

    Article  Google Scholar 

  36. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1–22. https://doi.org/10.18637/jss.v033.i01

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gannier A (2005) Summer distribution and relative abundance of delphinids in the Mediterranean Sea. Rev Ecol 60:223–238

    Google Scholar 

  38. Garaffo GV, Dans SL, Crespo EA, Degrati M, Giudici P, Gagliardini DA (2010) Dusky dolphin: modeling habitat selection. J Mammal 91:54–65. https://doi.org/10.1644/09-MAMM-A-105R1.1

    Article  Google Scholar 

  39. González García L, Pierce GJ, Autret E, Torres-Palenzuela JM (2018) Multi-scale habitat preference analyses for Azorean blue whales. PLOS One 13:e0201786. https://doi.org/10.1371/journal.pone.0201786

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Guidino C, Llapapasca MA, Silva S, Alcorta B, Pacheco AS (2014) Patterns of spatial and temporal distribution of humpback whales at the southern limit of the Southeast Pacific breeding area. PLOS One 9:e112627. https://doi.org/10.1371/journal.pone.0112627

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Guisan A, Zimmerman NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186. https://doi.org/10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  42. Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AIT, Regan TJ, Brotons L, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield S, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MR, Possingham HP, Buckley YM (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435. https://doi.org/10.1111/ele.12189

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hadfield M, Goring D, Gorman R, Wild M (2002) Physical variables for the New Zealand Marine Environment Classification System: development and description of data layers. NIWA Client Report CHC2002-043. National Institute of Water and Atmospheric Research Ltd, Auckland, p 60

    Google Scholar 

  44. Harrell FE (2001) Regression modeling strategies with applications to linear models, logistic regression and survival analysis. Springer, New York

    Google Scholar 

  45. Hartel EF, Constantine R, Torres LG (2014) Changes in habitat use patterns by bottlenose dolphins over a 10-year period render static management boundaries ineffective. Aquat Conserv 25:701–711. https://doi.org/10.1002/aqc.2465

    Article  Google Scholar 

  46. Hastie GD, Wilson B, Wilson LJ, Parsons KM, Thompson PM (2004) Functional mechanisms underlying cetacean distribution patterns: Hotspots for bottlenose dolphins are linked to foraging. Mar Biol 144:397–403. https://doi.org/10.1007/s00227-003-1195-4

    Article  Google Scholar 

  47. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Springer, New York

    Google Scholar 

  48. Hazen EL, Scales KL, Maxwell SM, Briscoe DK, Welch H, Bograd SJ, Bailey H, Benson SR, Eguchi T, Dewar H, Kohin S (2018) A dynamic ocean management tool to reduce bycatch and support sustainable fisheries. Sci Adv 4:eaar3001. https://doi.org/10.1126/sciadv.aar3001

    Article  PubMed  PubMed Central  Google Scholar 

  49. Heinze G, Wallisch C, Dunkler D (2018) Variable selection—a review and recommendations for the practicing statistician. Biom J 60:431–449. https://doi.org/10.1002/bimj.201700067

    Article  PubMed  PubMed Central  Google Scholar 

  50. Heithaus MR, Dill LM (2002) Food availability and tiger shark predation risk influence bottlenose dolphin habitat use. Ecology 83:480–491. https://doi.org/10.1890/0012-9658(2002)083[0480:FAATSP]2.0.CO;2

  51. Hobday AJ, Hartmann K (2006) Near real-time spatial management based on habitat predictions for a longline bycatch species. Fish Manag Ecol 13:365–380. https://doi.org/10.1111/j.1365-2400.2006.00515.x

    Article  Google Scholar 

  52. Hobday AJ, Hartog JR, Spillman CM, Alves O (2011) Seasonal forecasting of tuna habitat for dynamic spatial management. Can J Fish Aquat Sci 68:898–911. https://doi.org/10.1139/f2011-031

