Skip to main content

Advertisement

Log in

Regional comparison of leatherback sea turtle maturation attributes and reproductive longevity

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Data characterizing somatic growth patterns and the ages and sizes at which organisms mature are fundamental to understanding population dynamics. However, obtaining this information for endangered leatherback sea turtles (Dermochelys coriacea) is particularly challenging due to unusual physiology and prevalence of remote oceanic habitat use, which limit direct observation. While inference has been made through indirect approaches such as captive, genetic, and/or skeletal growth mark (skeletochronology) studies, these diverse methods have yielded similarly varied results, limiting usefulness of available information for management and conservation. To address this data gap, we conducted refined skeletochronological analysis of Atlantic and Pacific leatherback scleral ossicle bones, allowing estimation of carapace length-at-age relationships throughout individual turtles’ lives, including the juvenile life stage. In addition, this improved approach made it possible to estimate mean and range for age and size at sexual maturation (ASM and SSM, respectively), as well as post-maturation longevity. Updated mean ASM estimates from the current study of 17–19 years were lower than those previously proposed using skeletochronology and more similar to predictions from captive growth and genetic data. Maximum estimates of reproductive longevity (18–22 years) were consistent with the 16–19 years reported previously from mark–recapture of nesting females. Together, these results indicate that the application of the refined analytical approach described in the current study may offer opportunities to increase understanding of leatherback age and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avens L, Snover ML (2013) Age and age estimation in sea turtles. In: Musick JA, Wyneken J, Lohmann KJ (eds) Biology of Sea Turtles, vol III. CRC Press, Boca Raton, pp 97–134

    Google Scholar 

  • Avens L, Taylor JC, Goshe LR, Jones TT, Hastings M (2009) Use of skeletochronological analysis to estimate the age of leatherback sea turtles Dermochelys coriacea in the western North Atlantic. Endanger Species Res 8:165–177

    Google Scholar 

  • Avens L, Goshe LR, Harms CA, Anderson ET, Hall AG, Cluse WM, Godfrey MH, Braun-McNeill J, Stacy B, Bailey R, Lamont MM (2012) Population characteristics, age structure, and growth dynamics of neritic juvenile green turtles in the northeastern Gulf of Mexico. Mar Ecol Prog Ser 458:213–229

    Google Scholar 

  • Avens L, Goshe LR, Pajuelo M, Bjorndal KA, MacDonald BD, Lemons GE, Bolten AB, Seminoff JA (2013) Complementary skeletochronology and stable isotope analyses offer new insight into juvenile loggerhead oceanic stage duration and growth dynamics. Mar Ecol Prog Ser 491:235–251

    Google Scholar 

  • Avens L, Goshe LR, Coggins L, Snover ML, Pajuelo M, Bjorndal KA, Bolten AB (2015) Age and size at maturation and adult stage duration for loggerhead sea turtles in the western North Atlantic. Mar Biol 162:1749–1767

    CAS  Google Scholar 

  • Avens L, Goshe LR, Coggins L, Shaver DJ, Higgins B, Landry AM Jr, Bailey R (2017) Variability in age and size at maturation, reproductive longevity, and long-term growth dynamics for Kemp’s ridley sea turtles in the Gulf of Mexico. PLoS One 12(3):e0173999. https://doi.org/10.1371/journal.pone.0173999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bels B, Rimbolt-Baly F, Lescure J (1988) Croissance et maintien en captivité, de la tortue luth Dermochelys coriacea (Vandelli, 1761). Rev Fr Aquariol 15:59–64

    Google Scholar 

  • Benson SR, Tapilatu RF, Pilcher N, Santidrián Tomillo P, Sarti Martínez L (2015) Leatherback turtle populations in the Pacific Ocean. In: Spotila JR, Tomillo PS (eds) The leatherback turtle: biology and conservation. Johns Hopkins University Press, Baltimore, pp 110–122

