Skip to main content

Advertisement

Log in

Fine-scale foraging effort and efficiency of Macaroni penguins is influenced by prey type, patch density and temporal dynamics

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Difficulties quantifying in situ prey patch quality have limited our understanding of how marine predators respond to variation within and between patches, and throughout their foraging range. In the present study, animal-borne video, GPS, accelerometer and dive behaviour data loggers were used to investigate the fine-scale foraging behaviour of Macaroni penguins (Eudyptes chrysolophus) in response to prey type, patch density and temporal variation in diving behaviour. Individuals mainly dived during the day and utilised two strategies, targeting different prey types. Subantarctic krill (Euphausia vallentini) were consumed during deep dives, while small soft-bodied fish were captured on shallow dives or during the ascent phase of deep dives. Despite breeding in large colonies individuals seemed to be solitary foragers and did not engage with conspecifics in coordinated behaviour as seen in other group foraging penguin species. This potentially reflects the high abundance and low manoeuvrability of krill. Video data were used to validate prey capture signals in accelerometer data and a Support Vector Machine learning algorithm was developed to identify prey captures that occurred throughout the entire foraging trip. Prey capture rates indicated that Macaroni penguins continued to forage beyond the optimal give up time. However, bout-scale analysis revealed individuals terminated diving behaviour for reasons other than patch quality. These findings indicate that individuals make complex foraging decisions in relation to their proximate environment over multiple spatio-temporal scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Raw data and additional supporting information are made available in figshare respository 10.6084/m9.figshare.12382268.

References

  • Bannasch R, Wilson RP, Culik B (1994) Hydrodynamic aspects of design and attachment of a back-mounted device in penguins. J Exp Biol 194:83–96

    Google Scholar 

  • Barbraud C, Delord K, Bost CA, Chaigne A, Marteau C, Weimerskirch H (2020) Population trends of penguins in the French Southern Territories. Polar Biol 43:835–850. https://doi.org/10.1007/s00300-020-02691-6

    Article  Google Scholar 

  • Barlow KE, Croxall JP (2002) Provisioning behaviour of Macaroni penguins Eudyptes chrysolophus. Ibis 144:248–258

    Google Scholar 

  • Bates D, Mächler M, Bolker B, and Walker S. 2014. Fitting linear mixed-effects models using lme4. arXiv preprint.arXiv:14065823

  • Baylis AMM, Orben RA, Arnould JPY, Peters K, Knox T, Costa DP, Staniland IJ (2015) Diving deeper into individual foraging specializations of a large marine predator, the southern sea lion. Oecologia 179:1053–1065. https://doi.org/10.1007/s00442-015-3421-4

    Article  CAS  PubMed  Google Scholar 

  • Bon C, Della Penna A, d’Ovidio F, Arnould JY, Poupart T, Bost C-A (2015) Influence of oceanographic structures on foraging strategies: Macaroni penguins at Crozet Islands. Mov Ecol 3:32

    PubMed  PubMed Central  Google Scholar 

  • Bost C-A, Cotté C, Bailleul F, Cherel Y, Charrassin J-B, Guinet C, Ainley DG, Weimerskirch H (2009) The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J Mar Syst 78:363–376

    Google Scholar 

  • Boyd C, Grünbaum D, Hunt GL Jr, Punt AE, Weimerskirch H, Bertrand S (2017) Effects of variation in the abundance and distribution of prey on the foraging success of central place foragers. J Appl Ecol 54:1362–1372. https://doi.org/10.1111/1365-2664.12832

    Article  Google Scholar 

  • Brose U, Ehnes RB, Rall BC, Vucic-Pestic O, Berlow EL, Scheu S (2008) Foraging theory predicts predator–prey energy fluxes. J Anim Ecol 77:1072–1078. https://doi.org/10.1111/j.1365-2656.2008.01408.x

    Article  CAS  PubMed  Google Scholar 

  • Calenge C (2011) Analysis of animal movements in R: the adehabitatLT package. R Foundation for Statistical Computing, Austria

    Google Scholar 

  • Cannell BL, Cullen J (1998) The foraging behaviour of little penguins Eudyptula minor at different light levels. Ibis 140:467–471

