Skip to main content

Advertisement

Log in

Drinking behaviors and water balance in marine vertebrates

  • Review, Concept, and Synthesis
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Acquisition of fresh water is important to animals, and is both difficult and critical for species residing in marine environments. Adaptive radiations to fully marine habitats were constrained by the need for fresh water and the capacity of various taxa to adapt physiology to reliance on sources of water other than free drinking water. Here, we review the water relations of marine vertebrates, with an emphasis on drinking and the need to procure fresh water. Numerous marine teleost fishes drink seawater, but some do not, and drinking is more variable and complex than suggested by textbooks. The mechanisms by which fishes and other vertebrates regulate water balance involve the renin–angiotensin and aldosterone endocrine systems, but plasma osmotic and ionic concentrations as well as other chemical signals can also be involved. Multiple mechanisms for stimulation of drinking are operative and diverse among species. Clearly, evolutionary adaptations to environmental salinities can alter drinking behaviors. Marine elasmobranchs do not characteristically drink seawater, but euryhaline species drink upon returning to more concentrated seawater, as with teleosts. Hagfish are osmoconformers, and there is no evidence for drinking. In general, marine reptiles and most marine mammals and seabirds do not drink seawater. Exceptions include sea turtles, cetaceans, and some pinnipeds. Some marine species (e.g., sea snakes) require fresh water that can be acquired from ephemeral rainwater lenses, while others are adapted to utilize dietary and metabolic water. Regardless of drinking behaviors, numerous forms have evolved varied strategies for conserving water while reducing its losses to the surrounding sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Photograph by Mark Sandfoss

Fig. 2

Photograph by Stanley Hillyard

Fig. 3

Photographs by James Nifong

Fig. 4

Photograph by H.B.L.

Fig. 5

Photograph by Elizabeth A. Ashley

Fig. 6

USGS photograph by J.S. Mack

Fig. 7

Photograph by Dan Costa

Fig. 8

Photographs by H.B.L.

Fig. 9

Photographs by Xavier Bonnet

Fig. 10

Photographs by Dan Costa

Fig. 11

Photograph by Dan Costa

Fig. 12

Photograph by Dan Costa

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adams SH, Costa DP (1993) Water conservation and protein metabolism in northern elephant seal pups during the postweaning fast. J Comp Physiol B 163:367–373

    Article  CAS  PubMed  Google Scholar 

  • Andersen SH, Nielsen E (1983) Exchange of water between the harbor porpoise, Phocoena phocoena and the environment. Experientia 39:52–53

    Article  CAS  PubMed  Google Scholar 

  • Anderson WG, Takei Y, Hazon N (2001) The dipsogenic effect of the renin-angiotensin system in elasmobranch fish. Gen Comp Endocrinol 124:300–307. https://doi.org/10.1006/gcen.2001.7712

    Article  CAS  PubMed  Google Scholar 

  • Anderson WG, Taylor JR, Good JP, Hazon N, Grosell M (2007) Body fluid volume regulation in elasmobranch fish. Comp Biochem Physiol 148A:3–13

    Article  CAS  Google Scholar 

  • Ando M, Nagashima K (1996) Intestinal Na and Cl- levels control drinking behavior in the seawater-adapted eel Anguilla japonica. J Exp Biol 199:711–716

    CAS  PubMed  Google Scholar 

  • Ando M, Fujii Y, Kadota T, Kozaka T, Mukuda T, Takase I, Kawahara A (2000) Some factors affecting drinking behavior and their interactions in seawater acclimated eel, Anguilla japonica. Zool Sci 17:171–178

    Article  Google Scholar 

  • Auffenberg W (1963) A note on the drinking habits of some land tortoises. Anim Behav 11:72–73

    Article  Google Scholar 

  • Ballantyne JS (2016) Some of the most interesting things we know, and don’t know, about the biochemistry and physiology of elasmobranch fishes (sharks, skates and rays). Comp Biochem Physiol B 199:21–28

    Article  CAS  PubMed  Google Scholar 

  • Balment RJ, Carrick S (1985) Endogenous renin-angiotensin system and drinking behavior in flounder. Am J Physiol Regul Integr Comp Physiol 248:R157–R160. https://doi.org/10.1152/ajpregu.1985.248.2.R157

    Article  CAS  Google Scholar 

  • Balment RJ, Loveridge JP (1989) Endocrines and osmoregulatory mechanisms in the Nile crocodile, Crocodylus niloticus. Gen Comp Endocrinol 73(3):361–367

    Article  CAS  PubMed  Google Scholar 

  • Barrowclough GF, Cracraft J, Klicka J, Zink RM (2016) How many kinds of birds are there and why does it matter? PLoS One 11(11):e0166307. https://doi.org/10.1371/journal.pone.0166307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bath RN, Eddy FB (1979) Salt and water balance in rainbow trout (Salmo gairdneri) rapidly transferred from fresh water to sea water. J Exp Biol 83:193–202

    CAS  Google Scholar 

  • Beasley D, Schier DN, Malvin RL, Smith G (1986) Angiotensin-stimulated drinking in marine fish. Am J Physiol Regul Integr Comp Physiol 250:R1034–R1038. https://doi.org/10.1152/ajpregu.1986.250.6.R1034

    Article  CAS  Google Scholar 

  • Bels VL, Davenport J, Renous S (1995) Drinking and water expulsion in the diamondback turtle Malaclemys terrapin. J Zool (Lond) 236:483–497

