Abstract
Data characterizing somatic growth patterns and the ages and sizes at which organisms mature are fundamental to understanding population dynamics. However, obtaining this information for endangered leatherback sea turtles (Dermochelys coriacea) is particularly challenging due to unusual physiology and prevalence of remote oceanic habitat use, which limit direct observation. While inference has been made through indirect approaches such as captive, genetic, and/or skeletal growth mark (skeletochronology) studies, these diverse methods have yielded similarly varied results, limiting usefulness of available information for management and conservation. To address this data gap, we conducted refined skeletochronological analysis of Atlantic and Pacific leatherback scleral ossicle bones, allowing estimation of carapace length-at-age relationships throughout individual turtles’ lives, including the juvenile life stage. In addition, this improved approach made it possible to estimate mean and range for age and size at sexual maturation (ASM and SSM, respectively), as well as post-maturation longevity. Updated mean ASM estimates from the current study of 17–19 years were lower than those previously proposed using skeletochronology and more similar to predictions from captive growth and genetic data. Maximum estimates of reproductive longevity (18–22 years) were consistent with the 16–19 years reported previously from mark–recapture of nesting females. Together, these results indicate that the application of the refined analytical approach described in the current study may offer opportunities to increase understanding of leatherback age and growth.
Similar content being viewed by others
References
Avens L, Snover ML (2013) Age and age estimation in sea turtles. In: Musick JA, Wyneken J, Lohmann KJ (eds) Biology of Sea Turtles, vol III. CRC Press, Boca Raton, pp 97–134
Avens L, Taylor JC, Goshe LR, Jones TT, Hastings M (2009) Use of skeletochronological analysis to estimate the age of leatherback sea turtles Dermochelys coriacea in the western North Atlantic. Endanger Species Res 8:165–177
Avens L, Goshe LR, Harms CA, Anderson ET, Hall AG, Cluse WM, Godfrey MH, Braun-McNeill J, Stacy B, Bailey R, Lamont MM (2012) Population characteristics, age structure, and growth dynamics of neritic juvenile green turtles in the northeastern Gulf of Mexico. Mar Ecol Prog Ser 458:213–229
Avens L, Goshe LR, Pajuelo M, Bjorndal KA, MacDonald BD, Lemons GE, Bolten AB, Seminoff JA (2013) Complementary skeletochronology and stable isotope analyses offer new insight into juvenile loggerhead oceanic stage duration and growth dynamics. Mar Ecol Prog Ser 491:235–251
Avens L, Goshe LR, Coggins L, Snover ML, Pajuelo M, Bjorndal KA, Bolten AB (2015) Age and size at maturation and adult stage duration for loggerhead sea turtles in the western North Atlantic. Mar Biol 162:1749–1767
Avens L, Goshe LR, Coggins L, Shaver DJ, Higgins B, Landry AM Jr, Bailey R (2017) Variability in age and size at maturation, reproductive longevity, and long-term growth dynamics for Kemp’s ridley sea turtles in the Gulf of Mexico. PLoS One 12(3):e0173999. https://doi.org/10.1371/journal.pone.0173999
Bels B, Rimbolt-Baly F, Lescure J (1988) Croissance et maintien en captivité, de la tortue luth Dermochelys coriacea (Vandelli, 1761). Rev Fr Aquariol 15:59–64
Benson SR, Tapilatu RF, Pilcher N, Santidrián Tomillo P, Sarti Martínez L (2015) Leatherback turtle populations in the Pacific Ocean. In: Spotila JR, Tomillo PS (eds) The leatherback turtle: biology and conservation. Johns Hopkins University Press, Baltimore, pp 110–122
Birkenmeier E (1971) Juvenile leathery turtles, Dermochelys coriacea (Linnaeus), in captivity. Brunei Mus J 2:160–172
Bjorndal KA, Parsons J, Mustin W, Bolten AB (2013) Threshold to maturity in a long-lived reptile: interactions of age, size, and growth. Mar Biol 160:607–616. https://doi.org/10.1007/s00227-012-2116-1
Bjorndal KA, Parsons J, Mustin W, Bolten AB (2014) Variation in age and size at sexual maturity in Kemp’s ridley sea turtles. Endanger Species Res 25:57–67. https://doi.org/10.3354/esr00608
