Skip to main content

Advertisement

Log in

Role of thermal photosynthetic plasticity in the dispersal and settlement of two global green tide formers: Ulva pertusa and U. ohnoi

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The green invasive macroalgae Ulva ohnoi and U. pertusa are known for their capacity to form green tides across many geographic regions. Given their global ecological and economic impact, photosynthetic responses of both Ulva spp. were tested in laboratory experiments using short-term (3 h, and 5 h) exposure to different temperatures (27–36 °C) and light regimes, simulating light deprivation during ballast water transport conditions. Heat treatment of ship’s ballast water has been widely advocated as a possible treatment to prevent biological contamination. In addition, the physiological performance of U. ohnoi was assessed in long-term experiments (14 days). We examined several photosynthetic parameters and physiological variables such as growth and pigment content as a measure of physiological fitness. Both species maintained stable values of Fv/Fm over several hours across temperatures, although Ulva ohnoi presented higher values of Fv/Fm, photosynthetic efficiency and NPQmax than U. pertusa, and activated dissipative protective mechanisms earlier. In the long-term experiment, U. ohnoi died by the 4th day at 36 °C. In surviving samples, Fv/Fm increased by day 7, regardless of temperature and decreased by day 14; lower values pertained to 34 °C. Photosynthetic efficiency of U. ohnoi decreased after 1 week at 27 and 29 °C, but at 31 and 34 °C, an increase was recorded after 7 days. The highest rETRmax was recorded at 29 °C, while growth optimum occurred at 27–31℃. We postulate that short-term thermal stress affects dispersal risk, which may also explain the seasonal replacement of the two Ulva spp. in Japan; and that U. ohnoi has a higher thermal tolerance that allows its settlement in new areas, resulting in a wide distributional range. Its physiological performance under the temperatures tested suggests that U. ohnoi may pose a greater risk of dispersal and settlement than U. pertusa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Andreakis N, Procaccini G, Maggs C, Kooistra WH (2007) Phylogeography of the invasive seaweed Asparagopsis (Bonnemaisoniales, Rhodophyta) reveals cryptic diversity. Mol Ecol 16(11):2285–2299

    Article  CAS  PubMed  Google Scholar 

  • Breeman AM (1988) Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgol Mar Res 42(2):199–241

    Google Scholar 

  • Carlton JT (2001) Introduced species in U.S. coastal waters: environmental impacts and management priorities. Pew Oceans Commission, Virginia, USA

  • Chaloub RM, Reinert F, Nassar CAG, Fleury BG, Mantuano DG, Larkum AWD (2010) Photosynthetic properties of three Brazilian seaweeds. Braz J Bot 33(2):371–374

    Article  Google Scholar 

  • Choi TS, Kim JH, Kim KY (2001) Seasonal changes in the abundance of Ulva mats on a rocky intertidal zone of the southern coast of Korea. Algae 16:337–341

    Google Scholar 

  • Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasion 8(5):1023–1037

    Article  Google Scholar 

  • Crooks JA, Rilov G (2009) The establishment of invasive species. In: Rilov G, Crooks JA (eds) Biological invasions in marine ecosystems. Springer, Berlin Heidelberg, pp 173–175

    Chapter  Google Scholar 

  • da Oliveira VP, Martins NT, Yoneshigue-Valentin Y, Enrich-Prast A (2013) Chlorophyll-a fluorescence in ecology: theoretical considerations and examples around marine macroalgae. J Environ Sci Eng A2:1165–1172

    Google Scholar 

  • Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive? A meta-analysis. Ecol Lett 14(4):419–431

    Article  Google Scholar 

  • Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27(1):2–8

    Article  Google Scholar 

  • Dijoux L, Viard F, Payri C (2014) The more we search, the more we find: discovery of a new lineage and a new species complex in the genus Asparagopsis. PLoS One 9(7):e103826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards G, Walker D (1983) C3, C4: mechanisms, and cellular and environmental regulation, of photosynthesis. University of California Press, USA

    Google Scholar 

  • Eggert A (2012) Seaweed responses to temperature. In: Wiencke C, Bischof K (eds) Seaweed biology. Springer, Berlin, pp 47–66

    Chapter  Google Scholar 

  • Flagella MM, Andreakis N, Hiraoka M, Verlaque M, Buia MC (2010) Identification of cryptic Ulva species (Chlorophyta, Ulvales) transported by ballast water. J Biol Res 13:47–57