    Article  Google Scholar 

  • Bennett JM, Taplin LE, Grigg GC (1986) Sea water drinking as a homeostatic response to dehydration in hatchling loggerhead turtles Caretta caretta. Comp Biochem Physiol A 83:507–513

    Article  Google Scholar 

  • Bentley PJ, Yorio T (1979) Do frogs drink? J Exp Biol 79:41–46

    Google Scholar 

  • Best RC (1981) Foods and feeding habits of wild and captive Sirenia. Mamm Rev 11:3–29

    Article  Google Scholar 

  • Bester MN (1975) The functional morphology of the kidney of the Cape fur seal, Arctocephalus pusillus (Schreber). Modoqua Ser II 4:69–92

    Google Scholar 

  • Beuchat CA (1996) Structure and concentrating ability of the mammalian kidney: correlations with habitat. Am J Physiol Regul Integr Comp Physiol 40:l57–179

    Google Scholar 

  • Bicudo JEPW, Buttemer WA, Chappell MA, Pearson JT, Bech C (2010) Ecological and environmental physiology of birds. Oxford University Press, New York

    Book  Google Scholar 

  • Blakey R, Zharikov Y, Skilleter GA (2006) Lack of an osmotic constraint on intake rate of the eastern curlew (Numenius madagascariensis). J Avian Biol 37:299–305

    Article  Google Scholar 

  • Bonnet X, Brischoux F (2008) Thirsty sea snakes forsake refuge during rainfall. Austral Ecol 33:911–921

    Article  Google Scholar 

  • Brischoux F, Tingley R, Shine R, Lillywhite HB (2012) Salinity influences the distribution of marine snakes: implications for evolutionary transitions to marine life. Ecography 35:994–1003

    Article  Google Scholar 

  • Brischoux F, Lendvai ÁZ, Bókony V, Chastel O, Angelier F (2015) Marine lifestyle is associated with higher baseline corticosterone levels in birds. Biol J Linn Soc 115(1):154–161. https://doi.org/10.1111/bij.12493

    Article  Google Scholar 

  • Burgin CJ, Colella JP, Kahn PL, Upham NS (2018) How many species of mammals are there? J Mamm 99(1):1–14

    Article  Google Scholar 

  • Buttemer WA, Astheimer LB (1990) Thermal and behavioural correlates of nest site location in black noddies. Emu 90:114–118

    Article  Google Scholar 

  • Castellini MA, Costa DP, Huntley AC (1987) Fatty acid metabolism in fasting northern elephant seal pups. J Comp Physiol B 157:445–449

    Article  CAS  PubMed  Google Scholar 

  • Castellini JA, Castellini MA, Kretzmann M (1990) Circulatory water concentration in suckling and fasting northern elephant seals. J Comp Physiol B 160:537–542

    Article  CAS  PubMed  Google Scholar 

  • Cohen JJ, Krupp MA, Chidsey CA (1958) Renal conservation of trimethylamine oxide by the spiny dogfish, Squalus acanthias. Am J Physiol 194:R229–R235

    Article  Google Scholar 

  • Comanns P, Falk JE, Kappel PH, Baumgartner W, Shaw J, Withers PC (2017) Adsorption and movement of water by skin of the Australian thorny devil (Agamidae: Moloch horridus). R Soc Open Sci 4:170591. https://doi.org/10.1098/rsos.170591

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper LN, Clementz MT, Usip S, Bajpai S, Hussain ST, Hieronymu TL (2016) Aquatic habits of cetacean ancestors: integrating bone microanatomy and stable isotopes. Integr Comp Biol 56:1370–1384

    Article  PubMed  Google Scholar 

  • Costa DP (1982) Energy, nitrogen, electrolyte flux and sea water drinking in the sea otter Enhydra lutris. Physiol Zool 55:35–44

    Article  CAS  Google Scholar 

  • Costa DP, Gentry RL (1986) Reproductive energetics of the northern fur seal. In: Gentry RL, Kooyman GL (eds) Fur seals: maternal strategies at land and sea. Princeton University Press, Princeton, pp 79–101

    Chapter  Google Scholar 

  • Costa DP, Ortiz CL (1982) Blood chemistry homeostasis during prolonged fasting in the northern elephant seal. Am J Physiol Regul Integr Comp Physiol 242:R591–R595

    Article  CAS  Google Scholar 

  • Costa DP, Prince PA (1987) Foraging energetics of grey-headed albatrosses Diomedea chrysostoma at Bird Island, South Georgia. Ibis 129:149–158

    Article  Google Scholar 

  • Costa DP, Trillmich F (1988) Mass changes and metabolism during the perinatal fast: a comparison between Antarctic (Arctocephalus gazella) and Galápagos fur seals (Arctocephalus galapagoensis). Physiol Zool 61:160–169

    Article  Google Scholar 

  • Davenport J (2017) Crying a river: how much salt-laden jelly can a leatherback turtle really eat? J Exp Biol 220:1737–1744. https://doi.org/10.1242/jeb.155150

    Article  PubMed  Google Scholar 

  • Davenport J, Macedo E-A (1990) Behavioural osmotic control in the euryhaline diamondback terrapin Malaclemys terrapin: responses to low salinity and rainfall. J Zool (Lond) 220:487–496

    Article  Google Scholar 

  • Davenport J, Magill SH (1996) Thermoregulation or osmotic control? Some preliminary observations on the function of emersion in the diamondback terrapin Malaclemys terrapin (Latrielle). Herpetol J 6:26–29