Bostrom BL, Jones TT, Hastings M, Jones DR (2010) Behaviour and physiology: the thermal strategy of leatherback turtles. PLoS One 5(11):e13925. https://doi.org/10.1371/journal.pone.0013925
Caillouet CW Jr, Shaver DJ, Landry AM Jr, Owens DW, Pritchard PCH (2011) Kemp’s ridley sea turtle (Lepidochelys kempii) age at first nesting. Chelonian Conserv Biol 10:288–293
Chan E-H, Liew H-C (1996) Decline of the leatherback population in Terengganu, Malaysia, 1956–1995. Chelonian Conserv Biol 2:196–203
Deraniyagala PEP (1952) A colored atlas of some vertebrates from Ceylon, vol I. The Ceylon Government Press, Colombo, pp 3–21
Dodge KL, Logan JM, Lutcavage ME (2011) Foraging ecology of leatherback sea turtles in the Western North Atlantic determined through multi-tissue stable isotope analyses. Mar Biol 158:2813–2824
Duchene S, Frey A, Alfaro-Núñez A, Dutton PH, Gilbert TP, Morin PA (2012) Marine turtle mitogenome phylogenetics and evolution. Mol Phylogenet Evol 65:241–250
Dutton PH, Bowen BW, Owens DW, Barragan A, Davis SK (1999) Global phylogeography of the leatherback turtle (Dermochelys coriacea). J Zool Lond 248:397–409
Dutton DL, Dutton PH, Chaloupka M, Boulon RH (2005) Increase of a Caribbean leatherback turtle Dermochelys coriacea nesting population linked to long-term nest protection. Biol Conserv 126:186–194
Eckert SA (2002) Distribution of juvenile leatherback sea turtle Dermochelys coriacea sightings. Mar Ecol Prog Ser 230:289–293
Eckert KL, Wallace BP, Frazier JG, Eckert SA, Pritchard PCH (2012) Synopsis of the biological data on the leatherback sea turtle (Dermochelys coriacea). Biological Technical Publication BTP-R4015-2012 USFWS
El Mouden PE, Francillon-Viellot HJ, Castanet J, Znari M (1997) Age individual, maturite, croissance et longevite chez l’agamide nord-african, Agama impalearis Boettger, 1874, etudies a l’aide de la squelettochronologie. Ann Sci Nat Zool Paris 18:63–70
Forestry Division (2010) (Government of the Republic of Trinidad and Tobago), Save our Seaturtles-Tobago, and Nature Seekers. WIDECAST Sea Turtle Recovery Action Plan for Trinidad & Tobago (KL Eckert, Ed). CEP Technical Report No. 49. UNEP Caribbean Environment Programme. Kingston, Jamaica. Xx + 132 p
Francillon-Viellot H, Arntzen JW, Géraudie J (1990) Age, growth, and longevity of sympatric Triturus cristatus, T. marmoratus and their hybrids (Amphibia, Urodela): a skeletochronological comparison. J Herpetol 24:13–22
Frazer NB, Ehrhart LM (1985) Preliminary growth models for green, Chelonia mydas, and loggerhead, Caretta caretta, turtles in the wild. Copeia 1985:73–79
Gaspar P, Benson SR, Dutton PH, Réveillère A, Jacob G, Meetoo C, Dehecq A, Fossette S (2012) Oceanic dispersal of juvenile leatherback turtles: going beyond passive drift modeling. Mar Ecol Prog Ser 457:265–284
Gillespie D, Caillat M, Gordon J (2013) Automatic detection and classification of odontocete whistles. J Acoust Soc America 134:2427–2437
Girondot M, Fretey J (1996) Leatherback turtles, Dermochelys coriacea, nesting in French Guiana, 1978–1995. Chelonian Conserv Biol 2:204–208
Goshe LR, Avens L, Scharf FS, Southwood AL (2010) Estimation of age at maturation and growth of Atlantic green turtles (Chelonia mydas) using skeletochronology. Mar Biol 257:1725–1740
Goshe LR, Snover ML, Hohn AA, Balazs GH (2016) Validation of back-calculated body lengths and timing of growth mark deposition in Hawaiian green sea turtles. Ecol Evol 6:3208–3215
Guarino FM, Di Giá I, Sindaco R (2008) Age structure in a declining population of Rana temporaria from northern Italy. Acta Zool Acad Sci Hung 54:99–112
Huang H-W (2015) Conservation hotspots for the turtles on the high seas of the Atlantic Ocean. PLoS One 10(8):e0133614. https://doi.org/10.1371/journal.pone.0133614
Humburg NI, Balazs GH (2014) Forty years of research: recovery records of green turtles observed or originally tagged at French Frigate Shoals in the Northwestern Hawaiian Islands, 1973–2013. NOAA Technical Memorandum, NOAA-TM-NMFS-PIFSC-40
