Marine Biology

, 166:80 | Cite as

Combined effects of simulated acidification and hypoxia on the harmful dinoflagellate Amphidinium carterae

  • Alexandra R. BauschEmail author
  • Andrew R. Juhl
  • Natalie A. Donaher
  • Amanda M. Cockshutt
Original paper


Hypoxia and acidification frequently co-occur in coastal marine ecosystems, and will likely become more intense and persistent with anthropogenic climate change. Although the separate effects of these stressors have previously been described, their combined effects on marine phytoplankton are currently unknown. In this novel study, multi-stressor incubation experiments using the harmful dinoflagellate, Amphidinium carterae, examined the effects of acidification and hypoxia both individually and in combination. Long-term (7 days) and short-term (6 h) experiments under controlled carbon dioxide (CO2) and oxygen (O2) conditions examined the interactive effects of the stressors and the physiological mechanisms driving their interaction. In the long-term experiment, synergistically negative effects were observed for A. carterae growth, photosynthesis, carbon fixation, nitrate uptake, and photosynthetic efficiency (Fv/Fm) under combined high CO2 (low pH) and low O2 conditions. In the short-term experiment, delayed recovery of photosystem II (PSII) reaction centers was observed following photoinhibition, suggesting that high CO2 and low O2 conditions negatively affect photosynthesis in A. carterae even after relatively short exposures. Although high CO2, low O2 conditions should decrease photorespiration and favor carbon fixation by the key photosynthetic enzyme ribulose-1,5-bisphosphate-carboxylase/oxygenase (RuBisCO), these findings demonstrate that the affinity of RuBisCO for CO2 relative to O2 alone does not predict phytoplankton responses to CO2 and O2 conditions in vivo, complicating predictions of phytoplankton community responses to hypoxia and acidification. Results of these experiments suggest that the combination of low pH and O2 concentrations may negatively impact the growth of some harmful dinoflagellates in coastal marine ecosystems.



The authors would like to thank Sonya Dyhrman and Sheean Haley at Lamont-Doherty Earth Observatory (LDEO) for providing laboratory space and logistical support; Hugh Ducklow, Robert Anderson, Kevin Griffin, and Gwenn Hennon at LDEO, Christopher Hayes at the University of Southern Mississippi, and the Editor and Reviewer for providing feedback on the manuscript; Wei Huang at LDEO for performing the isotopic analyses; Jerry Frank at the Chesapeake Biological Laboratory for performing the nutrient analyses; Andrew Dickson at Scripps Institution of Oceanography for providing the CO2 seawater reference materials; and Naomi Shelton and Clara Chang at LDEO for providing laboratory assistance. This is contribution #8317 from Lamont–Doherty Earth Observatory.


This work was partly supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program grant 15-EARTH15R-5. Funding was also provided by the Natural Sciences and Engineering Research Council of Canada and the Chevron Student Initiative Fund from the Department of Earth and Environmental Sciences at Columbia University.

Compliance with ethical standards

Conflict of interest

The authors Alexandra Bausch, Andrew Juhl, and Natalie Donaher declare no conflicts of interest. The author Amanda Cockshutt declares a potential financial interest as part owner of Environmental Proteomics NB Inc., an Agrisera business partner.

Human and animal rights statement

All authors have agreed to the submitted version of this manuscript. This manuscript does not contain any studies with humans or animals performed by any of the authors.

Supplementary material

227_2019_3528_MOESM1_ESM.pdf (209 kb)
Supplementary material 1 (PDF 208 kb)