    Google Scholar 

  • Davenport J, Ward JF (1993) The effects of salinity and temperature on appetite in the diamondback terrapin Malaclemys terrapin (Latreille). Herpetol J 3:95–98

    Google Scholar 

  • Depocas F, Hart J, Fisher HD (1971) Seawater drinking and water flux in starved and fed harbor seals, Phoca vitulina. Can J Physiol Pharmacol 49:53–62

    Article  CAS  PubMed  Google Scholar 

  • Duggan RT, Lofts B (1978) Adaptation to fresh water in the sea snake Hydrophis cyanocinctus: tissue electrolytes and peripheral corticosteroids. Gen Comp Endocrinol 36:510–520

    Article  CAS  PubMed  Google Scholar 

  • Dunson WA (1970) Some aspects of electrolyte and water balance in three estuarine reptiles, the diamondback terrapin, American and “saltwater” crocodiles. Comp Biochem Physiol 32:161–174

    Article  CAS  PubMed  Google Scholar 

  • Dunson WA (1976) Salt glands in reptiles. In: Gans C, Dawson WR (eds) Biology of the reptilia, physiology A, vol 5. Academic Press, New York, pp 413–445

    Google Scholar 

  • Dunson WA (1980) The relation of sodium and water balance to survival in sea water of estuarine and freshwater races of the snakes Nerodia fasciata, N. sipedon and N. valida. Copeia 1980:268–280

    Article  Google Scholar 

  • Dunson WA (1985) Effects of water salinity and food salt content on growth and sodium efflux of hatchling diamondback terrapins (Malaclemys). Physiol Zool 58(6):736–747

    Article  Google Scholar 

  • Dunson WA, Dunson MK (1974) Interspecific differences in fluid concentration and secretion rate of sea snake salt glands. Am J Physiol 227:430–438

    Article  CAS  PubMed  Google Scholar 

  • El-Gohary ZM, El-Sayad FI, Hassan HA, Hamoda AM (2013) The functional alterations of the avian salt gland subsequent to osmotic stress. Egypt J Hosp Med 51:346–360. https://doi.org/10.12816/0000851

    Article  Google Scholar 

  • Epstein FH, Silva P (2005) Mechanisms of rectal gland secretion. Bull MDIBL 44:1–5

    Google Scholar 

  • Evans DH (2008) Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am J Physiol Integr Comp Physiol 295:R704–R713

    Article  CAS  Google Scholar 

  • Evans DH (2010) A brief history of the study of fish osmoregulation: the central role of the Mt. Desert Island Biological Laboratory. Front Physiol. https://doi.org/10.3389/fphys.2010.00013

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans DH, Claiborne JB (2009) Osmotic and ionic regulation in fishes. In: Evans DH (ed) Osmotic and ionic regulation. Cells and animals. CRC Press, Boca Raton, pp 295–366

    Google Scholar 

  • Gentry RL (1981) Seawater drinking in eared seals. Comp Biochem Physiol A 68:81–86

    Article  Google Scholar 

  • Glover CN, Wood CM, Goss GG (2017) Drinking and water permeability in the Pacific hagfish, Eptatretus stoutii. J Comp Physiol B 187:1127–1135. https://doi.org/10.1007/s00360-017-1097-2

    Article  PubMed  Google Scholar 

  • Goiran C, Shine R (2013) Decline in sea snake abundance on a protected coral reef system in the New Caledonian Lagoon. Coral Reefs 32:281–284. https://doi.org/10.1007/s00338-012-0977-x

    Article  Google Scholar 

  • Gordon MS, Tucker VA (1965) Osmotic regulation in the tadpoles of the crab-eating frog (Rana cancrivora). J Exp Biol 42:437–445

    CAS  Google Scholar 

  • Gordon MS, Schmidt-Nielsen K, Kelly HM (1961) Osmotic regulation in the crab-eating frog (Rana cancrivora). J Exp Biol 38:659–678

    CAS  Google Scholar 

  • Grigg GC, Taplin LE, Harlow P, Wright J (1980) Survival and ‘growth of hatchling Crocodylus porosus in saltwater without access to fresh drinking water. Oecologia (Berl.) 47:264–266

    Article  CAS  Google Scholar 

  • Grigg GC, Beard LA, Moulton T, Melo MT, Taplin LE (1998) Osmoregulation by the broad-snouted caiman, Caiman latirostris, in estuarine habitat in southern Brazil. J Comp Physiol B Biochem Syst Environ Physiol 168:445–452. https://doi.org/10.1007/s003600050164

    Article  Google Scholar 

  • Grismer LL (1994) Three new species of intertidal side-blotched lizards (genus Uta) from the Gulf of California, Mexico. Herpetologica 50:451–474

    Google Scholar 

  • Guinea ML (1991) Rainwater drinking by the sea krait Laticauda colubrina. Herpetofauna 21:13–14

    Google Scholar 

  • Guinea ML (2013) Surveys of the sea snakes and sea turtles on reefs of the Sahul Shelf. Final Report 2012–2013. In: Proc Monitoring Program Montara Well Release Timor Sea, Drysdale, VIC (Australia)

  • Gutiérrez JS, Masero JA, Abad-Gómez JM, Villegas A, Sánchez-Guzmán JM (2011) Understanding the energetic costs of living in saline environments: effects of salinity on basal metabolic rate, body mass and daily energy consumption of a long-distance migratory shorebird. J Exp Biol 214:829–835