    CAS  Google Scholar 

  • Fletcher RL (1996) The occurrence of “Green Tides”—a review. In: Schramm W, Nienhuis H (eds) Marine benthic vegetation, recent changes and the effects of eutrophication, ecological studies. Springer, Berlin, pp 7–43

    Google Scholar 

  • Fracheboud Y, Leipner J (2003) The application of chlorophyll fluorescence to study light, temperature, and drought stress. In: DeEll JR, Toivonen PMA (eds) Practical applications of chlorophyll fluorescence in plant biology. Springer, Boston, pp 125–150

    Chapter  Google Scholar 

  • Gao G, Clare AS, Rose C, Caldwell GS (2017) Eutrophication and warming-driven Green Tides (Ulva rigida) are predicted to increase under future climate change scenarios. Mar Pollut Bull 114(1):439–447

    Article  CAS  PubMed  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8(9):993–1009

    Article  Google Scholar 

  • Hanyuda T, Kawai H (2018) Genetic examination of the type specimen of Ulva australis suggests that it was introduced to Australia. Phycol Res 66(3):238–241

    Article  CAS  Google Scholar 

  • Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29:729–739

    Article  Google Scholar 

  • Hewitt CL, Hayes KR (2002) Risk assessment of marine biological invasions. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe. Distribution, impacts and management. Springer, Netherlands, pp 456–466

    Chapter  Google Scholar 

  • Hewitt CL, Campbell ML, Thresher RE et al (2004) Introduced and cryptogenic species in Port Philip Bay, Victoria, Australia. Mar Biol 144:183–202

    Article  Google Scholar 

  • Hiraoka M, Shimada S, Uenosono M, Masuda M (2004) A new green-tide-forming alga, Ulva ohnoi Hiraoka et Shimada sp. nov. (Ulvales, Ulvophyceae) from Japan. Phycol Res 52(1):17–29

    Article  Google Scholar 

  • Japan Meteorological Agency. www.data.jma.go.jp. Accessed 15 Dec 2018

  • Kakinuma M, Coury DA, Kuno Y, Itoh S, Kozawa Y, Inagaki E, Yoshiura Y, Amano H (2006) Physiological and biochemical responses to thermal and salinity stresses in a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Mar Biol 149(1):97–106

    Article  CAS  Google Scholar 

  • Kawai H, Shimada S, Hanyuda T, Suzuki T (2007) Species diversity and seasonal changes of dominant Ulva species (Ulvales, Ulvophyceae) in Mikawa Bay, Japan, deduced from ITS2 rDNA region sequences. Algae 22(3):221–228

    Article  Google Scholar 

  • Lüning K, Yarish C, Kirkman H (1990) Seaweeds: their environment, biogeography, and ecophysiology. Wiley Interscience, Ney York, p 268

    Google Scholar 

  • Macdonald EM, Davidson RD (1997) Ballast water project. Report No. 3/97. Marine Laboratory, Fisheries Research Services (FRS), Aberdeen, UK, pp 83

  • Mata L, Magnusson M, Paul NA, de Nys R (2016) The intensive land-based production of the green seaweeds Derbesia tenuissima and Ulva ohnoi: biomass and bioproducts. J App Phycol 28(1):365–375

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668

    Article  CAS  PubMed  Google Scholar 

  • McCollin TA, Hamer JP, Lucas IAN (1999) Marine organisms transported in ships’ ballast. Final Report to MAFF. Project Code AE1114. Ministry of Agriculture, Fisheries and Food, Aberdeen, UK, pp 20

  • Meusnier I, Valero M, Olsen JL, Stam WT (2004) Analysis of rDNA ITS1 indels in Caulerpa taxifolia (Chlorophyta) supports a derived, incipient species status for the invasive strain. Eur J Phycol 39(1):83–92

    Article  CAS  Google Scholar 

  • Nelson TA, Haberlin K, Nelson AV et al (2008) Ecological and physiological controls of species composition in green macroalgal blooms. Ecology 89(5):1287–1298

    Article  PubMed  Google Scholar 

  • Nitschke U, Connan S, Stengel DB (2012) Chlorophyll a fluorescence responses of temperate Phaeophyceae under submersion and emersion regimes: a comparison of rapid and steady-state light curves. Photosynth Res 114(1):29–42

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Ann Rev Plant Biol 50(1):333–359

    Article  CAS  Google Scholar 

  • Notoya M (1999) Characteristics of each species and growth (in Japanese). In: Notoya M (ed) Utilization of Ulva spp and environmental restoration. Seizan-do, Tokyo, pp 16–25

    Google Scholar 

  • Ohno M (1999) Ulva and excessive growth. In: Notoya M (ed) The utilization and environmental remediation in Ulva. Seizandou, Tokyo, pp 1–11