Jones TT, Hastings MD, Bostrom BL, Pauly D, Jones DR (2011) Growth of captive leatherback turtles, Dermochelys coriacea, with inferences on growth in the wild: implications for population decline and recovery. J Exp Mar Biol Ecol 399:84–92
Lalire M, Gaspar P (2019) Modeling the active dispersal of juvenile leatherback turtles in the North Atlantic Ocean. Mov Ecol 7:7. https://doi.org/10.1186/s40462-019-0149-5
Lee Lum L (2006) Assessment of incidental sea turtle catch in the artisanal gillnet fishery in Trinidad and Tobago, West Indies. Appl Herpetol 3:357–368
Lutcavage ME, Lutz PL (1997) Diving behavior. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 277–296
Musick JA, Limpus CJ (1997) Habitat utilization and migration in juvenile sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles, vol 1. CRC Press. Boca Raton, FL, pp 137–164
NMFS (National Marine Fisheries Service) and USFWS (U.S. Fish and Wildlife Service) (2013) Leatherback sea turtle (Dermochelys coriacea) 5-year review: summary and evaluation. National Marine Fisheries Service, Silver Spring, p 89
Northwest Atlantic Leatherback Working Group (2018) Northwest Atlantic Leatherback Turtle (Dermochelys coriacea) Status Assessment (B Wallace, K Eckert, Compilers and Editors). Conservation Science Partners and the Wider Caribbean Sea Turtle Conservation Network (WIDECAST). WIDECAST Technical Report No. 16, Godfrey, Illinois, USA. 36 p http://www.csp-inc.org/public/16-NWA-leatherback-status-report-FINAL.pdf. Accessed 29 Nov 2018
Plotkin P (2003) Adult migrations and habitat use. In: Lutz P, Musick JA, Wyneken J (eds) The biology of sea turtles, vol 2. CRC Press, Boca Raton, pp 225–242
Pritchard PCH (2015) Introduction: phylogeny and evolutionary biology of the leatherback turtle. In: Spotila JR, Tomillo PS (eds) The leatherback turtle: biology and conservation. Johns Hopkins University Press, Baltimore, pp 3–7
Ramirez MD, Avens L, Goshe LR, Seminoff J, Heppell SS (2015) Patterns of loggerhead turtle ontogenetic shifts revealed through isotopic analysis of annual skeletal growth increments. Ecosphere 6:1–17
Ramirez M, Avens L, Seminoff JA, Goshe LR, Heppell SS (2017) Growth dynamics of loggerhead sea turtles undergoing an ontogenetic habitat shift. Oecologia 183:1087. https://doi.org/10.1007/s00442-017-3832-5
Ramirez MD, Miller JA, Parks E, Avens L, Goshe LR, Seminoff JA, Snover ML, Heppell SS (2019) Reconstructing sea turtle ontogenetic habitat shifts through trace element analysis of bone tissue. Mar Ecol Prog Ser 608:247–262. https://doi.org/10.3354/meps12796
Rhodin AGJ (1985) Comparative chondro-osseous development and growth of marine turtles. Copeia 1985:752–771
Saba VS, Shillinger GL, Swithenbank AM, Block BA, Spotila JR, Musick JA, Paladino FV (2008) An oceanographic context for the foraging ecology of eastern Pacific leatherback turtles: consequences of ENSO. Deep Sea Res I 55:646–660
Sarti Martínez L, Barragán AR, Muñoz DG, García N, Huerta P, Vargas F (2007) Conservation and biology of the leatherback turtle in the Mexican Pacific. Chelonian Conserv Biol 6:70–78
Scott R, Biastoch A, Agamboue PD, Bayer T, Boussamba FL, Formia A, Godley BJ, Mabert BDK, Manfoumbi JC, Schwarzkopf FU, Sounguet G-P, Wagner P, Witt MJ (2017) Spatio-temporal variation in ocean current-driven hatchling dispersion: implications for the world’s largest leatherback sea turtle nesting region. Divers Distrib 23:604–614
Snover ML, Avens L, Hohn AA (2007) Back-calculating length from skeletal growth marks in loggerhead sea turtles Caretta caretta. Endanger Species Res 3:95–104
Stewart K, Johnson C, Godfrey MH (2007) The minimum size of leatherbacks at reproductive maturity, with a review of sizes for nesting females from the Indian, Atlantic, and Pacific Ocean basins. Herpetol J 17:123–128
Stewart K, Sims M, Meylan A, Witherington B, Brost B, Crowder LB (2011) Leatherback nests increasing significantly in Florida, USA; trends assessed over 30 years using multilevel modeling. Ecol Appl 21:263–273
Steyermark AC, Williams K, Spotila JR, Paladino FV, Rostal DC, Morreale SJ, Koberg MT, Arauz R (1996) Nesting leatherback turtles at Las Baulas National Park, Costa Rica. Chelonian Conserv Biol 2:173–183