    Article  PubMed  Google Scholar 

  • Hammerschlag N (2006) Osmoregulation in elasmobranchs: a review for fish biologists, behaviourists and ecologists. Mar Freshw Behav Physiol 39:209–228

    Article  CAS  Google Scholar 

  • Hazon N, Balment RJ, Perrott M, O’Toole LB (1989) The renin–angiotensin system and vascular and dipsogenic regulation in elasmobranchs. Gen Comp Endocrinol 74:230–236

    Article  CAS  PubMed  Google Scholar 

  • Hazon N, Tierney ML, Anderson WG, Mackenzie S, Cutler C, Cramb G (1997) Ion and water balance in elasmobranch fish. In: Hazon N, Eddy FB, Flik G (eds) Ionic regulation in animals. Springer, Heidleberg, pp 70–86

    Google Scholar 

  • Hillyard SD, Hoff KS, Propper C (1998) The water absorption response: a behavioral assay for physiological processes in terrestrial amphibians. Physiol Zool 71:127–138

    Article  CAS  PubMed  Google Scholar 

  • Hirano T (1974) Some factors regulating water intake by the eel, Anguilla japonica. J Exp Biol 61:737–747

    CAS  PubMed  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, Oxford

    Google Scholar 

  • Holliday DK, Elskus AA, Roosenberg WM (2009) Impacts of multiple stressors on growth and metabolic rate of Malaclemys terrapin. Environ Toxicol Chem 28:338–345

    Article  CAS  PubMed  Google Scholar 

  • Holmes WN (1975) Hormones and osmoregulation in marine birds. Gen Comp Endocrinol 25:249–258. https://doi.org/10.1016/0016-6480(75)90195-1

    Article  CAS  PubMed  Google Scholar 

  • Holmes WN, McBean RL (1964) Some aspects of electrolyte excretion in the green turtle, Chelonia mydas mydas. J Exp Biol 41:81–90

    CAS  PubMed  Google Scholar 

  • Houssaye A, Fish FE (2016) Functional (secondary) adaptation to an aquatic life in vertebrates: an introduction to the symposium. Integr Comp Biol 56:1266–1270

    Article  PubMed  Google Scholar 

  • Hughes MR, Kitamura N, Bennett DC, Gray DA, Sharp PJ, Poon AM (2007) Effect of melatonin on salt gland and kidney function of gulls, Larus glaucescens. Gen Comp Endocrinol 151:300–307. https://doi.org/10.1016/j.ygcen.2007.01.017

    Article  CAS  PubMed  Google Scholar 

  • Hui C (1981) Seawater consumption and water flux in the common dolphin Delphinus delphis. Physiol Zool 54:430–440

    Article  CAS  Google Scholar 

  • Hulsman K (1975) The skimming behaviour of terns. Sunbird 6:41–43

    Google Scholar 

  • Huntley AC, Costa DP, Rubin RD (1984) The contribution of nasal countercurrent heat exchange to water balance in the northern elephant seal, Mirounga angustirostris. J Exp Biol 113:447–454

    CAS  PubMed  Google Scholar 

  • Irvine AB, Neal RC, Cardeilhac RT, Popp JA, Whiter FH, Jenkins RC (1980) Clinical observations on captive and free-ranging West Indian manatees, Trichechus manatus. Aquat Mamm 8:2–10

    Google Scholar 

  • Irving L, Fisher KC, McIntosh FC (1935) The water balance of a marine mammal, the seal. J Cell Comp Physiol 6:387–391

    Article  CAS  Google Scholar 

  • Jackson K, Brooks DR (2007) Do crocodiles co-opt their sense of “touch” to “taste”? A possible new type of vertebrate sensory organ. Amphib Reptil 28:277–285

    Article  Google Scholar 

  • Jackson K, Butler DG, Brooks DR (1996) Habitat and phylogeny influence salinity discrimination in crocodilians: implications for osmoregulatory physiology and historical biogeography. Biol J Linn Soc 58:371–383. https://doi.org/10.1111/j.1095-8312.1996.tb01441.x

    Article  Google Scholar 

  • Janech MG, Fitzgibbon WR, Nowak MW, Miller DH, Paul RV, Plot DW (2006) Cloning and functional characterization of a second urea transporter from the kidney of the Atlantic stingray, Dasyatis sabina. Am J Physiol 291:R844–R853

    CAS  Google Scholar 

  • Katayama Y, Sakamoto T, Saito K, Tsuchimochi H, Kaiya H, Watanabe T, Pearson JT, Takei Y (2018) Drinking by amphibious fish: convergent evolution of thirst mechanisms during vertebrate terrestrialization. Sci Rep 8:625. https://doi.org/10.1038/s41598-017-18611-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kear BP, Lee MSY (2006) A primitive protostegid from Australia and early sea turtle evolution. Biol Lett 2:116–119

    Article  PubMed  Google Scholar 

  • Kelley NP, Pyenson ND (2015) Evolutionary innovation and ecology in marine tetrapods from the Triassic to the Anthropocene. Science. https://doi.org/10.1126/science.aaa3716

    Article  PubMed  Google Scholar 

  • Kidera N, Mori A, Tu M-C (2013) Comparison of freshwater discrimination ability in three species of sea kraits (Laticauda semifasciata, L. laticaudata and L. colubrina). J Comp Physiol A 199:191–195

    Article  Google Scholar 

  • Kjeld M (2003) Salt and water balance of modern baleen whales: rate of urine production and food intake. Can J Zool 81:606–616. https://doi.org/10.1139/z03-041