  1. Azcón-Bieto J, Gonzàlez-Meler MA, Doherty W, Drake BG (1994) Acclimation of respiratory O2 uptake in green tissues of field-grown native species after long-term exposure to elevated atmospheric CO2. Plant Physiol 106(3):1163–1168. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Badger MR, Andrews TJ, Whitney SM, Ludwig M et al (1998) The diversity and coevolution of RuBisCO, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot 76(6):1052–1071. CrossRefGoogle Scholar
  3. Bagby SC, Chisholm SW (2015) Response of Prochlorococcus to varying CO2:O2 ratios. Int Soc Microb Ecol 9(10):2232–2245. CrossRefGoogle Scholar
  4. Baumann H (2016) Combined effects of ocean acidification, warming, and hypoxia on marine organisms. Limnol Oceanogr e-Lect 6(1):1–43. CrossRefGoogle Scholar
  5. Bausch AR, Boatta F, Morton PL, McKee KT et al (2017) Elevated toxic effect of sediments on growth of the harmful dinoflagellate Cochlodinium polykrikoides under high CO2. Aquat Microb Ecol 80(2):139–152. CrossRefGoogle Scholar
  6. Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15(6):330–336. CrossRefGoogle Scholar
  7. Bauwe H, Hagemann M, Kern R, Timm S (2012) Photorespiration has a dual origin and manifold links to central metabolism. Curr Opin Plant Biol 15(3):269–275. CrossRefGoogle Scholar
  8. Behrenfeld MJ, Halsey KH, Milligan AJ (2008) Evolved physiological responses of phytoplankton to their integrated growth environment. Phil Trans R Soc B 363:2687–2703. CrossRefGoogle Scholar
  9. Birmingham BC, Coleman JR, Colman B (1982) Measurement of photorespiration in algae. Plant Physiol 69(1):259–262. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bowes G, Ogren WL, Hageman RH (1971) Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun 45(3):716–722. CrossRefGoogle Scholar
  11. Breitburg DL, Salisbury J, Bernhard JM, Cai W-J et al (2015) And on top of all that… Coping with ocean acidification in the midst of many stressors. Oceanogr 28(2):48–61. CrossRefGoogle Scholar
  12. Brooks MD, Niyogi KK (2011) Use of a pulse-amplitude modulated chlorophyll fluorometer to study the efficiency of photosynthesis in Arabidopsis plants. In: Jarvis RP (ed) Chloroplast research in Arabidopsis: methods and protocols. Springer, New York, pp 299–310CrossRefGoogle Scholar
  13. Bunt JS (1971) Levels of dissolved oxygen and carbon fixation by marine microalgae. Limnol Oceanogr 16(3):564–566. CrossRefGoogle Scholar
  14. Burns BD, Beardall J (1987) Utilization of inorganic carbon by marine microalgae. J Exp Mar Biol Ecol 107(1):75–86. CrossRefGoogle Scholar
  15. Cai W-J, Hu X, Huang W-J, Murrell MC et al (2011) Acidification of subsurface coastal waters enhanced by eutrophication. Nat Geosci 4(11):766–770. CrossRefGoogle Scholar
  16. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425(6956):365. CrossRefGoogle Scholar
  17. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110:1–12. CrossRefGoogle Scholar
  18. Cao C, Sun S, Wang X, Liu W, Liang Y (2011) Effects of manganese on the growth, photosystem II and SOD activity of the dinoflagellate Amphidinium sp. J Appl Phycol 23(6):1039–1043. CrossRefGoogle Scholar
  19. Cardol P, Forti G, Finazzi G (2011) Regulation of electron transport in microalgae. Biochim Biophys Acta 1807:912–918. CrossRefGoogle Scholar
  20. Cornwall CE, Hurd CL (2016) Experimental design in ocean acidification research: problems and solutions. ICES J Mar Sci 73(3):572–581. CrossRefGoogle Scholar
  21. Crafts-Brandner SJ, Salvucci ME (2000) RuBisCO activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci 97(24):13430–13435. CrossRefGoogle Scholar
  22. Crawley A, Kline DI, Dunn S, Anthony K, Dove S (2010) The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Glob Change Biol 16(2):851–863. CrossRefGoogle Scholar