    Google Scholar 

  • Provan J, Murphy S, Maggs CA (2005) Tracking the invasive history of the green alga Codium fragile ssp tomentosoides. Mol Ecol 14:189–194

    Article  PubMed  Google Scholar 

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Cultures and collections of algae (Proc Jpn Conf Hakone). Japanese Society of Plant Physiology, Tokyo, pp 63–75

    Google Scholar 

  • Raffaelli DG, Raven JA, Poole LJ (1998) Ecological impact of green macroalgal blooms. Oceanogr Mar Biol Annu Rev 36:97–125

    Google Scholar 

  • Raniello R, Lorenti M, Brunet C, Buia MC (2004) Photosynthetic plasticity of an invasive variety of Caulerpa racemosa in a coastal Mediterranean area: light harvesting capacity and seasonal acclimation. Mar Ecol Prog Ser 271:113–120

    Article  Google Scholar 

  • Ribera-Siguan MA (2003) Pathways of biological invasions of marine plants. In: Ruiz GM, Carlton J (eds) Invasive species: vectors and management strategies. Island Press, London, pp 183–227

    Google Scholar 

  • Ruiz GM, Fofonoff PW, Carlton JT, Wonham MJ, Hines AH (2000) Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annu Rev Ecol Syst 31:481–531

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32(1):305–332

    Article  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Serôdio J, Lavaud J (2011) A model for describing the light response of the nonphotochemical quenching of chlorophyll fluorescence. Photosynth Res 108(1):61–76

    Article  CAS  PubMed  Google Scholar 

  • Smetacek V, Zingone A (2013) Green and golden seaweed tides on the rise. Nature 504(7478):84–88

    Article  CAS  PubMed  Google Scholar 

  • Smith LD (2009) The role of phenotypic plasticity in marine biological invasions. In: Rilov G, Crooks JA (eds) Biological invasions in marine ecosystems. Springer, Berlin, pp 177–202

    Chapter  Google Scholar 

  • Steffensen DA (1976) The effect of nutrient enrichment and temperature on the growth in culture of Ulva lactuca L. Aquat Bot 2:337–351

    Article  CAS  Google Scholar 

  • Sutherland TF, Levings CD, Elliott CC, Hesse WW (2001) Effect of a ballast water treatment system on survivorship of natural populations of marine plankton. Mar Ecol Prog Ser 210:139–148

    Article  Google Scholar 

  • Tait LW, Hawes I, Schiel DR (2017) Integration of chlorophyll a fluorescence and photorespirometry techniques to understand production dynamics in macroalgal communities. J Phycol 53(3):476–485

    Article  CAS  PubMed  Google Scholar 

  • Taylor R, Fletcher RL, Raven JA (2001) Preliminary studies on the growth of selected ‘green tide’ algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate. Bot Mar 44(4):327–336

    Article  Google Scholar 

  • Taylor A, Rigby G, Gollasch S, Voigt M, Hallegraeff G, McCollin T, Jelmert A (2002) Preventive treatment and control techniques for ballast water. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe: distribution, impacts and management. Kluwer Academic Publishers, Dordrecht, p 583

    Google Scholar 

  • Teo LW, Wee YC (1983) Seaweeds of Singapore. Singapore University Press, Singapore, p vi+ 123

    Google Scholar 

  • Terumoto J (1960) Frost-resistance in a marine alga Ulva pertusa Kjellman. Low Temp Sci Ser B 18:35–38

    Google Scholar 

  • Tokida J (1954) The marine algae of Southern Saghalien. Mem Fac Fish, Hokkaido Univ 2:1–264

    Google Scholar 

  • Trowbridge CD (1996) Introduced versus native subspecies of Codium fragile: how distinctive is the invasive subspecies tomentosoides? Mar Biol 126:193–204

    Article  Google Scholar 

  • Uchimura M, Yoshida G, Hiraoka M, Komatsu T, Arai S, Terawaki T (2004) Ecological studies of green tide, Ulva spp. (Chlorophyta) in Hiroshima Bay, the Seto Inland Sea. Jpn J Phycol 52(Suppl):17–22

    Google Scholar 

  • Varela-Alvarez E, Garreta AG, Lluch JR, Soler NS, Serrao EA, Siguán MAR (2012) Mediterranean species of Caulerpa are polyploid with smaller genomes in the invasive ones. PLoS One 7(10):e47728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144(3):307–313