    Google Scholar 

  • Birkenmeier E (1971) Juvenile leathery turtles, Dermochelys coriacea (Linnaeus), in captivity. Brunei Mus J 2:160–172

    Google Scholar 

  • Bjorndal KA, Parsons J, Mustin W, Bolten AB (2013) Threshold to maturity in a long-lived reptile: interactions of age, size, and growth. Mar Biol 160:607–616. https://doi.org/10.1007/s00227-012-2116-1

    Article  Google Scholar 

  • Bjorndal KA, Parsons J, Mustin W, Bolten AB (2014) Variation in age and size at sexual maturity in Kemp’s ridley sea turtles. Endanger Species Res 25:57–67. https://doi.org/10.3354/esr00608

    Article  Google Scholar 

  • Bostrom BL, Jones TT, Hastings M, Jones DR (2010) Behaviour and physiology: the thermal strategy of leatherback turtles. PLoS One 5(11):e13925. https://doi.org/10.1371/journal.pone.0013925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caillouet CW Jr, Shaver DJ, Landry AM Jr, Owens DW, Pritchard PCH (2011) Kemp’s ridley sea turtle (Lepidochelys kempii) age at first nesting. Chelonian Conserv Biol 10:288–293

    Google Scholar 

  • Chan E-H, Liew H-C (1996) Decline of the leatherback population in Terengganu, Malaysia, 1956–1995. Chelonian Conserv Biol 2:196–203

    Google Scholar 

  • Deraniyagala PEP (1952) A colored atlas of some vertebrates from Ceylon, vol I. The Ceylon Government Press, Colombo, pp 3–21

    Google Scholar 

  • Dodge KL, Logan JM, Lutcavage ME (2011) Foraging ecology of leatherback sea turtles in the Western North Atlantic determined through multi-tissue stable isotope analyses. Mar Biol 158:2813–2824

    Google Scholar 

  • Duchene S, Frey A, Alfaro-Núñez A, Dutton PH, Gilbert TP, Morin PA (2012) Marine turtle mitogenome phylogenetics and evolution. Mol Phylogenet Evol 65:241–250

    PubMed  Google Scholar 

  • Dutton PH, Bowen BW, Owens DW, Barragan A, Davis SK (1999) Global phylogeography of the leatherback turtle (Dermochelys coriacea). J Zool Lond 248:397–409

    Google Scholar 

  • Dutton DL, Dutton PH, Chaloupka M, Boulon RH (2005) Increase of a Caribbean leatherback turtle Dermochelys coriacea nesting population linked to long-term nest protection. Biol Conserv 126:186–194

    Google Scholar 

  • Eckert SA (2002) Distribution of juvenile leatherback sea turtle Dermochelys coriacea sightings. Mar Ecol Prog Ser 230:289–293

    Google Scholar 

  • Eckert KL, Wallace BP, Frazier JG, Eckert SA, Pritchard PCH (2012) Synopsis of the biological data on the leatherback sea turtle (Dermochelys coriacea). Biological Technical Publication BTP-R4015-2012 USFWS

  • El Mouden PE, Francillon-Viellot HJ, Castanet J, Znari M (1997) Age individual, maturite, croissance et longevite chez l’agamide nord-african, Agama impalearis Boettger, 1874, etudies a l’aide de la squelettochronologie. Ann Sci Nat Zool Paris 18:63–70

    Google Scholar 

  • Forestry Division (2010) (Government of the Republic of Trinidad and Tobago), Save our Seaturtles-Tobago, and Nature Seekers. WIDECAST Sea Turtle Recovery Action Plan for Trinidad & Tobago (KL Eckert, Ed). CEP Technical Report No. 49. UNEP Caribbean Environment Programme. Kingston, Jamaica. Xx + 132 p

  • Francillon-Viellot H, Arntzen JW, Géraudie J (1990) Age, growth, and longevity of sympatric Triturus cristatus, T. marmoratus and their hybrids (Amphibia, Urodela): a skeletochronological comparison. J Herpetol 24:13–22

