Skip to main content

Nontargeted lipidomics in nesting females of three sea turtle species in Florida by ultra-high-pressure liquid chromatography–high-resolution tandem mass spectrometry (UHPLC–HRMS/MS) reveals distinct species-specific lipid signatures

Abstract

In recent years, the utility of lipidomics has been recognized in environmental toxicology and biomonitoring efforts due to the ubiquitous nature and importance of lipids in many cellular processes including signal transduction, energy storage, and cellular compartmentalization. Additionally, technological advances in high-resolution mass spectrometry have enabled the rapid expansion of the field, creating a surge in interest in comparative studies of lipid metabolism from a Systems Biology standpoint. Here, we adapted a nontargeted lipidomic approach for the study of plasma samples from nesting female leatherback (Dermochelys coriacea), loggerhead (Caretta caretta), and green (Chelonia mydas) sea turtles in Florida using ultra-high-performance liquid chromatography/high-resolution tandem mass spectrometry. We identified 877 lipids in common between the three species, of which the concentrations for 467 lipids were statistically different between two or more group comparisons. Principal component analysis revealed unique lipidomic signatures associated with each species of turtle, including various glycerophosphatidylcholines, glycerophosphatidylethanolamines, triacylglycerols, and oxidized triacylglycerols that were higher in leatherback sea turtles, diacylglycerols and select glycerophosphatidylinositols which were higher in loggerhead sea turtles, and specific plasmanyl-phosphatidylcholines that were higher in green sea turtles. Our results indicate that lipidomic profiling can be a useful tool for studying lipid metabolism and physiology of different species of sea turtles, while establishing baseline data that may be used as reference in future studies for observation of differences in life stages, for following spatial and temporal trends in nesting turtles, and for investigating population dynamics in response to various stressors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

The datasets collected and analyzed during the current study are available from the corresponding author on reasonable request. A table of the normalized concentration of each unique lipid identified in this study will be provided in a supplemental word file.

Abbreviations

AcCar:

Acyl-carnitine

CE:

Cholesteryl ester

Cer-NDS:

Ceramide non-hydroxyfatty acid-dihydrosphingosine

Cer-NS:

Ceramide non-hydroxyfatty acid-sphingosine

Co:

Coenzyme

DG:

Diacylglycerol

DMPE:

Dimethyl-phosphatidylethanolamine

HexCer-NS:

Hexosylceramide non-hydroxyfatty acid-sphingosine

LPC:

Lyso-glycerophosphatidylcholine

LPE:

Lyso-glycerophosphatidylethanolamine

MGDG:

Monogalactosyldiacylglycerol

Ox:

Oxidized

PC:

Glycerophosphatidylcholine

TG:

Triacylglycerol

PE:

Glycerophosphatidylethanolamine

PEtOH:

Glycerophosphatidylethanol

PI:

Glycerophosphatidylinositol

PS:

Glycerophosphatidylserine

SM:

Sphingomyelin

References

  1. Ames AL, Van Vleet ES, Dawes C (2007) Characterization of lipids in aquatic vegetation from the west coast of Florida. Florida Sci 70:264–274. Retrieved June 22, 2020, from https://www.jstor.org/stable/24321392

  2. Bangma JT, Ragland JM, Rainwater TR, Bowden JA, Gibbons JW, Reiner JL (2019) Perfluoroalkyl substances in diamondback terrapins (Malaclemys terrapin) in coastal South Carolina. Chemosphere 215:305–312. https://doi.org/10.1016/j.chemosphere.2018.10.023

    CAS  Article  PubMed  Google Scholar 

  3. Bembenek Bailey SA, Niemuth JN, McClellan-Green PD, Godfrey MH, Harms CA, Stoskopf MK (2017) (1)H-NMR metabolomic study of whole blood from hatchling loggerhead sea turtles (Caretta caretta) exposed to crude oil and/or Corexit. R Soc open Sci 4:171433. https://doi.org/10.1098/rsos.171433

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bjorndal KA (1997) Foraging ecology and nutrition of sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles, vol I. CRC Press, Boca Raton, pp 199–232

    Google Scholar 

  5. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/y59-099

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Braverman NE, Moser AB (2012) Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta Mol Basis Dis 1822:1442–1452. https://doi.org/10.1016/j.bbadis.2012.05.008

    CAS  Article  Google Scholar 

  7. Chapelle S (1977) Lipid composition of tissues of marine crustaceans. Biochem Syst Ecol 5:241–248. https://doi.org/10.1016/0305-1978(77)90010-2

    CAS  Article  Google Scholar 

  8. Chong J, Wishart DS, Xia J (2019) Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinforma 68:e86. https://doi.org/10.1002/cpbi.86

    Article  Google Scholar 

  9. Craven KS, Parsons J, Taylor SA, Belcher CN, Owens DW (2008) The influence of diet on fatty acids in the egg yolk of green sea turtles, Chelonia mydas. J Comp Physiol B 178:495–500. https://doi.org/10.1007/s00360-007-0242-8