  23. Dason JS, Huertas IE, Colman B (2004) Source of inorganic carbon for photosynthesis in two marine dinoflagellates. J Phycol 40(2):285–292. CrossRefGoogle Scholar
  24. DePasquale E, Baumann H, Gobler CJ (2015) Vulnerability of early life stage Northwest Atlantic forage fish to ocean acidification and low oxygen. Mar Ecol Prog Ser 523:145–156. CrossRefGoogle Scholar
  25. Devos N, Ingouff M, Loppes R, Matagne RF (1998) RuBisCO adaptation to low temperatures: a comparative study in psychrophilic and mesophilic unicellular algae. J Phycol 34(4):655–660. CrossRefGoogle Scholar
  26. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321(5891):926–929. CrossRefGoogle Scholar
  27. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res Part A Oceanogr Res Pap 34(10):1733–1743. CrossRefGoogle Scholar
  28. Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. PICES Spec Publ 3(8):1–191. CrossRefGoogle Scholar
  29. Dixon GK, Syrett PJ (1988) The growth of dinoflagellates in laboratory cultures. New Phytol 109(3):297–302. CrossRefGoogle Scholar
  30. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1(1):169–192. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Eberlein T, Van de Waal DB, Rost B (2014) Differential effects of ocean acidification on carbon acquisition in two bloom-forming dinoflagellate species. Physiol Plant 151(4):468–479. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Echigoya R, Rhodes L, Oshima Y, Satake M (2005) The structures of five new antifungal and hemolytic amphidinol analogs from Amphidinium carterae collected in New Zealand. Harmful Algae 4(2):383–389. CrossRefGoogle Scholar
  33. Finazzi G, Furia A, Barbagallo RP, Forti G (1999) State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. Biochim Biophys Acta 1413:117–129. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Finazzi G, Moreau H, Bowler C (2010) Genomic insights into photosynthesis in eukaryotic phytoplankton. Trends Plant Sci 15(10):565–572. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Foyer CH, Noctor G (2000) Tansley review No. 112. Oxygen processing in photosynthesis: regulation and signaling. New Phytol 146(3):359–388. CrossRefGoogle Scholar
  36. Fu FX, Zhang Y, Warner ME, Feng Y, Sun J, Hutchins DA (2008) A comparison of future increased CO2 and temperature effects on sympatric Heterosigma akashiwo and Prorocentrum minimum. Harmful Algae 7(1):76–90. CrossRefGoogle Scholar
  37. Fu FX, Tatters AO, Hutchins DA (2012) Global change and the future of harmful algal blooms in the ocean. Mar Ecol Prog Ser 470:207–233. CrossRefGoogle Scholar
  38. Gobler CJ, Baumann H (2016) Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects of marine life. Biol Lett 12(5):20150976. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gobler CJ, DePasquale EL, Griffith AW, Baumann H (2014) Hypoxia and acidification have additive and synergistic negative effects on the growth, survival, and metamorphosis of early life stage bivalves. PLoS One 9(1):1–10. CrossRefGoogle Scholar
  40. Godaux D, Bailleul B, Berne N, Cardol P (2015) Induction of photosynthetic carbon fixation in anoxia relies on hydrogenase activity and proton-gradient regulation-like-mediated cyclic electron flow in Chlamydomonas reinhardtii. Plant Physiol 168(2):648–658. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Goldman JAL, Bender ML, Morel FMM (2017) The effects of pH and pCO2 on photosynthesis and respiration in the diatom Thalassiosira weissflogii. Photosynth Res 132(1):83–93. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gonzàlez-Meler MA, Ribas-Carbó M, Siedow JN, Drake BG (1996) Direct inhibition of plant mitochondrial respiration by elevated CO2. Plant Physiol 112(3):1349–1355. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Gruber N (2011) Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Phil Trans R Soc 369:1980–1996. CrossRefGoogle Scholar