    Google Scholar 

  • Frazer NB, Ehrhart LM (1985) Preliminary growth models for green, Chelonia mydas, and loggerhead, Caretta caretta, turtles in the wild. Copeia 1985:73–79

    Google Scholar 

  • Gaspar P, Benson SR, Dutton PH, Réveillère A, Jacob G, Meetoo C, Dehecq A, Fossette S (2012) Oceanic dispersal of juvenile leatherback turtles: going beyond passive drift modeling. Mar Ecol Prog Ser 457:265–284

    Google Scholar 

  • Gillespie D, Caillat M, Gordon J (2013) Automatic detection and classification of odontocete whistles. J Acoust Soc America 134:2427–2437

    Google Scholar 

  • Girondot M, Fretey J (1996) Leatherback turtles, Dermochelys coriacea, nesting in French Guiana, 1978–1995. Chelonian Conserv Biol 2:204–208

    Google Scholar 

  • Goshe LR, Avens L, Scharf FS, Southwood AL (2010) Estimation of age at maturation and growth of Atlantic green turtles (Chelonia mydas) using skeletochronology. Mar Biol 257:1725–1740

    Google Scholar 

  • Goshe LR, Snover ML, Hohn AA, Balazs GH (2016) Validation of back-calculated body lengths and timing of growth mark deposition in Hawaiian green sea turtles. Ecol Evol 6:3208–3215

    PubMed  PubMed Central  Google Scholar 

  • Guarino FM, Di Giá I, Sindaco R (2008) Age structure in a declining population of Rana temporaria from northern Italy. Acta Zool Acad Sci Hung 54:99–112

    Google Scholar 

  • Huang H-W (2015) Conservation hotspots for the turtles on the high seas of the Atlantic Ocean. PLoS One 10(8):e0133614. https://doi.org/10.1371/journal.pone.0133614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humburg NI, Balazs GH (2014) Forty years of research: recovery records of green turtles observed or originally tagged at French Frigate Shoals in the Northwestern Hawaiian Islands, 1973–2013. NOAA Technical Memorandum, NOAA-TM-NMFS-PIFSC-40

  • Jones TT, Hastings MD, Bostrom BL, Pauly D, Jones DR (2011) Growth of captive leatherback turtles, Dermochelys coriacea, with inferences on growth in the wild: implications for population decline and recovery. J Exp Mar Biol Ecol 399:84–92

    Google Scholar 

  • Lalire M, Gaspar P (2019) Modeling the active dispersal of juvenile leatherback turtles in the North Atlantic Ocean. Mov Ecol 7:7. https://doi.org/10.1186/s40462-019-0149-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee Lum L (2006) Assessment of incidental sea turtle catch in the artisanal gillnet fishery in Trinidad and Tobago, West Indies. Appl Herpetol 3:357–368

    Google Scholar 

  • Lutcavage ME, Lutz PL (1997) Diving behavior. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 277–296

    Google Scholar 

  • Musick JA, Limpus CJ (1997) Habitat utilization and migration in juvenile sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles, vol 1. CRC Press. Boca Raton, FL, pp 137–164

    Google Scholar 

  • NMFS (National Marine Fisheries Service) and USFWS (U.S. Fish and Wildlife Service) (2013) Leatherback sea turtle (Dermochelys coriacea) 5-year review: summary and evaluation. National Marine Fisheries Service, Silver Spring, p 89

    Google Scholar 

  • Northwest Atlantic Leatherback Working Group (2018) Northwest Atlantic Leatherback Turtle (Dermochelys coriacea) Status Assessment (B Wallace, K Eckert, Compilers and Editors). Conservation Science Partners and the Wider Caribbean Sea Turtle Conservation Network (WIDECAST). WIDECAST Technical Report No. 16, Godfrey, Illinois, USA. 36 p http://www.csp-inc.org/public/16-NWA-leatherback-status-report-FINAL.pdf. Accessed 29 Nov 2018