    Article  Google Scholar 

  53. Howell EA, Hoover AA, Benson SR, Bailey H, Polovina JJ, Seminoff JA, Dutton PH (2015) Enhancing the TurtleWatch product for leatherback sea turtles, a dynamic habitat model for ecosystem-based management. Fish Oceanogr 24:57–68. https://doi.org/10.1111/fog.12092

    Article  Google Scholar 

  54. Hui CA (1979) Undersea topography and distribution of dolphins of the genus Delphinus in the southern California Bight. J Mammal 60:521–527. https://doi.org/10.2307/1380092

    Article  Google Scholar 

  55. Hupman K (2016) Photo-identification and its application to gregarious delphinids: Common dolphins (Delphinus sp.) in the Hauraki Gulf, New Zealand. PhD thesis, Massey Univeristy, New Zealand

  56. Karpovich SA, Skinner JP, Mondragon JE, Blundell GM (2015) Combined physiological and behavioral observations to assess the influence of vessel encounters on harbor seals in glacial fjords of southeast Alaska. J Exp Mar Biol Ecol 473:110–120. https://doi.org/10.1016/j.jembe.2015.07.016

    Article  Google Scholar 

  57. Kozmian-Ledward L (2014) Spatial ecology of cetaceans in the Hauraki Gulf, New Zealand. MSc thesis, University of Auckland, New Zealand

  58. Machernis AF, Powell JR, Engleby LK, Spradlin TR (2018) An updated literature review examining the impacts of tourism on marine mammals over the last fifteen years (2000–2015) to inform research and management programs. US Department of Commerce, NOAA. NOAA Technical Memorandum NMFS-SER-7: pp 66

  59. Mackay K, Mackay E, Neil H, Mitchell J, Bardsley S (2012) Hauraki Gulf. NIWA Chart, Miscellaneous Series 91. https://www.niwa.co.nz/our-science/oceans/bathymetry

  60. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtim CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecol 83:2248–2255. https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2

    Article  Google Scholar 

  61. Magnuson A, Harding LW, Mallonee ME, Aolf JE (2004) Bio-optical model for Chesapeake Bay and the Middle Atlantic Bight. Estuar Coast Shelf Sci 61:403–424. https://doi.org/10.1016/j.ecss.2004.06.020

    CAS  Article  Google Scholar 

  62. Manighetti B, Carter L (1999) Across-shelf sediment dispersal, Hauraki Gulf, New Zealand. Mar Geol 160:271–300. https://doi.org/10.1016/S0025-3227(99)00024-9

    Article  Google Scholar 

  63. Mann J (1999) Behavioural sampling methods for cetaceans: a review and critique. Mar Mammal Sci 15:102–122. https://doi.org/10.1111/j.1748-7692.1999.tb00784.x

    Article  Google Scholar 

  64. Marubini F, Gimona A, Evans PGH, Wright PJ, Pierce GJ (2009) Habitat preferences and interannual variability in occurrence of the harbour porpoise Phocoena phocoena off Northwest Scotland. Mar Ecol Prog Ser 381:297–310. https://doi.org/10.3354/meps07893

    Article  Google Scholar 

  65. Maxwell SM, Hazen EL, Lewison RL, Dunn DC, Bailey H, Bograd SJ, Briscoe DK, Fossette S, Hobday AJ, Bennett M, Benson S, Caldwell MR, Costa DP, Dewar H, Eguchi T, Hazen L, Kohin S, Sippel T, Crowder LB (2015) Dynamic ocean management: defining and conceptualizing real-time management of the ocean. Mar Policy 58:42–50. https://doi.org/10.1016/j.marpol.2015.03.014

    Article  Google Scholar 

  66. Meissner AM, Martinez E, Orams MB, Stockin KA (2014) Effects of commercial tourism activities on bottlenose and common dolphin populations in East Coast Bay of Plenty waters. Final internal report to the Department of Conservation, East Coast Bay of Plenty Conservancy, New Zealand, pp 117

  67. Meissner AM, Christiansen F, Martinez E, Pawley MDM, Orams MB, Stockin KA (2015) Behavioural effects of tourism on oceanic common dolphins, Delphinus sp., in New Zealand: the effects of Markov analysis variations and current tour operator compliance with regulations. PLOS One 10:e0116962. https://doi.org/10.1371/journal.pone.0116962