  44. Gruber RK, Lowe RJ, Falter JL (2017) Metabolism of a tide-dominated reef platform subject to extreme diel temperature and oxygen variations. Limnol Oceanogr 62(4):1701–1717. CrossRefGoogle Scholar
  45. Guillard RRL, Hargraves PE (1993) Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32(3):234–236. CrossRefGoogle Scholar
  46. Guinotte JM, Fabry VJ (2008) Ocean acidification and its potential effects on marine ecosystems. Ann N Y Acad Sci 1134(1):320–342. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hackenberg C, Engelhardt A, Matthijs HCP, Wittink F et al (2009) Photorespiratory 2-phosphoglycolate metabolism and photoreduction of O2 cooperate in high-light acclimation of Synechocystis sp. strain PCC 6803. Planta 230(4):625–637. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hargraves PE, Maranda L (2002) Potentially toxic or harmful microalgae from the northeast coast. Northeast Nat 9(1):81–120. CrossRefGoogle Scholar
  49. Hattenrath-Lehmann TK, Smith JL, Wallace RB, Merlo LR et al (2015) The effects of elevated CO2 on the growth and toxicity of field populations and cultures of the saxitoxin-producing dinoflagellate Alexandrium fundyense. Limnol Oceanogr 60(1):198–214. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hennon GMM, Hernández Limón MD, Haley ST, Juhl AR, Dyhrman ST (2017) Diverse CO2-induced responses in physiology and gene expression among eukaryotic phytoplankton. Front Microbiol 8:1–14. CrossRefGoogle Scholar
  51. Huang S-J, Kuo C-M, Lin Y-C, Chen Y-M, Lu C-K (2009) Carteraeol E, a potent polyhydroxyl ichthyotoxin from the dinoflagellate Amphidinium carterae. Tetrahedron Lett 50(21):2512–2515. CrossRefGoogle Scholar
  52. Hulburt EM (1957) The taxonomy of unarmored Dinophyceae of shallow embayments on Cape Cod, Massachusetts. Biol Bull 112(2):196–219. CrossRefGoogle Scholar
  53. IPCC (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner GK, Tignor M et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1029–1136Google Scholar
  54. Jampeetong A, Brix H (2009) Oxygen stress in Salvinia natans: interactive effects of oxygen availability and nitrogen source. Envir Exp Bot 66(2):153–159. CrossRefGoogle Scholar
  55. Jenks A, Gibbs SP (2000) Immunolocalization and distribution of Form II RuBisCO in the pyrenoid and chloroplast stroma of Amphidinium carterae and Form I RuBisCO in the symbiont-derived plastics of Peridinium foliaceum (Dinophyceae). J Phycol 36(1):127–138. CrossRefGoogle Scholar
  56. Jones RJ, Hoegh-Guldberg O (2001) Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation and the relationship to coral bleaching. Plant Cell Environ 24:89–99. CrossRefGoogle Scholar
  57. Juhl AR, Latz MI (2002) Mechanisms of fluid shear-induced inhibition of population growth in a red-tide dinoflagellate. J Phycol 38(4):683–694. CrossRefGoogle Scholar
  58. Keeling RF, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Annu Rev Mar Sci 2(1):199–229. CrossRefGoogle Scholar
  59. Kitaya Y, Xiao L, Masuda A, Ozawa T, Tsuda M, Omasa K (2008) Effects of temperature, photosynthetic photon flux density, photoperiod and O2 and CO2 concentrations on growth rates of the symbiotic dinoflagellate, Amphidinium sp. J Appl Phycol 20(5):737–742. CrossRefGoogle Scholar
  60. Kroeker KJ, Kordas RL, Crim R, Hendriks IE et al (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Change Biol 19(6):1884–1896. CrossRefGoogle Scholar
  61. Laws EA, Bidigare RR, Popp BN (1997) Effect of growth rate and CO2 concentration on carbon isotopic fractionation by the marine diatom Phaeodactylum tricornutum. Limnol Oceanogr 42(7):1552–1560. CrossRefGoogle Scholar