Tapilatu RF, Dutton PH, Tiwari M, Wibbels T, Ferdinandus HV, Iwanggin WG, Nugroho BH (2013) Long-term decline of the western Pacific leatherback, Dermochelys coriacea: a globally important sea turtle population. Ecosphere 4:1–15
R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 28 Nov 2018
TEWG (Turtle Expert Working Group) (2007) An assessment of the leatherback turtle population in the Atlantic Ocean. NOAA Technical Memorandum NMFS-SEFSC-555, p 116
Tomillo PS, Vélez E, Reina RD, Piedra R, Paladino FV, Spotila JR (2007) Reassessment of the leatherback turtle (Dermochelys coriacea) nesting population at Parque Nacional Marino Las Baulas, Costa Rica: effects of conservation efforts. Chelonian Conserv Biol 6:54–62
Tucker AD, Frazer NB (1991) Reproductive variation in leatherback turtles, Dermochelys coriacea, at Culebra National Wildlife Refuge, Puerto Rico. Herpetologica 1991:115–124
Turner Tomaszewicz CN, Seminoff JA, Peckham SH, Avens L, Kurle CM (2017) Intrapopulation variability in the timing of ontogenetic habitat shifts in sea turtles revealed using 15N values from bone growth rings. J Anim Ecol. https://doi.org/10.1111/1365-2656.12618
Turner Tomaszewicz CN, Seminoff JA, Avens L, Goshe LR, Rodriguez-Baron JM, Peckham SH, Kurle CM (2018) Expanding the coastal forager paradigm: long-term pelagic habitat use by green turtles Chelonia mydas in the eastern Pacific Ocean. Mar Ecol Prog Ser 587:217–234
Van Buskirk J, Crowder LB (1994) Life-history variation in marine turtles. Copeia 1994:66–81
Wallace BP, Jones TT (2015) Leatherback turtle physiological ecology: implications for bioenergetics and population dynamics. In: Spotila JR, Tomillo PS (eds) The leatherback turtle: biology and conservation. Johns Hopkins University Press, Baltimore, pp 149–161
Wallace BP, Saba VS (2009) Environmental and anthropogenic impacts on intra-specific variation in leatherback turtles: opportunities for targeted research and conservation. Endanger Species Res 7:11–21. https://doi.org/10.3354/esr00177
Wallace BP, Kilham SS, Paladino FV, Spotila JR (2006) Energy budget calculations indicate resource limitation in Eastern Pacific leatherback turtles. Mar Ecol Prog Ser 318:263–270
Wallace BP, Tiwari M, Girondot M (2013) Dermochelys coriacea. The IUCN Red List of Threatened Species 2013: e.T6494A43526147 http://dx.doi.org/10.2305/IUCN.UK.2013-2.RLTS.T6494A43526147
Wood SN (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, Boca Raton
Zug GR, Parham JF (1996) Age and growth in leatherback turtles, Dermochelys coriacea (Testudines: Dermochelyidae): a skeletochronological analysis. Chelonian Conserv Biol 2:244–249
Acknowledgements
We are grateful for the sample and data collection conducted by the participants in the National Sea Turtle Stranding and Salvage Network, the NMFS Pacific Islands Fisheries Science Center’s Marine Turtle Biology and Assessment Program, and the NMFS Pacific Islands Regional Office Observer Program, without which this study would not have been possible. The research and manuscript were improved through discussions with and comments from A. Chester, M. Godfrey, A. Hohn, K. Stewart, and two anonymous reviewers.
Funding
The authors have no sources of funding to report for this study.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Human and animal rights statement
All procedures performed in the current study were approved and permitted by the United States Fish and Wildlife Service (permit no. TE-67379 issued to the National Marine Fisheries Service Southeast Fisheries Science Center).
Additional information
Responsible Editor: P. Casale.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Reviewed by K. Stewart and undisclosed experts.
Rights and permissions
About this article
Cite this article
Avens, L., Goshe, L.R., Zug, G.R. et al. Regional comparison of leatherback sea turtle maturation attributes and reproductive longevity. Mar Biol 167, 4 (2020). https://doi.org/10.1007/s00227-019-3617-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00227-019-3617-y