    Article  PubMed  PubMed Central  Google Scholar 

  68. Melly BL, McGregor G, Hofmeyr GJG, Plön S (2017) Spatio-temporal distribution and habitat preferences of cetaceans in Algoa Bay, South Africa. J Mar Biol Assoc UK 98:1065–1079. https://doi.org/10.1017/S0025315417000340

    Article  Google Scholar 

  69. Ministry for Primary Industries (2013) Fisheries Assessment Plenary May 2013: stock assessments and yield estimates. Compiled by the Fisheries Science Group. Ministry for Primary Industries, Wellington, p 1357

    Google Scholar 

  70. Morel A, Prieur L (1977) Analysis of variations in ocean color. Limnol Oceanogr 22:709–722. https://doi.org/10.4319/lo.1977.22.4.0709

    Article  Google Scholar 

  71. Morozova O, Levina O, Uusküula A, Heimer R (2015) Comparison of subset selection methods in linear regression in the context of health-related quality of life and substance abuse in Russia. BMC Med Res Methodol 15:71. https://doi.org/10.1186/s12874-015-0066-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Moura AE, Sillero N, Rodrigues A (2012) Common dolphin (Delphinus delphis) habitat preferences using data from two platforms of opportunity. Acta Oecol 38:24–32. https://doi.org/10.1016/j.actao.2011.08.006

    Article  Google Scholar 

  73. Neumann DR, Orams MB (2006) Impacts of ecotourism on short-beaked common dolphins (Delphinus delphis) in Mercury Bay, New Zealand. Aquat Mamm 32:1–9. https://doi.org/10.1578/AM.32.1.2006.1

    Article  Google Scholar 

  74. Norris KS, Dohl TP (1980) Behavior of the Hawaiian spinner dolphin, Stenella longirostris. Fish Bull 77:821–849

    Google Scholar 

  75. Panigada S, Zanardelli M, MacKenzie M, Donovan C, Mélin F, Hammond PS (2008) Modelling habitat preferences for fin whales and striped dolphins in the Pelagos Sanctuary (Western Mediterranean Sea) with physiographic and remote sensing variables. Remote Sens Environ 112:3400–3412. https://doi.org/10.1016/j.rse.2007.11.017

    Article  Google Scholar 

  76. Parra GJ, Schick R, Corkeron PJ (2006) Spatial distribution and environmental correlates of Australian snubfin and Indo-Pacific humpback dolphins. Ecography 29:396–406. https://doi.org/10.1111/j.2006.0906-7590.04411.x

    Article  Google Scholar 

  77. Pérez-Jorge S, Pereira T, Corne C, Wijtten Z, Omar M, Katello J, Kinyua M, Oro D, Louzao M (2015) Can static habitat protection encompass critical areas for highly mobile marine top predators? Insights from coastal East Africa. PLOS One 10:e0133265. https://doi.org/10.1371/journal.pone.0133265

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.r-project.org

  79. Redfern JV, Barlow J, Ballance L, Gerrodette T, Becker EA (2008) Absence of scale dependence in dolphin-habitat models for the eastern tropical Pacific Ocean. Mar Ecol Prog Ser 363:1–14. https://doi.org/10.3354/meps07495

    Article  Google Scholar 

  80. Redfern JV, Mckenna MF, Moore TJ, Calambokidis J, Deangelis ML, Becker EA, Barlow J, Forney KA, Fiedler PC, Chivers SJ (2013) Assessing the risk of ships striking large whales in marine spatial planning. Conserv Biol 27:292–302. https://doi.org/10.1111/cobi.12029

    CAS  Article  PubMed  Google Scholar 

  81. Reeves RR (2000) The value of sanctuaries, parks, and reserves (protected areas) as tools for conserving marine mammals. Final report to the Marine Mamma; Commission, contract number T74465385. Marine Mammal Commission, Bethesda, Maryland, pp 50