  62. Leggat W, Badger MR, Yellowlees D (1999) Evidence for an inorganic carbon-concentrating mechanism in the symbiotic dinoflagellate Symbiodinium sp. Plant Physiol 121:1247–1255. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Li G, Campbell DA (2017) Interactive effects of nitrogen and light on growth rates and RuBisCO content of small and large centric diatoms. Photosynth Res 131(1):93–103. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Liu N, Beardall J, Gao K (2017) Elevated CO2 and associated seawater chemistry do not benefit a model diatom grown with increased availability of light. Aquat Microb Ecol 79(2):137–147. CrossRefGoogle Scholar
  65. Loganathan N, Tsai Y-CC, Mueller-Cajar O (2016) Characterization of the heterooligomeric red-type RuBisCO activase from red algae. Proc Natl Acad Sci 113(49):14019–14024. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Losh JL, Young JN, Morel FMM (2013) RuBisCO is a small fraction of total protein in marine phytoplankton. New Phytol 198(1):52–58. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Mehrbach C, Culberson CH, Hawley JE, Pytkowicx RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18(6):897–907. CrossRefGoogle Scholar
  68. Melzner F, Thomsen J, Koeve W, Oschlies A et al (2013) Future ocean acidification will be amplified by hypoxia in coastal habitats. Mar Biol 160(8):1875–1888. CrossRefGoogle Scholar
  69. Murray SA, Garby T, Hoppenrath M, Neilan BA (2012) Genetic diversity, morphological uniformity and polyketide production in dinoflagellates (Amphidinium, Dinoflagellata). PLoS One 7(6):1–14. CrossRefGoogle Scholar
  70. Parry MAJ, Keys AJ, Madgwick PJ, Carmo-Silva AE, Andralojc PJ (2008) RuBisCO regulation: a role for inhibitors. J Exp Bot 59(7):1569–1580. CrossRefGoogle Scholar
  71. Peckol P, Rivers JS (1995) Physiological responses of the opportunistic macroalgae Cladophora vagabunda (L.) van den Hoek and Gracilaria tikvahiae (McLachlan) to environmental disturbances associated with eutrophication. J Exp Mar Biol Ecol 190(1):1–16. CrossRefGoogle Scholar
  72. Peltier G, Thibault P (1983) Ammonia exchange and photorespiration in Chlamydomonas. Plant Physiol 71(4):888–892. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Peñuelas J, Llusià J (2002) Linking photorespiration, monoterpenes and thermotolerance in Quercus. New Phytol 155(2):227–237. CrossRefGoogle Scholar
  74. Peterhansel C, Horst I, Niessen M, Blume C et al (2010) Photorespirations. Arabidopsis Book 8(e0130):1–24. CrossRefGoogle Scholar
  75. Pierangelini M, Raven JA, Giordano M (2017) The relative availability of inorganic carbon and inorganic nitrogen influences the response of the dinoflagellate Protoceratium reticulatum to elevated CO2. J Phycol 53:298–307. CrossRefGoogle Scholar
  76. Pope DH (1975) Effects of light intensity, oxygen concentration, and carbon dioxide concentration on photosynthesis in algae. Microb Ecol 2(1):1–16. CrossRefGoogle Scholar
  77. Possmayer M, Berardi G, Beall BFN, Trick CG, Hüner NPA, Maxwell DP (2011) Plasticity of the psychrophilic green alga Chlamydomonas raudensis (UWO 241) (Chlorophyta) to supraoptimal temperature stress. J Phycol 47(5):1098–1109. CrossRefPubMedPubMedCentralGoogle Scholar
  78. Rabalais NN, Díaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7(2):585–619. CrossRefGoogle Scholar
  79. Ratti S, Giordano M, Morse D (2007) CO2-concentrating mechanisms of the potentially toxic dinoflagellate Protoceratium reticulatum (Dinophyceae, Gonyaulacales). J Phycol 43:693–701. CrossRefGoogle Scholar
  80. Raven JA (2013) RuBisCO: still the most abundant protein of Earth? New Phytol 198:1–3. CrossRefGoogle Scholar
  81. Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Phil Trans R Soc B 363:2641–2650. CrossRefGoogle Scholar
