Altringham JD, Block BA (1997) Why do tuna maintain elevated slow muscle temperatures? Power output of muscle isolated from endothermic and ectothermic fish. J Exp Biol 200:2617–2627
CAS
PubMed
Google Scholar
Bayliff WH (2001) Organization, functions, and achievements of the Inter-American Tropical Tuna Commission. Special Report 13 (page 14)
Barrett I, Hester FJ (1964) Body temperature of yellowfin and skipjack tunas in relation to sea surface temperature. Nature 203:96–97
CAS
PubMed
Google Scholar
Bernal D, Sepulveda C, Mathieu-Costello O, Graham JB (2003) Comparative studies of high performance swimming in sharks. I. Red muscle morphometrics, vascularization and ultrastructure. J Exp Biol 206:2831–2843
CAS
PubMed
Google Scholar
Bernal D, Brill RW, Dickson KA, Shiels HA (2017) Sharing the water column: physiological mechanisms underlying species-specific habitat use in tunas. Rev Fish Biol Fisheries 27:843–880
Google Scholar
Bestley S, Patterson TA, Hindell MA, Gunn JS (2008) Feeding ecology of wild migratory tunas revealed by archival tag records of visceral warming. J Animal Ecol 77:1223–1233
Google Scholar
Carey FG, Teal JM (1966) Heat conservation in tuna fish muscle. Proc Natl Acad Sci 56:1464–1469
CAS
PubMed
Google Scholar
Carey FG, Teal JM (1969) Regulation of body temperature by the bluefin tuna. Comp Biochem Physiol 28:205–213
CAS
PubMed
Google Scholar
Carey FG, Kanwisher JW, Stevens ED (1984) Bluefin tuna warm their viscera during digestion. J Exp Biol 109:1–20
Google Scholar
Carey FG, Teal JM, Kanwisher JW, Lawson KD (1971) Warm-bodied fish. Am Zoologist 11:137–145
Google Scholar
Clark TD, Taylor BD, Seymour RS, Ellis D, Buchanan J, Fitzgibbon QP, Frappell PB (2008) Moving with the beat: heart rate and visceral temperature of free-swimming and feeding bluefin tuna. Proc R Soc Lond B Biol Sci 275:2841–2850
CAS
Google Scholar
Clark TD, Brandt WT, Nogueira J, Rodriguez LE, Price M, Farwell CJ, Block BA (2010) Postprandial metabolism of Pacific bluefin tuna (Thunnus orientalis). J Exp Biol 213:2379–2385
CAS
PubMed
Google Scholar
Collette BB (1995) Scombridae. Atunes, bacoretas, bonitos, caballas, estorninos, melva, etc. In: Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem V (eds) Guia FAO para Identification de Especies para lo Fines de la Pesca. Pacifico Centro-Oriental. 3 Vols. FAO, Rome. pp 1521–1543
Collette BB, Nauen CE (1983) FAO Species Catalogue. Vol. 2. Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. Rome: FAO. FAO Fish. Synop. 125(2):137 p
Dickson KA (1994) Tunas as small as 207 mm fork length can elevate muscle temperatures significantly above ambient water temperature. J Exp Biol 190:79–93
CAS
PubMed
Google Scholar
Dickson JM, Dickson KA (2019) Ontogenetic change in the amount and position of slow-oxidative myotomal muscle in relationship to regional endothermy in juvenile yellowfin tuna Thunnus albacares. J Fish Biol 95:940–951
CAS
PubMed
Google Scholar
Dickson KA, Graham JB (2004) Evolution and consequences of endothermy in fishes. Physiol Biochem Zool 77:998–1018
PubMed
Google Scholar
Dickson KA, Johnson NM, Donley JM, Hoskinson JA, Hansen MW, D'Souza Tessier J (2000) Ontogenetic changes in characteristics required for endothermy in juvenile black skipjack tuna (Euthynnus lineatus). J Exp Biol 203:3077–3087
CAS
PubMed
Google Scholar
Fudge DS, Stevens ED (1996) The visceral retia mirabilia of tuna and sharks: an annotated translation and discussion of the Eschricht & Müller 1835 paper and related papers. Guelph Ichthyo Rev 4:1–53
Google Scholar
Fujioka K, Fukuda H, Furukawa S, Tei Y, Okamoto S, Ohshimo S (2018a) Habitat use and movement patterns of small (age-0) juvenile Pacific bluefin tuna (Thunnus orientalis) relative to the Kuroshio. Fish Oceanogr 27:185–198
Google Scholar
Fujioka K, Fukuda H, Tei Y, Okamoto S, Kiyofuji H, Furukawa S, Takagi J, Estess E, Farwell CJ, Fuller DW, Suzuki N, Ohshimo S, Kitagawa T (2018b) Spatial and temporal variability in the trans-Pacific migration of Pacific bluefin tuna (Thunnus orientalis) revealed by archival tags. Prog Oceanogr 162:52–65
Google Scholar
Funakoshi S, Wada K, Suzuki T (1985) Development of the rete mirabile with growth and muscle temperature in the young bluefin tuna. Bull Jpn Soc Sci Fish 51:1971–1975
Google Scholar
Furukawa S, Fujioka K, Fukuda H, Suzuki N, Tei Y, Ohshimo S (2017) Archival tagging reveals swimming depth and ambient and peritoneal cavity temperature in age-0 Pacific bluefin tuna, Thunnus orientalis, off the southern coast of Japan. Environ Biol Fish 100:35–48
Google Scholar
Graham JB, Dickson KA (1981) Physiological thermoregulation in the albacore tuna Thunnus alalunga. Physiolog Zool 54:470–486
Google Scholar
Graham JB, Dickson KA (2000) The evolution of thunniform locomotion and heat conservation in scombrid fishes: new insights based on the morphology of Allothunnus fallai. Zoolog J Linnean Soc 129:419–466
Google Scholar
Graham JB, Dickson KA (2001) Anatomical and physiological specializations for endothermy. In: Block BA, Stevens ED (eds) Tuna: Physiology, Ecology and Evolution. Academic Press, San Diego, California, pp 121–165
Google Scholar
Graham JB, Dickson KA (2004) Tuna comparative physiology. J Exp Biol 207:4015–4024
PubMed
Google Scholar
Graham JB, Koehrn FJ, Dickson KA (1983) Distribution and relative proportions of red muscle in scombrid fishes: consequences of body size and relationships to locomotion and endothermy. Can J Zool 61:2087–2096
Google Scholar
Humason GL (1979) Animal tissue techniques, 4th edn. W.H. Freeman, San Francisco
Google Scholar
Itoh T, Tsuji S, Nitta A (2003a) Migration patterns of young Pacific bluefin tuna (Thunnus orientalis) determined with archival tags. Fish Bull 101:514–534
Google Scholar
Itoh T, Tsuji S, Nitta A (2003b) Swimming depth, ambient water temperature preference, and feeding frequency of young Pacific bluefin tuna (Thunnus orientalis) determined with archival tags. Fish Bull 101:535–544
Google Scholar
Johnston IA, Brill R (1984) Thermal dependence of contractile properties of single skinned muscle fibers from Antarctic and various warm water marine fishes including skipjack tuna (Katsuwonus pelamis) and kawakawa (Euthynnus affinis). J Comp Physiol B 155:63–70
Google Scholar
Kitagawa T, Fujioka K (2017) Rapid ontogenetic shift in juvenile Pacific bluefin tuna diet. Mar Ecol Prog Ser 571:253–257
CAS
Google Scholar
Kitagawa T, Nakata H, Kimura S, Itoh T, Tsuji S, Nitta A (2000) Effect of ambient temperature on the vertical distribution and movement of Pacific bluefin tuna Thunnus thynnus orientalis. Mar Ecol Prog Ser 206:251–260
Google Scholar
Kitagawa T, Nakata H, Kimura S, Tsuji S (2001) Thermoconservation mechanisms inferred from peritoneal cavity temperature in free-swimming Pacific bluefin tuna Thunnus thynnus orientalis. Mar Ecol Prog Ser 220:253–263
Google Scholar
Kitagawa T, Kimura S, Nakata H, Yamada H (2006) Thermal adaptation of Pacific bluefin tuna Thunnus orientalis to temperate waters. Fish Sci 72:458–458
CAS
Google Scholar
Kubo T, Sakamoto W, Murata O, Kumai H (2008) Whole-body heat transfer coefficient and body temperature change of juvenile Pacific bluefin tuna Thunnus orientalis according to growth. Fish Sci 74:995–1004