  82. Reeves RR, Notarbartolo di Sciara G (2006) The status and distribution of cetaceans in the Black Sea and Mediterranean Sea. IUCN Centre for Mediterranean Cooperation, Malaga, p 137

    Google Scholar 

  83. Ribeiro S, Viddi FA, Cordeiro JL, Freitas TRO (2007) Fine-scale habitat selection of Chilean dolphins (Cephalorhynchus eutropis): Interactions with aquaculture activities in southern Chiloé Island, Chile. J Mar Biol Assoc UK 87:119–128. https://doi.org/10.1017/S0025315407051594

    Article  Google Scholar 

  84. Santora JA (2011) Habitat use of hourglass dolphins near the South Shetland Islands, Antarctica. Polar Biol 35:801–806. https://doi.org/10.1007/s00300-011-1133-8

    Article  Google Scholar 

  85. Scales KL, Hazen EL, Jacox MG, Edwards CA, Boustany AM, Oliver MJ, Bograd SJ (2017) Scale of inference: on the sensitivity of habitat models for wide-ranging marine predators to the resolution of environmental data. Ecography 40:210–220. https://doi.org/10.1111/ecog.02272

    Article  Google Scholar 

  86. Seers BM, Shears NT (2015) Spatio-temporal patterns in coastal turbidity–long-term trends and drivers of variation across an estuarine-open coast gradient. Estuar Coast Shelf Sci 154:137–151. https://doi.org/10.1016/j.ecss.2014.12.018

    Article  Google Scholar 

  87. Shane SH (1990) Behavior and ecology of the bottlenose dolphin at Sanibel Island, Florida. In: Leatherwood S, Reeves RR (eds) The bottlenose dolphin. Acadmic Press, San Diego, pp 245–265

    Google Scholar 

  88. Silva MA, Prieto R, Magalhães S, Seabra MI, Machete M, Hammond PS (2012) Incorporating information on bottlenose dolphin distribution into marine protected area design. Aquat Conserv 22:122–133. https://doi.org/10.1002/aqc.1243

    Article  Google Scholar 

  89. Silva MA, Prieto R, Cascão I, Seabra MI, Machete M, Baumgartner MF, Santos RS (2014) Spatial and temporal distribution of cetaceans in the mid-Atlantic waters around the Azores. Mar Biol Res 10:123–137. https://doi.org/10.1080/17451000.2013.793814

    Article  Google Scholar 

  90. Snelder T, Leathwick J, Dey K, Weatherhead J, Fenwick G, Francis M, Gorman R, Grieve J, Hadfield M, Hewitt J, Hume T, Richardson K, Rowden A, Uddstrom M, Wild M, Zeldis JR (2005) The New Zealand marine environment classification. Ministry for the Environment, Wellington, p 70

    Google Scholar 

  91. Soldevilla MS, Hildebrand JA, Frasier KE, Dias LA, Martinez A, Mullin KD, Rosel PE, Garrison LP (2017) Spatial distribution and dive behavior of Gulf of Mexico Bryde’s whales: potential risk of vessel strikes and fisheries interactions. Endanger Species Res 32:533–550. https://doi.org/10.3354/esr00834

    Article  Google Scholar 

  92. Steventon J, Liebenberg L, Derbecker M, Bapat V (2002) CyberTracker Conservation. https://cybertracker.org

  93. Stockin KA, Orams MB (2009) The status of common dolphins (Delphinus delphis) within New Zealand waters. Report of the 61st Scientific Committee of the International Whaling Commission, Madeira, Portugal. SC/61/SM20

  94. Stockin KA, Pierce GJ, Binedell V, Wiseman N, Orams MB (2008a) Factors affecting the occurrence and demographics of common dolphins (Delphinus sp.) in the Hauraki Gulf, New Zealand. Aquat Mamm 34:200–211. https://doi.org/10.1578/AM.34.2.2008.200

    Article  Google Scholar 

  95. Stockin KA, Lusseau D, Binedell V, Wiseman N, Orams MB (2008b) Tourism affects the behavioural budget of the common dolphin Delphinus sp. in the Hauraki Gulf, New Zealand. Mar Ecol Prog Ser 335:287–295. https://doi.org/10.3354/meps07386