    Google Scholar 

  • Carroll G, Slip D, Jonsen I, Harcourt R (2014) Supervised accelerometry analysis can identify prey capture by penguins at sea. J Exp Biol 217:4295–4302. https://doi.org/10.1242/jeb.113076

    Article  PubMed  Google Scholar 

  • Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor Popul Biol 9:129–136

    CAS  PubMed  Google Scholar 

  • Chessa S, Micheli A, Pucci R, Hunter J, Carroll G, Harcourt R (2017) A comparative analysis of SVM and IDNN for identifying penguin activities. Appl Artif Intell 31:453–471. https://doi.org/10.1080/08839514.2017.1378162

    Article  Google Scholar 

  • Clark CW, Mangel M (1986) The evolutionary advantages of group foraging. Theor Popul Biol 30:45–75. https://doi.org/10.1016/0040-5809(86)90024-9

    Article  Google Scholar 

  • Cockrem JF, Potter MA, Barrett DP, Candy EJ (2008) Corticosterone responses to capture and restraint in emperor and Adelie penguins in Antarctica. Zoolog Sci 25(291–298):298

    Google Scholar 

  • Cook TR, Hamann M, Pichegru L, Bonadonna F, Grémillet D, Ryan PG (2012) GPS and time-depth loggers reveal underwater foraging plasticity in a flying diver, the Cape Cormorant. Mar Biol 159:373–387

    Google Scholar 

  • de L. Brooke M. (2004) The food consumption of the world’s seabirds. Proc Biol Sci 271:S246–S248

    Google Scholar 

  • Deagle B, Gales N, Hindell M (2008) Variability in foraging behaviour of chick-rearing macaroni penguins Eudyptes chrysolophus and its relation to diet. Mar Ecol Prog Ser 359:295–309

    Google Scholar 

  • Deagle BE, Gales NJ, Evans K, Jarman SN, Robinson S, Trebilco R, Hindell MA (2007) Studying seabird diet through genetic analysis of faeces: a case study on Macaroni penguins (Eudyptes chrysolophus). PLoS ONE 2:e831

    PubMed  PubMed Central  Google Scholar 

  • Doniol-Valcroze T, Lesage V, Giard J, Michaud R (2011) Optimal foraging theory predicts diving and feeding strategies of the largest marine predator. Behav Ecol 22:880–888. https://doi.org/10.1093/beheco/arr038

    Article  Google Scholar 

  • Duhamel G, Koubbi P, Ravier C (2000) Day and night mesopelagic fish assemblages off the Kerguelen Islands (Southern Ocean). Polar Biol 23:106–112. https://doi.org/10.1007/s003000050015

    Article  Google Scholar 

  • Elliott KH, Woo K, Gaston AJ, Benvenuti S, Dall AL, Davoren GK (2008) Seabird foraging behaviour indicates prey type. Mar Ecol Prog Ser 354:289–303

    Google Scholar 

  • Falk K, Benvenuti S, Dall’Antonia L, Kampp K, Ribolini A (2000) Time allocation and foraging behaviour of chick-rearing Brünnich’s Guillemots Uria lomvia in high-arctic Greenland. Ibis 142:82–92

    Google Scholar 

  • Fauchald P (2009) Spatial interaction between seabirds and prey: review and synthesis. Mar Ecol Prog Ser 391:139–151

    Google Scholar 

  • Gleiss AC, Wilson RP, Shepard EL (2011) Making overall dynamic body acceleration work: on the theory of acceleration as a proxy for energy expenditure. Methods Ecol Evol 2:23–33

    Google Scholar 

  • Goulet P, Guinet C, Swift R, Madsen PT, Johnson M (2019) A miniature biomimetic sonar and movement tag to study the biotic environment and predator-prey interactions in aquatic animals. Deep Sea Res Part I 148:1–11

    Google Scholar 

  • Grecian WJ, Witt Matthew J, Attrill Martin J, Bearhop S, Becker Peter H, Egevang C, Furness Robert W, Godley Brendan J, González-Solís J, Grémillet D, Kopp M, Lescroël A, Matthiopoulos J, Patrick Samantha C, Peter H-U, Phillips Richard A, Stenhouse Iain J, Votier SC (2016) Seabird diversity hotspot linked to ocean productivity in the Canary Current Large Marine Ecosystem. Biol Lett 12:20160024. https://doi.org/10.1098/rsbl.2016.0024

    Article  PubMed  PubMed Central  Google Scholar 

  • Green J, Boyd I, Woakes A, Warren N, Butler P (2005) Behavioural flexibility during year-round foraging in Macaroni penguins. Mar Ecol Prog Ser 296:183–196

    Google Scholar 

  • Green K, Williams R, Green M (1998) Foraging ecology and diving behaviour of Macaroni penguins Eudyptes chrysolophus at Heard Island. Mar Ornithol 26:27–34

    Google Scholar 

  • Grémillet D, Lewis S, Drapeau L, Van Der Lingen CD, Huggett JA, Coetzee JC, Verheye HM, Daunt F, Wanless S, Ryan PG (2008) Spatial match—mismatch in the Benguela upwelling zone: should we expect chlorophyll and sea-surface temperature to predict marine predator distributions? J Appl Ecol 45:610–621. https://doi.org/10.1111/j.1365-2664.2007.01447.x

    Article  CAS  Google Scholar 

  • Guinet C, Cherel Y, Ridoux V, Jouventin P (1996) Consumption of marine resources by seabirds and seals in Crozet and Kerguelen waters: changes in relation to consumer biomass 1962–85. Antarct Sci 8:23–30. https://doi.org/10.1017/S0954102096000053

    Article  Google Scholar 

  • Hamame M, Antezana T (2010) Vertical diel migration and feeding of Euphausia vallentini within southern Chilean fjords. Deep Sea Res Part II 57:642–651

    Google Scholar 

  • Handley JM, Thiebault A, Stanworth A, Schutt D, Pistorius P (2018) Behaviourally mediated predation avoidance in penguin prey: in situ evidence from animal-borne camera loggers. R Soc Open Sci 5:171449

    PubMed  PubMed Central  Google Scholar 

  • Hart T, Mann R, Coulson T, Pettorelli N, Trathan P (2010) Behavioural switching in a central place forager: patterns of diving behaviour in the Macaroni penguin (Eudyptes chrysolophus). Mar Biol 157:1543–1553. https://doi.org/10.1007/s00227-010-1428-2

    Article  Google Scholar 

  • Krill and other plankton. Encyclopedia of marine mammals: Elsevier, 657–664.

  • Higginson AD, Ruxton GD (2015) Foraging mode switching: the importance of prey distribution and foraging currency. Anim Behav 105:121–137. https://doi.org/10.1016/j.anbehav.2015.04.014

    Article  Google Scholar 

  • Hijmans RJ, Williams E, Vennes C, and Hijmans MRJ. 2019. Geosphere: spherical trigonometry. p 1.5–7.

  • Hill H, Trathan P, Croxall J, Watkins J (1996) A comparison of Antarctic krill Euphausia superba caught by nets and taken by Macaroni penguins Eudyptes chrysolophus: evidence for selection? Mar Ecol Prog Ser 140:1–11

    Google Scholar 

  • Hindell MA, Reisinger RR, Ropert-Coudert Y, Hückstädt LA, Trathan PN, Bornemann H, Charrassin J-B, Chown SL, Costa DP, Danis B (2020) Tracking of marine predators to protect Southern Ocean ecosystems. Nature 580:87–92

    CAS  PubMed  Google Scholar 

  • Humphries GRW (2015) Estimating regions of oceanographic importance for seabirds using a—spatial data. PLoS ONE 10:e0137241. https://doi.org/10.1371/journal.pone.0137241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson S, Ryan PG (1986) Differential digestion rates of prey by White-chinned Petrels (Procellaria aequinoctialis). Auk 103:617–619

    Google Scholar 

  • Laich AG, Wilson RP, Gleiss AC, Shepard EL, Quintana F (2011) Use of overall dynamic body acceleration for estimating energy expenditure in cormorants: does locomotion in different media affect relationships? J Exp Mar Biol Ecol 399:151–155

    Google Scholar 

  • Lara OD, Labrador MA (2012) A survey on human activity recognition using wearable sensors. IEEE Commun Surv Tutor 15:1192–1209

    Google Scholar 

  • Lescroël A, Ridoux V, Bost CA (2004) Spatial and temporal variation in the diet of the Gentoo penguin (Pygoscelis papua) at Kerguelen Islands. Polar Biol 27:206–216. https://doi.org/10.1007/s00300-003-0571-3