    Article  CAS  Google Scholar 

  • Werschkun B, Sommer Y, Banerji S (2012) Disinfection by-products in ballast water treatment: an evaluation of regulatory data. Water Res 46(16):4884–4901

    Article  CAS  PubMed  Google Scholar 

  • Yabe T, Ishii Y, Amano Y, Koga T, Hayashi S, Nohara S, Tatsumoto H (2009) Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan. Limnology 10:239–245

    Article  Google Scholar 

  • Ye NH, Zhang XW, Mao YZ et al (2011) ‘Green Tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example. Ecol Res 26(3):477–485

    Article  Google Scholar 

  • Zanolla M, Carmona R, De la Rosa J et al (2014) Morphological differentiation of cryptic lineages within the invasive genus Asparagopsis (Bonnemaisoniales, Rhodophyta). Phycologia 53(3):233–242

    Article  Google Scholar 

  • Zanolla M, Altamirano M, Carmona R et al (2015) Photosynthetic plasticity of the genus Asparagopsis (Bonnemaisoniales, Rhodophyta) in response to temperature: implications for invasiveness. Biol Invasions 17(5):1341–1353

    Article  Google Scholar 

  • Zanolla M, Altamirano M, Carmona R et al (2018) Assessing global range expansion in a cryptic species complex: insights from the red seaweed genus Asparagopsis (Florideophyceae). J Phycol 54(1):12–24

    Article  CAS  PubMed  Google Scholar 

  • Zenetos A, Cinar ME, Pancucci-Papadopoulou MA et al (2005) Annotated list of marine alien species in the Mediterranean with records of the worst invasive species. Med Mar Sci 6:62–118

    Google Scholar 

  • Zhang J, Huo Y, Yu K et al (2013) Growth characteristics and reproductive capability of green tide algae in Rudong coast, China. J Appl Phycol 25(3):795–803

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the projects CGL2008/01549/BOS (Ministerio de Ciencia e Innovación, Spain), P09-RNM-5187 (Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía, Spain) and the Plan Propio of the University of Malaga (Spain). M. Zanolla would like to thank Ms. Tomoko Kotani for her help during experiments.

Funding

This project was funded by the projects CGL2008/01549/BOS (Ministerio de Ciencia e Innovación, Spain), P09-RNM-5187 (Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía, Spain) and the Plan Propio of the University of Malaga (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianela Zanolla.

Ethics declarations

Conflict of interest

Author Marianela Zanolla declares that she has no conflict of interest. Author Raquel Carmona declares that she has no conflict of interest. Author Hiroshi Kawai declares that he has no conflict of interest. Author Dagmar Stengel declares that she has no conflict of interest. Author Maria Altamirano declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Responsible Editor: F. Weinberger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by T. A. Nelson and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

227_2019_3578_MOESM1_ESM.pdf

Supp Fig. 1 Relative electron transport rate (rETR)-irradiance curves in U. ohnoi at experimental temperatures at the beginning (t = 0), after 1 week (t = 7) and at the end (t = 14) of the long-term (14 d) exposure experiment. Data are presented as mean ± SD (n = 7) (PDF 359 kb)

227_2019_3578_MOESM2_ESM.pdf

Supp Fig. 2 Saturation parameter of photosynthesis (Ik) calculated for U. ohnoi and U. pertusa after 3 and 5 h of thermal and light/dark treatment. Data are presented as mean ± SD (n = 5) (PDF 299 kb)

227_2019_3578_MOESM3_ESM.pdf

Supp Table 1 Univariate ANOVA tests derived from the different MANOVA tests shown in Table 1. Significant values (p < 0.0083) are highlighted in bold (see M & M) (PDF 629 kb)

227_2019_3578_MOESM4_ESM.pdf

Supp Table 2 Effect of temperature (27, 29, 31, 34 and 36º C) on the maximum non-photochemical quenching NPQmax (relative units) calculated from NPQ versus EPAR curves from short-term (3 h, 5 h, light and dark conditions) and long-term (14 days) experiments for Ulva ohnoi (a) and U. pertusa (b). qP model fit data (relative units) derived from the model fit of qP versus EPAR curves (see Materials and methods section) are displayed for all experiments conducted in U. ohnoi (c) and U. pertusa (d). Data are mean values (± SD) (n = 5-7) (PDF 477 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanolla, M., Carmona, R., Kawai, H. et al. Role of thermal photosynthetic plasticity in the dispersal and settlement of two global green tide formers: Ulva pertusa and U. ohnoi. Mar Biol 166, 123 (2019). https://doi.org/10.1007/s00227-019-3578-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-019-3578-1