    Article  Google Scholar 

  96. Stockin KA, Binedell V, Wiseman N, Brunton DH, Orams MB (2009) Behavior of free-ranging common dolphins (Delphinus sp.) in the Hauraki Gulf, New Zealand. Mar Mammal Sci 25:283–301. https://doi.org/10.1111/j.1748-7692.2008.00262.x

    Article  Google Scholar 

  97. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Statist Soc B 58:267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

    Article  Google Scholar 

  98. Tyne JA, Johnston DW, Ranklin R, Loneragan NR, Bejder L (2015) The importance of spinner dolphin (Stenella longirostris) resting habitat: implications for management. J Appl Ecol 52:621–630. https://doi.org/10.1111/1365-2664.12434

    Article  Google Scholar 

  99. Tyne JA, Johnston DW, Christiansen F, Bejder L (2017) Temporally and spatially partitioned behaviours of spinner dolphins: implications for resilience to human disturbance. Roy Soc Open Sci 4:160626. https://doi.org/10.1098/rsos.160626

    Article  Google Scholar 

  100. Tzortziou M, Subramaniam A, Herman JR, Gallegos CL, Neale PJ, Harding LW (2007) Remote sensing reflectance and inherent optical properties in the mid Chesapeake Bay. Estuar Coast Shelf Sci 72:16–32. https://doi.org/10.1016/j.ecss.2006.09.018

    Article  Google Scholar 

  101. Wilhelm TA, Sheppard CRC, Sheppard ALS, Gaymer CF, Parks J, Wagner D, Lewis N (2014) Large marine protected areas - advantages and challenges of going big. Aquat Cons Mar Fresh Eco 24:24–30. https://doi.org/10.1002/aqc.2499

    Article  Google Scholar 

  102. Wood SN (2017) Generalized Additive Models: an Introduction with R, 2nd edn. Chapman and Hall/CRC, Florida

    Google Scholar 

  103. Young M, Thomson GM (1926) Occurrence of pilchards and sprats in New Zealand seas. Trans Roy Soc NZ 57:314–319

    Google Scholar 

  104. Zeldis JR, Walters RA, Greig MJN, Image K (2004) Circulation over the northeastern New Zealand continental slope, shelf and adjacent Hauraki Gulf, during spring and summer. Cont Shelf Res 24:543–561. https://doi.org/10.1016/j.csr.2003.11.007

    Article  Google Scholar 

  105. Zheng G, DiGiacomo PM (2017) Remote sensing of chlorophyll-a in coastal waters based on the light absorption coefficient of phytoplankton. Remote Sens Environ 201:331–341. https://doi.org/10.1016/j.rse.2017.09.008

    Article  Google Scholar 

  106. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc B Stat Methodol 67:301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by the Department of Conservation (Auckland), Massey University, Auckland Council and Golden Contracting Whangaparaoa. SLD was the recipient of a Massey University Institute of Natural and Mathematical Sciences doctoral scholarship. Data logging software was freely available from CyberTracker Conservation (https://www.cybertracker.org). We thank Weimin Jiang for assistance in obtaining SST data. SLD thanks the Great Barrier Island local community, in particular, the Motu Kaikoura Trust and Great Barrier Island Marine Radio, for support in the field. Special thanks go to all volunteers who assisted with boat surveys.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarah L. Dwyer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by J. M. Pereira and undisclosed experts.

S. L. Dwyer and M. D. M. Pawley contributed equally to the manuscript

Responsible Editor: V. Paiva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 756 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dwyer, S.L., Pawley, M.D.M., Clement, D.M. et al. Modelling habitat use suggests static spatial exclusion zones are a non-optimal management tool for a highly mobile marine mammal. Mar Biol 167, 62 (2020). https://doi.org/10.1007/s00227-020-3664-4

Download citation

Keywords

  • Common dolphin
  • Delphinus
  • Predictive mapping
  • Species distribution modelling
  • Spatial management