    Article  Google Scholar 

  • Ludynia K, Dehnhard N, Poisbleau M, Demongin L, Masello J, Quillfeldt P (2012) Evaluating the impact of handling and logger attachment on foraging parameters and physiology in Southern Rockhopper penguins. PLoS ONE 7:e50429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luque S (2007) Diving behaviour analysis in R. R News 7:8–14

    Google Scholar 

  • Luque S, Guinet C (2007) A maximum likelihood approach for identifying dive bouts improves accuracy, precision and objectivity. Behaviour 144:1315–1332

    Google Scholar 

  • McConnell B, Chambers C, Fedak M (1992) Foraging ecology of southern elephant seals in relation to the bathymetry and productivity of the Southern Ocean. Antarct Sci 4:393–398

    Google Scholar 

  • McInnes AM, McGeorge C, Ginsberg S, Pichegru L, Pistorius PA (2017) Group foraging increases foraging efficiency in a piscivorous diver, the African penguin. R Soc Open Sci 4:170918

    PubMed  PubMed Central  Google Scholar 

  • McNair JN (1982) Optimal giving-up times and the marginal value theorem. Am Nat 119:511–529

    Google Scholar 

  • Meyer D, Dimitriadou E, Hornik K, Weingessel A, and Leisch F. 2019. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: e1071), TU Wien. R package version 1.7–0.1 ed.

  • Mori Y (1998) The optimal patch use in divers: optimal time budget and the number of dive cycles during bout. J Theor Biol 190:187–199

    Google Scholar 

  • Mori Y, Boyd IL (2004a) The behavioral basis for nonlinear functional responses and optimal foraging in Antarctic fur seals. Ecology 85:398–410. https://doi.org/10.1890/03-4005

    Article  Google Scholar 

  • Mori Y, Boyd IL (2004b) Segregation of foraging between two sympatric penguin species: does rate maximisation make the difference? Mar Ecol Prog Ser 275:241–249

    Google Scholar 

  • Ponganis P, Kooyman G (2000) Diving physiology of birds: a history of studies on polar species. Comp Biochem Physiol A Mol Integr Physiol 126:143–151

    CAS  PubMed  Google Scholar 

  • Ponganis PJ, Kooyman GL, Castellini MA (1993) Determinants of the aerobic dive limit of Weddell seals: analysis of diving metabolic rates, postdive end tidal PO2’s, and blood and muscle oxygen stores. Physiol Zool 66:732–749

    Google Scholar 

  • Poupart TA, Waugh SM, Bost CA, Kato A, Miskelly CM, Rogers KM, Arnould JP (2019) Foraging ecology of a winter breeder, the Fiordland penguin. Mar Ecol Prog Ser 614:183–197

    Google Scholar 

  • Qasem L, Cardew A, Wilson A, Griffiths I, Halsey LG, Shepard EL, Gleiss AC, Wilson R (2012) Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector? PLoS ONE 7:e31187

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Austria

    Google Scholar 

  • Sakamoto KQ, Sato K, Ishizuka M, Watanuki Y, Takahashi A, Daunt F, Wanless S (2009a) Can ethograms be automatically generated using body acceleration data from free-ranging birds? PLoS ONE 4:e5379. https://doi.org/10.1371/journal.pone.0005379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto KQ, Takahashi A, Iwata T, Trathan PN (2009b) From the eye of the albatrosses: a bird-borne camera shows an association between albatrosses and a killer whale in the Southern Ocean. PLoS ONE 4:e7322

    PubMed  PubMed Central  Google Scholar 

  • Sato Charrassin J-Bt, Bost C-A, and Naito Y. K (2004) Why do Macaroni penguins choose shallow body angles that result in longer descent and ascent durations? J Exp Biol 207:4057–4065. https://doi.org/10.1242/jeb.01265

    Article  Google Scholar 

  • Schaafsma FL, Cherel Y, Flores H, Van Franeker JA, Lea M-A, Raymond B, Van De Putte AP (2018) The energetic value of zooplankton and nekton species of the Southern Ocean. Mar Biol 165:129

    PubMed  PubMed Central  Google Scholar 

  • Schreer JF, Kovacs KM, O’Hara HR (2001) Comparative diving patterns of pinnipeds and seabirds. Ecol Monogr 71:137–162

    Google Scholar 

  • Soanes LM, Arnould JPY, Dodd SG, Milligan G, Green JA (2014) Factors affecting the foraging behaviour of the European shag: implications for seabird tracking studies. Mar Biol 161:1335–1348. https://doi.org/10.1007/s00227-014-2422-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton G, Pichegru L, Botha JA, Kouzani AZ, Adams S, Bost CA, Arnould JPY (2020) Multi-predator assemblages, dive type, bathymetry and sex influence foraging success and efficiency in African penguins. PeerJ 8:e9380. https://doi.org/10.7717/peerj.9380

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutton GJ, Hoskins AJ, Arnould JP (2015) Benefits of group foraging depend on prey type in a small marine predator, the little penguin. PLoS ONE 10:e0144297

    PubMed  PubMed Central  Google Scholar 

  • Sutton GJ, Hoskins AJ, Berlincourt M, Arnould JP (2017) Departure time influences foraging associations in little penguins. PLoS ONE 12:e0182734

    PubMed  PubMed Central  Google Scholar 

  • Takahashi A, Dunn M, Trathan P, Croxall J, Wilson RP, Sato K, Naito Y (2004a) Krill-feeding behaviour in a chinstrap penguin compared to fish-eating in Magellanic penguins: a pilot study. Mar Ornithol 32:47–54

    Google Scholar 

  • Takahashi A, Kokubun N, Mori Y, Shin H-C (2008) Krill-feeding behaviour of Gentoo penguins as shown by animal-borne camera loggers. Polar Biol 31:1291–1294

    Google Scholar 

  • Takahashi A, Sato K, Naito Y, Dunn M, Trathan P, Croxall J (2004b) Penguin–mounted cameras glimpse underwater group behaviour. Proc Biol Sci 271:S281–S282

    PubMed  PubMed Central  Google Scholar 

  • Takahashi A, Sato K, Nishikawa J, Watanuki Y, Naito Y (2004c) Synchronous diving behavior of Adélie penguins. J Ethol 22:5–11

    Google Scholar 

  • Thiebault A, Charrier I, Aubin T, Green DB, Pistorius PA (2019) First evidence of underwater vocalisations in hunting penguins. Peer J 7:e8240

    PubMed  PubMed Central  Google Scholar 

  • Thiebault A, Mullers RHE, Pistorius PA, Tremblay Y (2014) Local enhancement in a seabird: reaction distances and foraging consequence of predator aggregations. Behav Ecol 25:1302–1310. https://doi.org/10.1093/beheco/aru132

    Article  Google Scholar 

  • Thiebot JB, Arnould JP, Gómez-Laich A, Ito K, Kato A, Mattern T, Mitamura H, Noda T, Poupart T, Quintana F (2017) Jellyfish and other gelata as food for four penguin species—insights from predator-borne videos. Front Ecol Environ 15:437–441

    Google Scholar 

  • Trathan P, Green C, Tanton J, Peat H, Poncet J, Morton A (2006) Foraging dynamics of macaroni penguins Eudyptes chrysolophus at South Georgia during brood-guard. Mar Ecol Prog Ser 323:239–251

    Google Scholar 

  • Tremblay Y, Cherel Y (1999) Synchronous underwater foraging behavior in penguins. The Condor 101:179–185

    Google Scholar 

  • Tremblay Y, Cherel Y, Oremus M, Tveraa T, Chastel O (2003) Unconventional ventral attachment of time—depth recorders as a new method for investigating time budget and diving behaviour of seabirds. J Exp Biol 206:1929–1940. https://doi.org/10.1242/jeb.00363

    Article  PubMed  Google Scholar 

  • Tremblay Y, Thiebault A, Mullers R, Pistorius P (2014) Bird-borne video-cameras show that seabird movement patterns relate to previously unrevealed proximate environment, not prey. PLoS ONE 9:e88424

    PubMed  PubMed Central  Google Scholar 

  • Viviant M, Trites AW, Rosen DA, Monestiez P, Guinet C (2010) Prey capture attempts can be detected in Steller sea lions and other marine predators using accelerometers. Polar Biol 33:713–719

    Google Scholar 

  • Volpov BL, Hoskins AJ, Battaile BC, Viviant M, Wheatley KE, Marshall G, Abernathy K, Arnould JP (2015) Identification of Prey Captures in Australian Fur Seals (Arctocephalus pusillus doriferus) Using Head-Mounted Accelerometers: Field Validation with Animal-Borne Video Cameras. PLOS ONE 10(6):e0128789

    PubMed  PubMed Central  Google Scholar 

  • Votier SC, Bearhop S, MacCormick A, Ratcliffe N, Furness RW (2003) Assessing the diet of great skuas, Catharacta skua, using five different techniques. Polar Biol 26:20–26. https://doi.org/10.1007/s00300-002-0446-z

    Article  Google Scholar 

  • Warham J (1975) The crested penguins. In: Stonehouse B (ed) The biology of penguins. University Park Press, Baltimore, pp 189–269

    Google Scholar 

  • Watanabe YY, Payne NL, Semmens JM, Fox A, Huveneers C (2019) Hunting behaviour of white sharks recorded by animal-borne accelerometers and cameras. Mar Ecol Prog Ser 621:221–227

    Google Scholar 

  • Watanabe YY, Ito M, Takahashi A (2014) Testing optimal foraging theory in a penguin-krill system. Proc Biol Sci 281:20132376–20132376. https://doi.org/10.1098/rspb.2013.2376

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe YY, Takahashi A (2013) Linking animal-borne video to accelerometers reveals prey capture variability. Proc Natl Acad Sci 110:2199–2204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanuki Y, Takahashi A, Daunt F, Sato K, Miyazaki N, Wanless S (2007) Underwater images from bird-borne cameras provide clue to poor breeding success of shags in 2005. Br Birds 100:466

    Google Scholar 

  • Wei Q, Dunbrack RL Jr (2013) The role of balanced training and testing data sets for binary classifiers in bioinformatics. PLoS ONE 8:e67863–e67863. https://doi.org/10.1371/journal.pone.0067863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weimerskirch H, Pinaud D, Pawlowski F, Bost CA (2007) Does prey capture induce area-restricted search? A fine-scale study using GPS in a marine predator, the wandering albatross. Am Nat 170:734. https://doi.org/10.1086/522059

    Article  PubMed  Google Scholar 

  • Wilson RP, Wilson MPT, McQuaid L (1986) Group size in foraging African penguins (Spheniscus demersus). Ethology 72:338–341

    Google Scholar 

  • Woehler 1993 The distribution and abundance of Antarctic and Subantarctic penguins compiled on behalf of the SCAR bird biology Subcommittee Scar

  • Wood SN (2004) Stable and efficient multiple smoothing parameter estimation for generalized additive models. J Am Stat Assoc 99:673–686

    Google Scholar 

  • Yoda K, Murakoshi M, Tsutsui K, Kohno H (2011) Social interactions of juvenile brown boobies at sea as observed with animal-borne video cameras. PLoS ONE 6:e19602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuur A, Ieno EN, Walker N, Saveliev AA, and Smith GM. 2009. Mixed effects models and extensions in ecology with R: Springer Science and Business Media.

Download references

Acknowledgements

We would like to thank the research assistants of “Oiseaux Plongeurs” Prog. No. 394 who assisted in the fieldwork of this project and Institut polaire français Paul-Emile Victor for logistical assistance provided as well as two annonymous reviewers for their valuable comments on this paper.

Funding

This work is included in the research programme “Oiseaux Plongeurs” Prog. No.394, funded and logistically supported by IPEV (Institut Polaire Français Paul Emile Victor). Travel between Australia and French overseas territories was partially funded by the Nicolas Baudin Travel Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Sutton.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

Fieldwork conducted on the Macaroni penguins was authorised by the Comité Ethique Polaire (CEP 13/6/2017). Permission to work on the Macaroni penguins and logistical assistance was provided by Terres australes et antarctiques françaises (TAAF).

Additional information

Responsible editor V. Paiva.

Reviewed by undisclosed experts.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutton, G.J., Bost, C.A., Kouzani, A.Z. et al. Fine-scale foraging effort and efficiency of Macaroni penguins is influenced by prey type, patch density and temporal dynamics. Mar Biol 168, 3 (2021). https://doi.org/10.1007/s00227-020-03811-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-020-03811-w

Navigation