    Article  Google Scholar 

  • Kobayashi H, Uemura H, Wada M, Takei Y (1979) Ecological adaptation of angiotensin-induced thirst mechanism in tetrapods. Gen Comp Endocrinol 38:93–104

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Uemura H, Takei Y, Itatsu N, Ozawa M, Ichinohe K (1983) Drinking induced by angiotensin II in fishes. Gen Comp Endocrinol 49:295–306

    Article  CAS  PubMed  Google Scholar 

  • Krogh A (1939) Osmotic regulation in aquatic animals. Cambridge University Press, Cambridge

    Google Scholar 

  • Lanyon JM, Newgrain K, Alli TSS (2006) Estimation of water turnover rate in captive dugongs (Dugong dugon). Aquat Mamm 32:103–108

    Article  Google Scholar 

  • Lasiewski RC, Bartholomew GA (1969) Condensation as a mechanism for water gain in nocturnal desert poikilotherms. Copeia 2:405–407

    Article  Google Scholar 

  • Le Boeuf BJ, Whiting RJ, Gantt RF (1972) Perinatal behavior of northern elephant seal females and their young. Behaviour 43:121–156

    Article  PubMed  Google Scholar 

  • Lee MSY, Sanders KL, King B, Palci A (2016) Diversification rates andphenotypic evolution in venomous snakes (Elapidae). R Soc Opensci 3:150277. https://doi.org/10.1098/rsos.150277

    Article  CAS  Google Scholar 

  • Lester CW, Costa DP (2006) Water conservation in fasting northern elephant seals (Mirounga angustirostris). J Exp Biol 209:4283–4294

    Article  PubMed  Google Scholar 

  • Li C, Wu X-C, Rieppel O, Wang L-T, Zhao L-J (2008) An ancestral turtle from the Late Triassic of southwestern China. Nature 456:497–501

    Article  CAS  PubMed  Google Scholar 

  • Lillywhite HB (1996) Husbandry of the little file snake, Acrochordus granulatus. Zoo Biol 15:315–327

    Article  Google Scholar 

  • Lillywhite HB (2017) Feeding begets drinking: insights from intermittent feeding in snakes. J Exp Biol 220:3565–3570

    Article  PubMed  Google Scholar 

  • Lillywhite HB, Ellis TE (1994) Ecophysiological aspects of the coastal-estuarine distribution of acrochordid snakes. Estuaries 17:53–61

    Article  Google Scholar 

  • Lillywhite HB, Tu M-C (2011) Abundance of sea kraits correlates with precipitation. PLoS One. https://doi.org/10.1371/journal.pone.00228556

    Article  PubMed  PubMed Central  Google Scholar 

  • Lillywhite HB, Sheehy CM III, Zaidan F III (2008a) Pitviper scavenging at the intertidal zone: an evolutionary scenario for invasion of the sea. BioScience 58:947–955

    Article  Google Scholar 

  • Lillywhite HB, Babonis LS, Sheehy CM III, Tu M-C (2008b) Sea snakes (Laticauda spp.) require fresh drinking water: implication for the distribution and persistence of populations. Physiol Biochem Zool 81:785–796

    Article  PubMed  Google Scholar 

  • Lillywhite HB, Menon JG, Menon GK, Sheehy CM III, Tu M-C (2009) Water exchange and permeability properties of the skin in three species of amphibious sea snakes (Laticauda spp.). J Exp Biol 212:1921–1929

    Article  CAS  PubMed  Google Scholar 

  • Lillywhite HB, Brischoux F, Sheehy CM III, Pfaller JB (2012) Dehydration and drinking responses in a pelagic sea snake. Integr Comp Biol 52:227–234

    Article  PubMed  Google Scholar 

  • Lillywhite HB, Heatwole H, Sheehy CM III (2014a) Dehydration and drinking behavior of the marine file snake, Acrochordus granulatus. Physiol Biochem Zool 87:46–55

    Article  PubMed  Google Scholar 

  • Lillywhite HB, Sheehy CM III, Brischoux F, Grech A (2014b) Pelagic sea snakes dehydrate at sea. Proc R Soc B 281:20140119

    Article  PubMed  PubMed Central  Google Scholar 

  • Lillywhite HB, Heatwole H, Sheehy CM III (2015) Dehydration and drinking behavior in true sea snakes (Elapidae: Hydrophiinae: Hydrophiini). J Zool 296:261–269

    Article  Google Scholar 

  • Lillywhite HB, Sheehy CM III, Heatwole H, Brischoux F, Steadman DH (2017) Why are there no sea snakes in the Atlantic? BioScience 68:15–24

    Article  Google Scholar 

  • Lillywhite HB, Sheehy CM III, Sandfoss MR, Crowe-Riddell J, Grech A (2019) Drinking by sea snakes from oceanic freshwater lenses at first rainfall ending seasonal drought. PLoS One 14(2):e0212099. https://doi.org/10.1371/journal.pone.0212099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukoschek V, Beger M, Ceccarelli D, Richards Z, Pratchett M (2013) Enigmatic declines of Australia’s sea snakes from a biodiversity hotspot. Biol Conserv 166:191–202. https://doi.org/10.1016/j.biocon.2013.07.004

    Article  Google Scholar 

  • Magnusson WE (1978) Nesting ecology of Crocodylus porosus, Schneider, in Arnhem Land, Australia. Unpubl. PhD Thesis, Univ. of Sydney

  • Maluf NSR (1989) Renal anatomy of the manatee, Trichechus manatus (Linnaeus). Am J Anat 184:269–286

    Article  CAS  PubMed  Google Scholar 

  • Malvin RL, Ridgway S, Cornell L (1978) Renin and aldosterone levels in dolphins and sea lions. Proc Soc Exp Biol Med 157:665–668

    Article  CAS  PubMed  Google Scholar 

  • Malvin RL, Schiff D, Eiger S (1980) Angiotensin and drinking rates in the euryhaline killifish. Am J Physiol Regul Integr Comp Physiol 239:R31–R34. https://doi.org/10.1152/ajpregu.1980.239.1.R31

    Article  CAS  Google Scholar 

  • Manchester KL (1970) Sites of hormonal regulation of protein metabolism. In: Munro HN (ed) Mammalian protein metabolism, vol 4. Academic Press, New York, pp 229–298

    Chapter  Google Scholar 

  • Mangor-Jensen A, Adoff GR (1987) Drinking activity of the newly hatched larvae of cod Gadus morhua L. Fish Physiol Biochem 3:99–103

    Article  CAS  PubMed  Google Scholar 

  • Marshall AT, Cooper PD (1988) Secretory capacity of the lachrymal salt gland of hatchling sea turtles, Chelonia mydas. J. Comp Physiol B 157:821–827

    Article  Google Scholar 

  • Martin RA (2005) Conservation of freshwater and euryhaline elasmobranchs: a review. J Mar Biol Assoc UK 85:1049–1073

    Article  Google Scholar 

  • Mazzotti FJ, Dunson WA (1984) Adaptations of Crocodylus acutus and Alligator for life in saline water. Comp Biochem Physiol 79 A:641–646

    Article  Google Scholar 

  • Mazzotti FJ, Dunson WA (1989) Osmoregulation in crocodilians. Am Zool 29:903–920

    Article  Google Scholar 

  • Medway W, Bruss ML, Bengtson JL, Black DJ (1982) Blood chemistry of the West Indian manatee (Trichechus manatus). J Wildl Dis 18:229–234

    Article  CAS  PubMed  Google Scholar 

  • Murphy MS, DeNardo DF (2019) Rattlesnakes must drink: meal consumption does not improve hydration state. Physiol Biochem Zool 92:381–385

    Article  PubMed  Google Scholar 

  • Nelson RA, Wahner W, Jones JD, Ellefson RD, Zollman PE (1973) Metabolism of bears before, during, and after winter sleep. Am J Physiol 224:491–496

    Article  CAS  PubMed  Google Scholar 

  • Nelson RA, Folk GE Jr, Pfeiffer EW, Craighead JJ, Jonkel CJ, Steiger DL (1983) Behavior, biochemistry, and hibernation in black, grizzly, and polar bears. Int Conf Bear Res Manag 5:284–290

    Google Scholar 

  • Nifong JC, Silliman B (2017) Abiotic factors influence the dynamics of marine habitat use by a highly mobile ‘‘freshwater’’ top predator. Hydrobiologia 802:155–174

    Article  Google Scholar 

  • Ortiz RM (2001) Osmoregulation in marine mammals. J Exp Biol 201:1831–1844

    Google Scholar 

  • Ortiz RM, Worthy GAJ (2006) Body composition and water turnover rates of bottle-fed West Indian manatee (Trichechus manatus) calves. Aquat Mamm 32:41–45

    Article  Google Scholar 

  • Ortiz CL, Costa D, Le Boeuf BJ (1978) Water and energy flux in elephant seal pups fasting under natural conditions. Physiol Zool 51:166–178

    Article  CAS  Google Scholar 

  • Ortiz R, Worthy G, Mackenzie D (1998) Osmoregulation in wild and captive West Indian Manatees (Trichechus manatus). Physiol Zool 71:449–457. https://doi.org/10.1086/515427

    Article  CAS  PubMed  Google Scholar 

  • Ortiz RM, Worthy GAJ, Byers FM (1999) Estimation of water turnover rates of captive West Indian manatees (Trichechus manatus) held in fresh and salt water. J Exp Biol 202:33–38

    CAS  PubMed  Google Scholar 

  • Ortiz RM, Patterson RM, Wade CE, Byers F (2000) Effects of acute fresh water exposure on water flux rates and osmotic responses in Kemp’s ridley sea turtles (Lepidochelys kempi). Comp Biochem Physiol A Mol Integr Physiol 127:81–87. https://doi.org/10.1016/s1095-6433(00)00240-3

    Article  CAS  PubMed  Google Scholar 

  • Perrott MN, Grierson CE, Hazon N, Balment RJ (1992) Drinking behaviour in sea water and fresh water teleosts, the role of the renin-angiotensin system. Fish Physiol Biochem 10(2):161–168

    Article  CAS  PubMed  Google Scholar 

  • Perry R (1966) The world of the polar bear. Univ. Washington Press, Seattle

    Google Scholar 

  • Potts WTW, Foster MA, Stather JW (1970) Salt and water balance in salmon smolts. J Exp Biol 52:553–564

    CAS  PubMed  Google Scholar 

  • Price ER, Sotherland PR, Wallace BP, Spotila JR, Dzialowski M (2019) Physiological determinants of the interesting interval in sea turtles: a novel ‘water-limitation’ hypothesis. Biol Lett 15:20190248. https://doi.org/10.1098/rsbl.2019.0248

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyron RA, Burbrink FT, Wiens JJ (2013) A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol 13:93. https://doi.org/10.1186/1471-2148-13-93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen AR, Murphy JC, Ompi M, Gibbons JW, Uetz P (2011) Marine Reptiles. PLoS ONE 6(11):e27373. https://doi.org/10.1371/journal.pone.0027373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reilly BD, Cramp RL, Wilson JM, Campbell HA, Franklin CE (2011) Branchial osmoregulation in the euryhaline bull shark, Carcharhinus leucas: a molecular analysis of ion transporters. J Exp Biol 214:2883–2895

    Article  CAS  PubMed  Google Scholar 

  • Reina RD, Jones TT, Spotila JR (2002) Salt and water regulation by the leatherback sea turtle Dermochelys coriacea. J Exp Biol 205:1853–1860

    PubMed  Google Scholar 

  • Reiter J, Stinson NL, Le Boeuf BJ (1978) Northern elephant seal development: the transition from weaning to nutritional independence. Behav Ecol Sociobiol 3:337–367

    Article  Google Scholar 

  • Renouf D, Noseworthy E, Scott MC (1990) Daily fresh water consumption by captive harp seals (Phoca groenlandica). Mar Mamm Sci 6:253–257

    Article  Google Scholar 

  • Robertson G, Green B, Newgrain K (1988) Estimated feeding rates and energy requirements of gentoo penguins, Pygoscelis papua, at Macquarie Island. Polar Biol 9:89–93

    Article  Google Scholar 

  • Russell RH (1971) Summer and autumn food habits of island and mainland populations of polar bears—a comparative study. Unpublished MSc thesis, University of Alberta, Edmonton

  • Sanders KL, Lee MSY, Leys R, Roster R, Keogh J (2008) Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (Hydrophiinae): evidence from seven genes for rapid evolutionary radiations. J Evol Biol 21:682–695

    Article  CAS  PubMed  Google Scholar 

  • Sanders KL, Mumpuni Hamidy A, Head JJ, Gower DJ (2010) Phylogeny and divergence times of filesnakes (Acrochordus): inferences from morphology, fossils and three molecular loci. Mol Phylogenet Evol 56:857–867. https://doi.org/10.1016/j.ympev.2010.04.031

    Article  PubMed  Google Scholar 

  • Sanders KL, Lee MSY, Mumpuni Bertozzi T, Rasmussen AR (2013) Multilocus phylogeny and recent rapid radiation of the viviparous sea snakes (Elapidae: Hydrophiinae). Mol Phylogenet Evol 66:575–591. https://doi.org/10.1016/j.ympev.2012.09.021

    Article  PubMed  Google Scholar 

  • Schmidt-Nielsen K (1960) The salt-secreting gland of marine birds. Circulation 21:955–967. https://doi.org/10.1161/01.cir.21.5.955

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Nielsen K, Fange R (1958) The function of the salt gland in the brown pelican. Auk 75(3):282–289

    Article  Google Scholar 

  • Schmidt-Nielsen K, Jörgensen CB, Osaki H (1958) Extrarenal salt excretion in birds. Am J Physiol 193:101–107

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker VH, Nagy KA (1984) Osmoregulation in the Galápagos marine iguana, Amblyrhynchus cristatus. Physiol Zool 57(3):291–300

    Article  Google Scholar 

  • Shoemaker VH, Hillman SS, Hillyard SD, Jackson DC, McClanahan LL, Withers PC, Wygoda ML (1992) Exchange of water, ions, and respiratory gases in terrestrial amphibians. In: Feder ME, Burggren WW (eds) Environmental physiology of amphibians. The University of Chicago Press, Chicago, pp 125–150

    Google Scholar 

  • Shuttleworth TJ, Hildebrandt JP (1999) Vertebrate salt glands: short- and long-term regulation of function. J Exp Zool 283:689–701

    Article  CAS  PubMed  Google Scholar 

  • Simmons KEL (1970) Aerial drinking and bathing by some tropical seabirds. Brit Birds 63:212

    Google Scholar 

  • Skalstad I, Nordoy ES (2000) Experimental evidence of seawater drinking in juvenile hooded (Cystophora cristata) and harp seals (Phoca groenlandica). J Comp Physiol B 170:395–401

    Article  CAS  PubMed  Google Scholar 

  • Smith HW (1930) The absorption and excretion of water and salts by marine teleosts. Am J Physiol 93:480–505

    Article  CAS  Google Scholar 

  • Smith HW (1932) Water regulation and its origin in fishes. Quart Rev Biol 7:1–26

    Article  CAS  Google Scholar 

  • St. Aubin DJ, Geraci JR (1986) Adrenocortical function in pinniped hyponatremia. Mar Mamm Sci 2:243–250

    Article  Google Scholar 

  • Stewart JE, Pomeroy PP, Duck CD, Twiss SD (2014) Finescale ecological niche modeling provides evidence that lactating gray seals (Halichoerus grypus) prefer access to fresh water in order to drink. Mar Mamm Sci 30:1456–1472

    Article  Google Scholar 

  • Storeheier PV, Nordoy ES (2001) Physiological effects of seawater intake in adult harp seals during phase I of fasting. Comp Biochem Physiol A 128:307–315

    Article  CAS  Google Scholar 

  • Sturkie PD (1976) Kidneys, extrarenal salt excretion, and urine. In: Sturkie PD (ed) Avian Physiology. Springer, New York, pp 264–285

    Chapter  Google Scholar 

  • Takei Y (2000) Comparative physiology of body fluid regulation in vertebrates with special reference to thirst regulation. Jpn J Physiol 50:171–186. https://doi.org/10.2170/jjphysiol.50.171

    Article  CAS  PubMed  Google Scholar 

  • Takei Y (2015) From aquatic to terrestrial life: evolution of the mechanisms for water acquisition. Zool Sci 32:1–7

    Article  Google Scholar 

  • Takei Y, Hirano T, Kobayashi H (1979) Angiotensin and water intake in the Japanese eel, Anguilla japonica. Gen Comp Endocrinol 38:446–475

    Article  Google Scholar 

  • Talbot C, Eddy FB, Johnston J (1982) Osmoregulation in salmon and sea trout alevins. J Exp Biol 101:61–70

    Google Scholar 

  • Taplin LE (1984) Drinking of fresh water but not seawater by the estuarine crocodile (Crocodylus porosus). Comp Biochem Physiol A Physiol 77:763–767. https://doi.org/10.1016/0300-9629(84)90198-1

    Article  Google Scholar 

  • Taplin LE (1988) Osmoregulation in crocodilians. Biol Rev Camb Philos Soc 63:333–337

    Article  Google Scholar 

  • Taplin LE, Grigg GC, Beard L (1993) Osmoregulation of the Australian freshwater crocodile, Crocodylus johnstoni, in fresh and saline waters. J Comp Physiol B 163:70–73

    Article  Google Scholar 

  • Taylor AA (1977) Comparative physiology of the reninangiotensin system. Fed Proc 36:1776–1780

    CAS  PubMed  Google Scholar 

  • Telfer N, Cornell LH, Prescott JH (1970) Do dolphins drink water? J Am Vet Med Assoc 157:555–558

    CAS  PubMed  Google Scholar 

  • Thorson TB (1961) The partitioning of body water in osteichthyes: phylogenetic and ecological implications in aquatic vertebrates. Biol Bull 120:238–254

    Article  Google Scholar 

  • Thorson TB (1964) The partitioning of body water in amphibia. Physiol Zool 37:395–399

    Article  Google Scholar 

  • Thorson TB (1968) Body fluid partitioning in reptilia. Copeia 1968:592–601

    Article  Google Scholar 

  • Troup G, Dutka TL (2014) Osmotic concentration of prey affects food discrimination behaviour in the Australian pelican. J Zool 294:170–179. https://doi.org/10.1111/jzo.12172

    Article  Google Scholar 

  • Udyawer V, Simpfendorfer CA, Read M, Hamann M, Heupel MR (2016) Exploring habitat selection in sea snakes using passive acoustic monitoring and Bayesian hierarchical models. Mar Ecol Prog Ser 546:249–262

    Article  Google Scholar 

  • Uhen MD (2007) Evolution of marine mammals: back to the sea after 300 million years. Anat Rec 290:514–522. https://doi.org/10.1002/ar.20545

    Article  Google Scholar 

  • Wolcott TG, Wolcott DL (2001) Role of behavior in meeting osmotic challenges. Am Zool 41:795–806

    Google Scholar 

  • Worthy GAJ, Lavigne DM (1983) Energetics of fasting and subsequent growth in weaned harp seal pups, Phoca groenlandica. Can J Zool 61(447–4):56

    Google Scholar 

  • Wright CD, Jackson ML, DeNardo D (2013) Meal consumption is ineffective at maintaining or correcting water balance in a desert lizard, Heloderma suspectum. J Exp Biol 216:1439–1447

    Article  PubMed  Google Scholar 

  • Wu CS, Kam YC (2009) Effects of salinity on survival, growth, development, and metamorphic traits of Fejervarya limnocharis tadpoles living in brackish water. Zool Sci 26:476–482

    Article  Google Scholar 

  • Wu C-S, Yang W-K, Lee T-H, Gomez-Mestre I, Kam Y-C (2013) Salinity acclimation enhances salinity tolerance in tadpoles living in brackish water through increased Na+ , K+-ATPase expression. J Exp Zool 9999:1–8

    Google Scholar 

  • Wyneken J (2001). The anatomy of sea turtles. NOAA Technical Memorandum NMFS-SEFSC-470. NOAA Southeast Fisheries Science Center, Miami, Florida (USA)

  • Zenteno-Savin T, Castellini MA (1998) Plasma angiotensin II, arginine vasopressin and atrial natriuretic peptide in free ranging and captive seals and sea lions. Comp Biochem Physiol 119C:1–6

    CAS  Google Scholar 

  • Zimmer C (1998) At the water’s edge: macroevolution and the transformation of life. Free Press, New York

    Google Scholar 

Download references

Acknowledgements

We are grateful to David H. Evans and Dan Costa who provided informal comments on the first draft of the manuscript. Mark Sandfoss, Stanley Hillyard, Xavier Bonnett, James Nifong, Elizabeth A. Ashley, Jeremy S. Mack, and Dan Costa helped to provide some of the photographs that are used as illustrations in the figures. We also thank Harold Heatwole and Dan Costa for reviews and editorial suggestions that helped to improve the manuscript.

Funding

This review represents an outgrowth of H.B.L.’s research with sea snakes, recently supported by the National Science Foundation, grant # IOS-0926802 to H.B.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey B. Lillywhite.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Responsible Editor: S. Shumway.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by undisclosed experts.

The order of authors was determined by the toss of a coin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rash, R., Lillywhite, H.B. Drinking behaviors and water balance in marine vertebrates. Mar Biol 166, 122 (2019). https://doi.org/10.1007/s00227-019-3567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-019-3567-4