  82. Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (2011) Guide to best practices for ocean acidification research and data reporting. European Commission, Luxembourg, pp 1–258. CrossRefGoogle Scholar
  83. Robbins LL, Hansen ME, Kleypas JA, Meylan SC (2010) CO2calc: a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone). US Geol Surv, pp 1–17Google Scholar
  84. Roberty S, Bailleul B, Berne N, Franck F, Cardol P (2014) PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians. New Phytol 204:81–91. CrossRefGoogle Scholar
  85. Schreiber U, Vidaver W (1974) Chlorophyll fluorescence induction in anaerobic Scenedesmus obliquus. Biochim Biophys Acta 368(1):97–112. CrossRefGoogle Scholar
  86. Schreiber U, Neubauer C, Schliwa U (1993) PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research. Photosynth Res 36(1):65–72. CrossRefGoogle Scholar
  87. Sobrino C, Ward ML, Neale PJ (2008) Acclimation to elevated carbon dioxide and ultraviolet radiation in the diatom Thalassiosira pseudonana: effects on growth, photosynthesis, and spectral sensitivity of photoinhibition. Limnol Oceanogr 53(2):494–505. CrossRefGoogle Scholar
  88. Steidinger KA, Jangen K (1996) Dinoflagellates. In: Tomas CR (ed) Identifying marine phytoplankton. Academic Press, New York, pp 387–589Google Scholar
  89. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis, 2nd edn. Fisheries Research Board of Canada Bulletin, Ottawa, pp 1–310. CrossRefGoogle Scholar
  90. Sunda WG, Cai W-J (2012) Eutrophication induced CO2-acidification of subsurface coastal waters: interactive effects of temperature, salinity, and atmospheric pCO2. Envir Sci Tech 46(19):10651–10659. CrossRefGoogle Scholar
  91. Tabita FR, Hanson TE, Li H, Satagopan S, Singh J, Chan S (2007) Function, structure, and evolution of the RuBisCO-like proteins and their RuBisCO homologs. Microbiol Mol Biol R 71(4):576–599. CrossRefGoogle Scholar
  92. Takahashi S, Bauwe H, Badger M (2007) Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis. Plant Physiol 144(1):487–494. CrossRefPubMedPubMedCentralGoogle Scholar
  93. Takeba G, Kozaki A (1998) Photorespiration is an essential mechanism for the protection of C3 plants from photooxidation. In: Satoh K, Murata N (eds) stress responses of photosynthetic organisms. Elsevier, Amsterdam, pp 15–36CrossRefGoogle Scholar
  94. Tcherkez G, Bligny R, Gout E, Mahé A, Hodges M, Cornic G (2008) Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions. Proc Natl Acad Sci 105(2):797–802. CrossRefGoogle Scholar
  95. Tortell PD (2000) Evolutionary and ecological perspectives on carbon acquisition in phytoplankton. Limnol Oceanogr 45(3):744–750. CrossRefGoogle Scholar
  96. Ulstrup KE, Hill R, Ralph PJ (2005) Photosynthetic impact of hypoxia on in hospite zooxanthellae in the scleractinian coral Pocillopora damicornis. Mar Ecol Prog Ser 286:125–132. CrossRefGoogle Scholar
  97. Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci 105(40):15452–15457. CrossRefGoogle Scholar
  98. Wallace RB, Baumann H, Grear JS, Aller RC, Gobler CJ (2014) Coastal ocean acidification: the other eutrophication problem. Estuar Coast Shelf Sci 148:1–13. CrossRefGoogle Scholar
  99. Whitney SM, Andrews TJ (1998) The CO2/O2 specificity of single-subunit ribulose-bisphosphate carboxylase from the dinoflagellate, Amphidinium carterae. Aust J Plant Physiol 25:131–138. CrossRefGoogle Scholar
  100. Wu Y, Gao K, Riebesell U (2010) CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences 7(9):2915–2923. CrossRefGoogle Scholar
  101. Wu RSS, Wo KT, Chiu JMY (2012) Effects of hypoxia on growth of the diatom Skeletonema costatum. J Exp Mar Biol Ecol 420–421:65–68. CrossRefGoogle Scholar
  102. Young JN, Goldman JAL, