Anestis A, Lazou A, Pörtner H-O, Michaelidis B (2007) Behavioral, metabolic, and molecular stress response of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. Am J Physiol Regul Integr Comp Physiol 293:911–921. https://doi.org/10.1152/ajpregu.00124.2007
CAS
Article
Google Scholar
Artigaud S, Lacroic C, Pichereau V, Flye-Sainte-Marie J (2014) Respiratory response to combined heat and hypoxia in the marine bivalves Pecten maximus and Mytilis spp. Comp Biochem Physiol A 175:135–140. https://doi.org/10.1016/j.cbpa.2014.06.005
CAS
Article
Google Scholar
Bakhmet IN (2017) Cardiac activity and oxygen consumption of the blue mussel (Mytilus edulis) from the White Sea in relation to body mass, ambient temperature and food availability. Polar Biol 40:1959–1964. https://doi.org/10.1007/s00300-017-2111-6
Article
Google Scholar
Bambach RK, Knoll AH, Wang SC (2004) Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522–542. https://doi.org/10.1666/0094-8373(2004)030%3c0522:OEAMDO%3e2.0.CO;2
Article
Google Scholar
Bertolino M, Betti F, Bo M, Cattaneo-Vietti R, Pansini M, Romero J, Bavestrello G (2015) Changes and stability of a Mediterranean hard bottom benthic community over 25 years. J Mar Biol Assoc UK 96:341–350. https://doi.org/10.1017/S0025315415001186
Article
Google Scholar
Beukema JJ, Dekker R, Jansen JM (2009) Some like it cold: populations of the tellinid bivalve Macoma balthica (L.) suffer in various ways from a warming climate. Mar Ecol Prog Ser 384:135–145. https://doi.org/10.3354/meps07952
Article
Google Scholar
Bode A, Álvarez-Ossorio T, González N, Lorenzo J, Rodríguez C, Varela M, Varela MM (2005) Seasonal variability of plankton blooms in the Ria de Ferrol (NW Spain): II. Plankton abundance, composition and biomass. Estuar Coast Shelf Sci 63:285–300. https://doi.org/10.1016/j.ecss.2004.11.021
Article
Google Scholar
Braby CE, Somero GN (2006) Following the heart: temperature and salinity effects on heart rate in native and invasive species of blue mussels (genus Mytilus). J Exp Biol 209:2554–2566. https://doi.org/10.1242/jeb.02259
Article
PubMed
Google Scholar
Brinkhoff W, Stöckmann K, Grieshaber M (1983) Natural occurence of anaerobiosis in molluscs from intertidal habitats. Oecol 57:151–155. https://doi.org/10.1007/BF00379573
Article
Google Scholar
Buxton CD, Newell RC, Field JG (1981) Response-surface analysis of the combined effects of exposure and acclimation temperatures on filtration, oxygen consumption and scope for growth in the oyster Ostrea edulis. Mar Ecol Prog Ser 6:73–82. https://doi.org/10.3354/meps006073
Article
Google Scholar
Calosi P, De Witt P, Thor P, Dupont S (2016) Will life find a way? Evolution of marine species under global change. Evol Appl 9:1035–1042. https://doi.org/10.1111/eva.12418
Article
PubMed
PubMed Central
Google Scholar
Cattaneo-Vietti R (2018) Structural changes in Mediterranean marine communities: lessons from the Ligurian Sea. Rend Fis Acc Lincei 29:515–524. https://doi.org/10.1007/s12210-018-0670-2
Article
Google Scholar
Coughlan J (1969) The estimation of filtering rate from the clearance of suspensions. Mar Biol 2(4):356–358
Article
Google Scholar
De Zwaan A, Wijsmann TCM (1976) Anaerobic metabolism in bivalvia (mollusca)—characteristics of anaerobic metabolism. Comp Biochem Physiol B 54:313–324. https://doi.org/10.1016/0305-0491(76)90247-9
Article
PubMed
Google Scholar
Depledge M, Andersen B (1990) A computer-aided physiological monitoring system for continuous, long-term recording of cardiac activity in selected invertebrates. Comp Biochem Physiol A 96:473–477. https://doi.org/10.1016/0300-9629(90)90664-E
Article
Google Scholar
Dickson AG (1990) Standard potential of the (AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq)) cell and the dissociation constant of bisulfate ion in synthetic sea water from 273.15 to 318.15 K. J Chem Thermodyn 22:113–127
CAS
Article
Google Scholar
Domnik NJ, Polymeropoulos ET, Elliott NG, Frappell PB, Fisher JT (2016) Automated non-invasive video-microscopy of oyster spat heart rate during acute temperature change: impact of acclimation temperature. Front Physiol 7:236. https://doi.org/10.3389/fphys.2016.00236
Article
PubMed
PubMed Central
Google Scholar
Finnegan S, Anderson SC, Harnik PG, Simpson C, Tittensor DP, Byrnes JE, Finkel ZV, Lindberg DR, Liow LH, Lockwood R, Lotze HK, McClain CR, McGuire JL, O’Dea A, Pandolfi JM (2015) Paleontological baselines for evaluating extinction risk in the modern oceans. Science 348:567–570. https://doi.org/10.1126/science.aaa6635
CAS
Article
PubMed
Google Scholar
Frederich M, Pörtner H-O (2000) Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. Am J Physiol Regul Integr Comp 279:R1531–R1538. https://doi.org/10.1152/ajpregu.2000.279.5.R1531
CAS
Article
Google Scholar
Garrabeu J, Coma R, Bensoussan N et al (2009) Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Global Change Biol 15:1090–1103. https://doi.org/10.1111/j.1365-2486.2008.01823.x
Article
Google Scholar
Giomi F, Pörtner H-O (2013) A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs. Front Physiol 4:110. https://doi.org/10.3389/fphys.2013.00110
CAS
Article
PubMed
PubMed Central
Google Scholar
Götze S, Bock C, Eymann C, Lannig G, Steffen J, Pörtner H-O (2020) Single and combined effects of the “Deadly trio” hypoxia, hypercapnia and warming on the cellular metabolism of the great scallop Pecten maximus. Comp Biochem Physiol B (in review)
Guderley H, Pörtner H-O (2010) Metabolic power budgeting and adaptive strategies in zoology: examples from scallops and fish. Can J Zool 88:753–763. https://doi.org/10.1139/Z10-039
Article
Google Scholar
Guo X, Li C, Wang H, Xu Z (2018) Diversity and evolution of oysters. J Shellfish Res 37:755–771. https://doi.org/10.2983/035.037.0407
Article
Google Scholar
Han G, Zhang S, Dong Y (2017) Anaerobic metabolism and thermal tolerance: the importance of opine pathways on survival of a gastropod after cardiac dysfunction. Integr Zool 12:361–370. https://doi.org/10.1111/1749-4877.12229
Article
PubMed
Google Scholar
Haure J, Penisson C, Bougrier S, Baud J (1998) Influence of temperature on clearance and oxygen consumption rates of the flat oyster Ostrea edulis: determination of allometric coefficients. Aquaculture 169:211–224. https://doi.org/10.1016/S0044-8486(98)00383-4
Article
Google Scholar
Hicks DW, McMahon RF (2002) Respiratory responses to temperature and hypoxia in the nonindgenous Brown Mussel, Perna perna (Bivalvia. Mytilidae) from the Gulf of Mexico. J Exp Mar Biol Ecol 277:61–78. https://doi.org/10.1016/S0022-0981(02)00276-9
Article
Google Scholar
Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New York, p 480 (ISBN 0‐195‐11702‐6)
Google Scholar
Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1524–1528. https://doi.org/10.1126/science.1189930
CAS
Article
Google Scholar
Joachimski MM, Lai X, Shen S, Jiang H, Luo G, Chen B, Chen J, Sun Y (2012) Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology 40:195–198. https://doi.org/10.1130/G32707.1