    CAS  Article  PubMed  Google Scholar 

  10. Deem SL, Norton TM, Mitchell M, Segars A, Alleman AR, Cray C, Poppenga RH, Dodd M, Karesh WB (2009) Comparison of blood values in foraging, nesting, and stranded loggerhead turtles (Caretta caretta) along the coast of Georgia, USA. J Wildl Dis 45:41–56. https://doi.org/10.7589/0090-3558-45.1.41

    CAS  Article  PubMed  Google Scholar 

  11. Derickson WK (1976) Lipid storage and utilization in reptiles. Integr Comp Biol 16:711–723. https://doi.org/10.1093/icb/16.4.711

    CAS  Article  Google Scholar 

  12. Giroud S, Chery I, Bertile F, Bertrand-Michel J, Tascher G, Gauquelin-Koch G, Arnemo JM, Swenson JE, Singh NJ, Lefai E, Evans AL, Simon C, Blanc S (2019) Lipidomics reveals seasonal shifts in a large-bodied hibernator, the brown bear. Front Physiol 10:389. https://doi.org/10.3389/fphys.2019.00389

    Article  PubMed  PubMed Central  Google Scholar 

  13. Goldberg DW, Leitão SAT, Godfrey MH, Lopez GG, Santos AJB, Neves FA, de Souza ÉPG, Moura AS, da Bastos JC, da Bastos VLFC (2013) Ghrelin and leptin modulate the feeding behaviour of the hawksbill turtle Eretmochelys imbricata during nesting season. Conserv Physiol 1:cot016. https://doi.org/10.1093/conphys/cot016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Hamann M, Limpus C, Whittier J (2002) Patterns of lipid storage and mobilisation in the female green sea turtle (Chelonia mydas). J Comp Physiol B 172:485–493. https://doi.org/10.1007/s00360-002-0271-2

    CAS  Article  PubMed  Google Scholar 

  15. Han X (2007) Neurolipidomics: challenges and developments. Front Biosci 12:2601–2615. https://doi.org/10.2741/2258

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry a bridge to lipidomics. J Lipid Res 44:1071–1079. https://doi.org/10.1194/jlr.R300004-JLR200

    CAS  Article  PubMed  Google Scholar 

  17. Honarvar S, Brodsky MC, Fitzgerald DB, Rosenthal KL, Hearn GW (2011) Changes in plasma chemistry and reproductive output of nesting leatherbacks. Herpetologica 67:222–235. https://doi.org/10.1655/HERPETOLOGICA-D-10-00061.1

    Article  Google Scholar 

  18. Ivanova PT, Milne SB, Brown HA (2010) Identification of atypical ether-linked glycerophospholipid species in macrophages by mass spectrometry. J Lipid Res 51:1581–1590. https://doi.org/10.1194/jlr.D003715

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Koelmel JP, Kroeger NM, Gill EL, Ulmer CZ, Bowden JA, Patterson RE, Yost RA, Garrett TJ (2017) Expanding lipidome coverage using LC-MS/MS data-dependent acquisition with automated exclusion list generation. J Am Soc Mass Spectrom 28:908–917. https://doi.org/10.1007/s13361-017-1608-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Koelmel JP, Ulmer CZ, Fogelson S, Jones CM, Botha H, Bangma JT, Guillette TC, Luus-Powell WJ, Sara JR, Smit WJ, Albert K, Miller HA, Guillette MP, Olsen BC, Cochran JA, Garrett TJ, Yost RA, Bowden JA (2019) Lipidomics for wildlife disease etiology and biomarker discovery: a case study of pansteatitis outbreak in South Africa. Metabolomics 15:38. https://doi.org/10.1007/s11306-019-1490-9

    CAS  Article  PubMed  Google Scholar 

  21. Lance VA, Place AR, Grumbles JS, Rostal DC (2002) Variation in plasma lipids during the reproductive cycle of male and female desert tortoises, Gopherus agassizii. J Exp Zool 293:703–711. https://doi.org/10.1002/jez.10160

    CAS  Article  PubMed  Google Scholar 

  22. Mayzaud P, Lacombre S, Boutoute M (2011) Seasonal and growth stage changes in lipid and fatty acid composition in the multigeneration copepod Drepanopus pectinatus from Iles Kerguelen. Antarct Sci 23:3–17. https://doi.org/10.1017/S0954102010000519

    Article  Google Scholar 

  23. Niemuth JN, Harms CA, Macdonald JM, Stoskopf MK (2020) NMR-based metabolomic profile of cold stun syndrome in loggerhead Caretta caretta, green Chelonia mydas and Kemp’s ridley Lepidochelys kempii sea turtles in North Carolina, USA. Wildlife Biol 2020:1. https://doi.org/10.2981/wlb.00587

    Article  Google Scholar 

  24. Perrault JR, Stacy NI (2018) Note on the unique physiologic state of loggerhead sea turtles (Caretta caretta) during nesting season as evidenced by a suite of health variables. Mar Biol 165:71. https://doi.org/10.1007/s00227-018-3331-1

    Article  Google Scholar 

  25. Plot V, Jenkins T, Robin J-P, Fossette S, Georges J-Y (2013) Leatherback turtles are capital breeders: morphometric and physiological evidence from longitudinal monitoring. Physiol Biochem Zool 86:385–397. https://doi.org/10.1086/671127

    Article  PubMed  Google Scholar 

  26. Price ER (2017) The physiology of lipid storage and use in reptiles. Biol Rev 92:1406–1426. https://doi.org/10.1111/brv.12288

    Article  PubMed  Google Scholar 

  27. Rocchetta I, Pasquevich MY, Heras H, de Molina MDCR, Luquet CM (2014) Effects of sewage discharges on lipid and fatty acid composition of the Patagonian bivalve Diplodon chilensis. Mar Pollut Bull 79:211–219. https://doi.org/10.1016/j.marpolbul.2013.12.011

    CAS  Article  PubMed  Google Scholar 

  28. Schock T, Keller MJ, Rice M, Balazs GH, Bearden DW (2013) Metabotyping of a protected non-model organism, green sea turtle (Chelonia mydas), using 1H NMR spectroscopy and optimized plasma methods for metabolomics. Curr Metabolomics 1:279–290. https://doi.org/10.2174/2213235X01999140101150107

    CAS  Article  Google Scholar 

  29. Shevchenko A, Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol cell Biol 11:593–598. https://doi.org/10.1038/nrm2934

    CAS  Article  PubMed  Google Scholar 

  30. Simandle ET, Espinoza RE, Nussear KE, Tracy CR (2001) Lizards, lipids, and dietary links to animal function. Physiol Biochem Zool 74:625–640. https://doi.org/10.1086/322923

    CAS  Article  PubMed  Google Scholar 

  31. Stacy NI, Innis CJ (2017) Clinical pathology. In: Manire CA, Norton TM, Stacy BA, Harms CA, Innis CJ (eds) Sea turtle health and rehabilitation. Plantation. J. Ross Publishing, Florida, pp 147–207

    Google Scholar 

  32. Stacy BA, Wellehan JFX, Foley AM, Coberley SS, Herbst LH, Manire CA, Garner MM, Brookins MD, Childress AL, Jacobson ER (2008) Two herpesviruses associated with disease in wild Atlantic loggerhead sea turtles (Caretta caretta). Vet Microbiol 126:63–73. https://doi.org/10.1016/j.vetmic.2007.07.002

    CAS  Article  PubMed  Google Scholar 

  33. Stephenson DJ, Hoeferlin LA, Chalfant CE (2017) Lipidomics in translational research and the clinical significance of lipid-based biomarkers. Transl Res 189:13–29. https://doi.org/10.1016/j.trsl.2017.06.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Wetzel DL, Reynolds JE III, Sprinkel JM, Schwacke L, Mercurio P, Rommel SA (2010) Fatty acid profiles as a potential lipidomic biomarker of exposure to brevetoxin for endangered Florida manatees (Trichechus manatus latirostris). Sci Total Environ 408:6124–6133. https://doi.org/10.1016/j.scitotenv.2010.08.043

    CAS  Article  PubMed  Google Scholar 

  35. Zhu S, Ye M, Xu J, Guo C, Zheng H, Hu J, Chen J, Wang Y, Xu S, Yan X (2015) Lipid profile in different parts of edible jellyfish Rhopilema esculentum. J Agric Food Chem 63:8283–8291. https://doi.org/10.1021/acs.jafc.5b03145

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Derek Aoki, Christina Coppenrath, Kate Fraser, Madison Liebl, and Kim Rigano for assistance with field work and sample collection. We also thank Meghan Koperski for assistance with permit acquisition. We also thank the reviewers.

Funding

Partial funding for sample collection and nightly surveys was provided by The Albert E. and Birdie W. Einstein Fund. The corresponding author would like to acknowledge funding support from the University of Florida College of Veterinary Medicine startup package.  

Author information

Affiliations

Authors

Corresponding author

Correspondence to John A. Bowden.

Ethics declarations

Conflict of interest

AA, AMB, JJAH, JAB, JRP, NIS, and CAM declare no conflicts of interest. All authors approved the final version of this manuscript.

Ethical approval

This study was carried out in accordance with Florida Fish and Wildlife Conservation Commission Marine Turtle Permit #19-205. University of Florida’s Institutional Animal Care and Use Committee (IACUC) approved this study (#202006823).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by undisclosed experts.

Responsible Editor: L. Avens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 24 kb)

Supplementary Table S1 (PDF 452 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmadireskety, A., Aristizabal-Henao, J.J., Marqueño, A. et al. Nontargeted lipidomics in nesting females of three sea turtle species in Florida by ultra-high-pressure liquid chromatography–high-resolution tandem mass spectrometry (UHPLC–HRMS/MS) reveals distinct species-specific lipid signatures. Mar Biol 167, 131 (2020). https://doi.org/10.1007/s00227-020-03747-1

Download citation