CAS
Google Scholar
Linthicum DS, Carey FG (1972) Regulation of brain and eye temperatures by the bluefin tuna. Comp Biochem Physiol 43A:425–433
Google Scholar
Magnuson JJ (1973) Comparative study of adaptations for continuous swimming and hydrostatic equilibrium of scombroid and xiphoid fishes. Fish Bull 71:337–356
Google Scholar
Magnuson JJ (1978) Locomotion by scombrid fishes: hydromechanics, morphology, and behavior. In: Hoar WS, Randall DJ (eds) Fish Physiology, vol VII. San Diego, California, pp 239–313
Marcinek DJ, Blackwell SB, Dewar H, Freund EV, Farwell C, Dau D, Seitz AC, Block BA (2001) Depth and muscle temperature of Pacific bluefin tuna examined with acoustic and pop-up satellite archival tags. Mar Biol 138:869–885
Google Scholar
Reglero P, Tittensor DP, Álvarez-Berastegui D, Aparicio-González A, Worm B (2014) Worldwide distributions of tuna larvae: revisiting hypotheses on environmental requirements for spawning habitats. Mar Ecol Prog Ser 501:207–224
Google Scholar
Sawada Y, Okada T, Miyashita S, Murata O, Kumai H (2005) Completion of the Pacific bluefin tuna Thunnus orientalis (Temminck et Schlegel) life cycle. Aquac Res 36:413–421
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675
CAS
PubMed
PubMed Central
Google Scholar
Schaefer KM (1985) Body temperatures in troll-caught frigate tuna, Auxis thazard. Copeia 1985:231–233
Google Scholar
Sepulveda CA, Wegner NC, Bernal D, Graham JB (2005) The red muscle morphology of the thresher sharks (family Alopiidae). J Exp Biol 208:4255–4261
CAS
PubMed
Google Scholar
Sepulveda CA, Dickson KA, Frank LR, Graham JB (2007) Cranial endothermy and a putative brain heater in the most basal tuna species, Allothunnus fallai. J Fish Biol 70:1720–1733
Google Scholar
Sepulveda CA, Dickson KA, Bernal D, Graham JB (2008) Elevated red myotomal muscle temperatures in the most basal tuna species, Allothunnus fallai. J Fish Biol 73:241–249
Google Scholar
Shimose T, Tanabe T, Chen KS, Hsu CC (2009) Age determination and growth of Pacific bluefin tuna, Thunnus orientalis, off Japan and Taiwan. Fish Res 100:134–139
Google Scholar
Shimose T, Watanabe H, Tanabe T, Kubodera T (2013) Ontogenetic diet shift of age-0 year Pacific bluefin tuna Thunnus orientalis. J Fish Biol 82:263–276
CAS
PubMed
Google Scholar
Stevens ED, Fry FEJ (1971) Brain and muscle temperatures in ocean caught and captive skipjack tuna. Comp Biochem Physiol Part A 38:203–211
Google Scholar
Stevens ED, McLeese JM (1984) Why bluefin tuna have warm tummies: temperature effect on trypsin and chymotrypsin. Am J Physiol 246:R487–R494
CAS
PubMed
Google Scholar
Temminck CJ, Schlegel H (1844) Pisces. in Fauna Japonica, sive descriptio animalium quae in itinere per Japoniam suscepto annis 1823–30 collegit, notis observationibus et adumbrationibus illustravit P. F de Siebold Parts 5–6:73–112
Google Scholar
Tsuda Y, Sakamoto W, Yamamoto S, Murata O (2012) Effect of environmental fluctuations on mortality of juvenile Pacific bluefin tuna, Thunnus orientalis, in closed life-cycle aquaculture. Aquaculture 330:142–147
Google Scholar
Wegner N, Snodgrass OE, Dewar H, Hyde JR (2015) Whole-body endothermy in a mesopelagic fish, the opah, Lampris guttatus. Science 348:786–789
CAS
PubMed
Google Scholar
Whitlock RE, Walli A, Cermeño P, Rodriguez LE, Farwell C, Block BA (2013) Quantifying energy intake in Pacific bluefin tuna (Thunnus orientalis) using the heat increment of feeding. J Exp Biol 216:4109–4123
CAS
PubMed
Google Scholar