CAS
Article
Google Scholar
Jørgensen CB, Møhlenberg F, Sten-Knudsen O (1986) Nature of relation between ventilation and oxygen consumption in filter feeders. Mar Ecol Prog Ser 29:73–88. https://doi.org/10.3354/meps029073
Article
Google Scholar
Jørgensen CB, Larsen PS, Riisgård HU (1990) Effects of temperature on the mussel pump. Mar Ecol Prog Ser 64:89–97
Article
Google Scholar
Kittner C, Riisgård HU (2005) Effect of temperature on filtration rate in the mussel Mytilus edulis: no evidence for temperature compensation. Mar Ecol Prog Ser 305:147–152. https://doi.org/10.3354/meps305147
Article
Google Scholar
Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW (2007) Paleophysiology and end-Permian mass extinction. EPSL 256:295–313. https://doi.org/10.1016/j.epsl.2007.02.018
CAS
Article
Google Scholar
Koenigstein S, Mark FC, Gößling-Reisemann S, Reuter H, Pörtner H-O (2016) Modelling climate change impacts on marine fish populations: process-based integration of ocean warming, acidification and other environmental drivers. Fish Fish 17:972–1004. https://doi.org/10.1111/faf.12155
Article
Google Scholar
Lannig G, Flores JF, Sokolova IM (2006) Temperature-dependent stress response in oysters, Crassostrea virginica: pollution reduces temperature tolerance in oysters. Aquat Toxicol 79:278–287. https://doi.org/10.1016/j.aquatox.2006.06.017
CAS
Article
PubMed
Google Scholar
Lannig G, Cherkasov AS, Pörtner H-O, Bock C, Sokolova IM (2008) Cadmium-dependent oxygen limitation affects temperature tolerance in eastern oysters (Crassostrea virginica Gmelin). Am J Physiol Regul Integr Comp Physiol 294:R1338–R1346. https://doi.org/10.1152/ajpregu.00793.2007
CAS
Article
PubMed
Google Scholar
Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. United States: N.p. Technical Report ORNL/CDIAC-105, Osti.Gov. https://doi.org/10.2172/639712
Livingstone DR (1991) Origins and Evolution of pathways an anaerobic metabolism in the animal kingdom. Am Zool 31:522–534. https://doi.org/10.1093/icb/31.3.522
CAS
Article
Google Scholar
Marshall DJ, McQuaid CD (1992) Relationship between heart rate and oxygen consumption in the intertidal limets Patella granularis and Siphonaria oculus. Comp Biochem Physiol A 102:297–300. https://doi.org/10.1016/0300-9629(92)90583-C
Article
Google Scholar
Melzner F, Bock C, Pörtner H-O (2007) Allometry of thermal limitation in the cephalopod Sepia officinalis. Comp Biochem Physiol A 146:149–154. https://doi.org/10.1016/j.cbpa.2006.07.023
CAS
Article
Google Scholar
Millero FJ, DiTrolio BR (2010) Use of thermodynamics in examining the effects of ocean acidification. Elements 6:299–303. https://doi.org/10.2113/gselements.6.5.299
CAS
Article
Google Scholar
Møhlenberg F, Riisgård HU (1978) Efficiency of particle retention in 13 species of suspension feeding bivalves. Ophelia 17:239–246. https://doi.org/10.1080/00785326.1978.10425487
Article
Google Scholar
Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu R-Y, van der Giezen M, Tielens AGM, Martin W (2012) Biochemistry and evolution of anaerobic energy metabolism in Eukaryotes. Microbiol Mol Biol Rev 76:444–495. https://doi.org/10.1128/MMBR.05024-11
CAS
Article
PubMed
PubMed Central
Google Scholar
Newell RC, Johson LG, Kofoed LH (1977) Adjustment of the components of energy balance in response to temperature change in Ostrea edulis. Oecol 30:97–110. https://doi.org/10.1007/BF00345414
CAS
Article
Google Scholar
Nicholson S (2002) Ecophysiological aspects of cardiac activity in the subtropical mussel Perna viridis (L.) (Bivalvia: Mytilidae). J Exp Mar Biol Ecol 267:207–222. https://doi.org/10.1016/S0022-0981(01)00362-8
Article
Google Scholar
Nickerson DM, Facey DE, Grossman GD (1989) Estimating physiological thresholds with continuous two-phase regression. Physiol Zool 62:866–887
Article
Google Scholar
Nielsen M, Hansen BW, Vismann B (2017) Feeding traits of the European flat oyster, Ostrea edulis, and the invasive Pacific oyster, Crassostrea gigas. Mar Biol 164:6. https://doi.org/10.1007/s00227-016-3041-5
Article
Google Scholar
Ortmann C, Grieshaber MK (2003) Energy metabolism and valve closure behaviour in the Asian Clam Corbidula fluminea. J Exp Biol 206:4167–4178. https://doi.org/10.1242/jeb.00656
CAS
Article
PubMed
Google Scholar
Pazos AJ, Román G, Acosta CP, Abad M, Sánchez JL (1997) Seasonal changes in condition and biochemical composition of the scallop Pecten maximus L. from suspended culture in the Ria de Arousa (Galicia, N.W. Spain) in relation to environmental conditions. J Exp Mar Biol Ecol 211:169–193. https://doi.org/10.1016/S0022-0981(96)02724-4
CAS
Article
Google Scholar
Penn JL, Deutsch C, Payne JL, Sperling EA (2018) Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362:eaat1327. https://doi.org/10.1126/science.aat1327
CAS
Article
PubMed
Google Scholar
Petersen JK, Sejr MK, Larsen JEN (2003) Clearance rates in the Arctic bivalve Hiatella arctica and Mya sp. Polar Biol 26:334–341. https://doi.org/10.1007/s00300-003-0483-2
Article
Google Scholar
Poloczanska E, Brown C, Sydeman W, Kiessling W, Schoeman D, Moore P, Brander K, Bruno JF, Buckley LB, Burrows MT, Duarte C, Halpern BS, Holding J, Kappel CV, O’Connor MI, Pandolfi JM, Parmesan C, Schwing F, Thompson SA, Richardson AJ (2013) Global imprint of climate change on marine life. Nat Clim Change 3:919–925. https://doi.org/10.1038/nclimate1958
Article
Google Scholar
Pörtner H-O (2001) Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88:137–146. https://doi.org/10.1007/s001140100216
Article
PubMed
Google Scholar
Pörtner H-O (2010) Oxygen-and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 213:881–893. https://doi.org/10.1242/jeb.037523
Article
PubMed
Google Scholar
Pörtner H-O (2014) How and how not to investigate the oxygen and capacity limitation of thermal tolerance (OCLTT) and aerobic scope–remarks on the article by Gräns et al. J Exp Biol 217:4432–4433
Article
Google Scholar
Pörtner H-O, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97. https://doi.org/10.1126/science.1135471
CAS
Article
PubMed
Google Scholar
Pörtner H-O, Langenbuch M, Michaelidis B (2005) Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: From earth history to global change. J Geophys Res C 110:C09S10. https://doi.org/10.1029/2004JC002561
CAS
Article
Google Scholar
Pörtner H-O, Farrell AP, Knust R, Lannig G, Mark FC, Storch D (2009) Adapting to climate change—response. Science 323:876–877
Google Scholar
Pörtner H-O, Bock C, Mark FC (2017) Oxygen-and capacity-limited thermal tolerance: bridging ecology and physiology. J Exp Biol 220:2685–2696. https://doi.org/10.1242/jeb.134585
Article
PubMed
Google Scholar
Purohit PV, Rocke DM, Viant MR, Woodruff DL (2004) Discrimination models using variance-stabilizing transformation of metabolomic NMR data. OMICS 8:118–130. https://doi.org/10.1089/1536231041388348
CAS
Article
PubMed
Google Scholar
Rhein M, Rintoul SR, Aoki S et al (2013) Observations: ocean. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 255–316
Google Scholar
Riebesell U, Fabry VJ, Hansson L, Gattuso JP (2011) Guide to best practices for ocean acidification research and data reporting. European Commission EUR 24872, Publications Office of the European Union, Luxembourg. ISBN: 978-92-79-20650-4. https://doi.org/10.2777/66906
Google Scholar
Riisgård HU (2001) Comment: physiological regulation vs. autonomous filtration in filter-feeding bivalves: Starting points for progress. Ophelia 54:193–209. https://doi.org/10.1080/00785236.2001.10409465
Article
Google Scholar
Riisgård HU, Larsen PS (2015) Research Note. Physiological regulated valve-closure makes mussels long-term starvation survivors: test of hypothesis. J Molluscan Stud 81:303–307
Article
Google Scholar
Riisgård HU, Kittner C, Seerup DF (2003) Regulation of opening state and filtration rate in filter-feeding bivalves (Cardium edule, Mytilus edulis, Mya arenaria) in response to low algal concentration. J Exp Mar Biol Ecol 284:105–127. https://doi.org/10.1016/S0022-0981(02)00496-3
Article
Google Scholar
Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371. https://doi.org/10.1126/science.1097403
CAS
Article
PubMed
Google Scholar
Schalkhausser B, Bock C, Stemmer K, Brey T, Pörtner H-O, Lannig G (2013) Impact of ocean acidification on escape performance of the king scallop, Pecten maximus, from Norway. Mar Biol 160:1995–2006. https://doi.org/10.1007/s00227-012-2057-8
CAS
Article
Google Scholar
Schiffer M, Harms L, Lucassen M, Mark FC, Pörtner H-O (2014) Temperature tolerance of different larval stages of the spider crab Hyas araneus exposed to elevated seawater PCO2. Front Zool 11:87. https://doi.org/10.1186/s12983-014-0087-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Schmalenbach I, Buchholz F, Franke HD, Saborowski R (2009) Improvement of rearing conditions for juvenile lobsters (Homarus gammarus) by co-culturing with juvenile isopods (Idotea emarginata). Aquaculture 289:297–303. https://doi.org/10.1016/j.aquaculture.2009.01.017
Article
Google Scholar
Schmidt M, Windisch HS, Ludwichowski KU, Seegert SLL, Pörtner H-O, Storch D, Bock C (2017) Differences in neurochemical profiles of two gadid specied under ocean warming and acidification. Front Zool 14:49. https://doi.org/10.1186/s12983-017-0238-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Shepard S, Beukers-Stewart B, Hiddink JG, Brand AR, Kaiser MJ (2010) Strengthening recruitment of exploited scallops Pecten maximus with ocean warming. Mar Biol 157:91–97. https://doi.org/10.1007/s00227-009-1298-7
Article
Google Scholar
Shumway SE, Koehn RK (1982) Oxygen consumption in the american oyster Crassostrea virginica. Mar Ecol Prog Ser 9:59–68. https://doi.org/10.3354/meps009059
Article
Google Scholar
Sokolova IM, Frederich M, Bagwe R, Lannig G, Sukhotin AA (2012) Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar Environ Res 79:1–15. https://doi.org/10.1016/j.marenvres.2012.04.003
CAS
Article
PubMed
Google Scholar
Somero GN (2002) Thermal physiology and vertical zonation of intertidal animals: optima, limits and costs of living. Integr Comp Biol 42:780–789. https://doi.org/10.1093/icb/42.4.780
Article
PubMed
Google Scholar
Specht JA, Fuchs HL (2018) Thermal and viscous effect of temperature on mercenaria mercenaria suspension feeding. Mar Ecol Prog Ser 589:129–140. https://doi.org/10.3354/meps12431
CAS
Article
Google Scholar
Stanley SM (2016) Estimates of the magnitudes of major marine mass extinctions in earth history. PNAS 113:E6325–E6334. https://doi.org/10.1073/pnas.1613094113