  • Plotkin P (2003) Adult migrations and habitat use. In: Lutz P, Musick JA, Wyneken J (eds) The biology of sea turtles, vol 2. CRC Press, Boca Raton, pp 225–242

    Google Scholar 

  • Pritchard PCH (2015) Introduction: phylogeny and evolutionary biology of the leatherback turtle. In: Spotila JR, Tomillo PS (eds) The leatherback turtle: biology and conservation. Johns Hopkins University Press, Baltimore, pp 3–7

    Google Scholar 

  • Ramirez MD, Avens L, Goshe LR, Seminoff J, Heppell SS (2015) Patterns of loggerhead turtle ontogenetic shifts revealed through isotopic analysis of annual skeletal growth increments. Ecosphere 6:1–17

    Google Scholar 

  • Ramirez M, Avens L, Seminoff JA, Goshe LR, Heppell SS (2017) Growth dynamics of loggerhead sea turtles undergoing an ontogenetic habitat shift. Oecologia 183:1087. https://doi.org/10.1007/s00442-017-3832-5

    Article  PubMed  Google Scholar 

  • Ramirez MD, Miller JA, Parks E, Avens L, Goshe LR, Seminoff JA, Snover ML, Heppell SS (2019) Reconstructing sea turtle ontogenetic habitat shifts through trace element analysis of bone tissue. Mar Ecol Prog Ser 608:247–262. https://doi.org/10.3354/meps12796

    Article  CAS  Google Scholar 

  • Rhodin AGJ (1985) Comparative chondro-osseous development and growth of marine turtles. Copeia 1985:752–771

    Google Scholar 

  • Saba VS, Shillinger GL, Swithenbank AM, Block BA, Spotila JR, Musick JA, Paladino FV (2008) An oceanographic context for the foraging ecology of eastern Pacific leatherback turtles: consequences of ENSO. Deep Sea Res I 55:646–660

    Google Scholar 

  • Sarti Martínez L, Barragán AR, Muñoz DG, García N, Huerta P, Vargas F (2007) Conservation and biology of the leatherback turtle in the Mexican Pacific. Chelonian Conserv Biol 6:70–78

    Google Scholar 

  • Scott R, Biastoch A, Agamboue PD, Bayer T, Boussamba FL, Formia A, Godley BJ, Mabert BDK, Manfoumbi JC, Schwarzkopf FU, Sounguet G-P, Wagner P, Witt MJ (2017) Spatio-temporal variation in ocean current-driven hatchling dispersion: implications for the world’s largest leatherback sea turtle nesting region. Divers Distrib 23:604–614

    Google Scholar 

  • Snover ML, Avens L, Hohn AA (2007) Back-calculating length from skeletal growth marks in loggerhead sea turtles Caretta caretta. Endanger Species Res 3:95–104

    Google Scholar 

  • Stewart K, Johnson C, Godfrey MH (2007) The minimum size of leatherbacks at reproductive maturity, with a review of sizes for nesting females from the Indian, Atlantic, and Pacific Ocean basins. Herpetol J 17:123–128

    Google Scholar 

  • Stewart K, Sims M, Meylan A, Witherington B, Brost B, Crowder LB (2011) Leatherback nests increasing significantly in Florida, USA; trends assessed over 30 years using multilevel modeling. Ecol Appl 21:263–273

    PubMed  Google Scholar 

  • Steyermark AC, Williams K, Spotila JR, Paladino FV, Rostal DC, Morreale SJ, Koberg MT, Arauz R (1996) Nesting leatherback turtles at Las Baulas National Park, Costa Rica. Chelonian Conserv Biol 2:173–183

    Google Scholar 

  • Tapilatu RF, Dutton PH, Tiwari M, Wibbels T, Ferdinandus HV, Iwanggin WG, Nugroho BH (2013) Long-term decline of the western Pacific leatherback, Dermochelys coriacea: a globally important sea turtle population. Ecosphere 4:1–15

    Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 28 Nov 2018

  • TEWG (Turtle Expert Working Group) (2007) An assessment of the leatherback turtle population in the Atlantic Ocean. NOAA Technical Memorandum NMFS-SEFSC-555, p 116

  • Tomillo PS, Vélez E, Reina RD, Piedra R, Paladino FV, Spotila JR (2007) Reassessment of the leatherback turtle (Dermochelys coriacea) nesting population at Parque Nacional Marino Las Baulas, Costa Rica: effects of conservation efforts. Chelonian Conserv Biol 6:54–62

    Google Scholar 

  • Tucker AD, Frazer NB (1991) Reproductive variation in leatherback turtles, Dermochelys coriacea, at Culebra National Wildlife Refuge, Puerto Rico. Herpetologica 1991:115–124

    Google Scholar 

  • Turner Tomaszewicz CN, Seminoff JA, Peckham SH, Avens L, Kurle CM (2017) Intrapopulation variability in the timing of ontogenetic habitat shifts in sea turtles revealed using 15N values from bone growth rings. J Anim Ecol. https://doi.org/10.1111/1365-2656.12618

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner Tomaszewicz CN, Seminoff JA, Avens L, Goshe LR, Rodriguez-Baron JM, Peckham SH, Kurle CM (2018) Expanding the coastal forager paradigm: long-term pelagic habitat use by green turtles Chelonia mydas in the eastern Pacific Ocean. Mar Ecol Prog Ser 587:217–234

    Google Scholar 

  • Van Buskirk J, Crowder LB (1994) Life-history variation in marine turtles. Copeia 1994:66–81

    Google Scholar 

  • Wallace BP, Jones TT (2015) Leatherback turtle physiological ecology: implications for bioenergetics and population dynamics. In: Spotila JR, Tomillo PS (eds) The leatherback turtle: biology and conservation. Johns Hopkins University Press, Baltimore, pp 149–161

    Google Scholar 

  • Wallace BP, Saba VS (2009) Environmental and anthropogenic impacts on intra-specific variation in leatherback turtles: opportunities for targeted research and conservation. Endanger Species Res 7:11–21. https://doi.org/10.3354/esr00177

    Article  Google Scholar 

  • Wallace BP, Kilham SS, Paladino FV, Spotila JR (2006) Energy budget calculations indicate resource limitation in Eastern Pacific leatherback turtles. Mar Ecol Prog Ser 318:263–270

    Google Scholar 

  • Wallace BP, Tiwari M, Girondot M (2013) Dermochelys coriacea. The IUCN Red List of Threatened Species 2013: e.T6494A43526147 http://dx.doi.org/10.2305/IUCN.UK.2013-2.RLTS.T6494A43526147

  • Wood SN (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Zug GR, Parham JF (1996) Age and growth in leatherback turtles, Dermochelys coriacea (Testudines: Dermochelyidae): a skeletochronological analysis. Chelonian Conserv Biol 2:244–249

    Google Scholar 

Download references

Acknowledgements

We are grateful for the sample and data collection conducted by the participants in the National Sea Turtle Stranding and Salvage Network, the NMFS Pacific Islands Fisheries Science Center’s Marine Turtle Biology and Assessment Program, and the NMFS Pacific Islands Regional Office Observer Program, without which this study would not have been possible. The research and manuscript were improved through discussions with and comments from A. Chester, M. Godfrey, A. Hohn, K. Stewart, and two anonymous reviewers.

Funding

The authors have no sources of funding to report for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larisa Avens.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Human and animal rights statement

All procedures performed in the current study were approved and permitted by the United States Fish and Wildlife Service (permit no. TE-67379 issued to the National Marine Fisheries Service Southeast Fisheries Science Center).

Additional information

Responsible Editor: P. Casale.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by K. Stewart and undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avens, L., Goshe, L.R., Zug, G.R. et al. Regional comparison of leatherback sea turtle maturation attributes and reproductive longevity. Mar Biol 167, 4 (2020). https://doi.org/10.1007/s00227-019-3617-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-019-3617-y

Navigation