CAS
Article
PubMed
Google Scholar
Stoll MHC, Bakker K, Nobbe GH, Haesel RR (2001) Continuous-Flow analysis of dissolved inorganic carbon content in seawater. Anal Chem 73:4111–4116. https://doi.org/10.1021/ac010303r
CAS
Article
PubMed
Google Scholar
Taylor AC (1976) The cardiac responses to shell opening and closure in the bivalve Arctica islandica (L.). J Exp Biol 64:751–759
CAS
PubMed
Google Scholar
Tripp-Valdez MA, Bock C, Lucassen M, Lluch-Cota SE, Sicard MT, Lannig G, Pörtner H-O (2017) Metabolic response and thermal tolerance of green abalone juveniles (Haliotis fulgens: Gastropoda) under acute hypoxia and hypercapnia. J Exp Mar Biol Ecol 497:11–18. https://doi.org/10.1016/j.jembe.2017.09.002
CAS
Article
Google Scholar
Trueman ER, Lowe GA (1971) The effect of temperature and littoral exposure on the heart rate of a bivalve mollusc, Isognomum alatus, in tropical condtions. Comp Biochem Physiol A 38:555–564. https://doi.org/10.1016/0300-9629(71)90122-8
Article
Google Scholar
Uppström LR (1974) Boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep-Sea Res Oceanogr Abstr 21:161–162. https://doi.org/10.1016/0011-7471(74)90074-6
Article
Google Scholar
Waters JF, Millero FJ (2013) The free proton concentration scale for seawater pH. Mar Chem 149:8–22. https://doi.org/10.1016/j.marchem.2012.11.003
CAS
Article
Google Scholar
Widdows J (1973) Effect of temperature and food on the heart beat, ventilation rate and oxygen uptake of Mytilus edulis. Mar Biol 20:269–276. https://doi.org/10.1007/BF00354270
Article
Google Scholar
Widdows J (1976) Physiological adaption of Mytilus edulis to cyclic temperatures. J Comp Physiol B 105:115–128. https://doi.org/10.1007/BF00691115
Article
Google Scholar
Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. Science 272:1155–1158. https://doi.org/10.1126/science.272.5265.1155
CAS
Article
PubMed
Google Scholar
Wilson JG (1981) Temperature tolerance of circatidal bivalves in relation to their distribution. J Therm Biol 6:279–286. https://doi.org/10.1016/0306-4565(81)90016-4
Article
Google Scholar
Wilson JG, Elkaim B (1991) Tolerances to high temperature of infaunal bivalves and the effect of geographical distribution, position on the shore and season. J Mar Biol Assoc UK 71:169–177. https://doi.org/10.1017/S0025315400037486
Article
Google Scholar
Xia J, Wishart DS (2016) Using metabo analyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinform 55:14.10.1–14.10.91. https://doi.org/10.1002/cpbi.11
Article
Google Scholar
Xing Q, Li Y, Guo H, Yu Q, Huang X, Wang S, Hu X, Zhang L, Bao Z (2016) Cardiac performance: a thermal tolerance indicator in scallops. Mar Biol 163:244. https://doi.org/10.1007/s00227-016-3021-9
Article
Google Scholar
Yeager DP, Ultsch GR (1989) Phyiological regulation and conformation: a basic program for the determination of critical points. Physiol Zool 62:888–907
Article
Google Scholar
Zannella C, Mosca F, Mariani F, Franci G, Folliero V, Galdiero M, Tiscar PG, Galdiero M (2017) Microbial diseases of bivalve mollusks: infections, immunology and antimicrobial defense. Mar Drugs 15:E182. https://doi.org/10.3390/md15060182
Article
PubMed
Google Scholar
Zittier ZM, Bock C, Lannig G, Pörtner H-O (2015) Impact of ocean acidification on thermal tolerance and acid–base regulation of Mytilus edulis (L.) from the North Sea. J Exp Mar Biol Ecol 473:16–25. https://doi.org/10.1016/j.jembe.2015.08.001
CAS
Article
Google Scholar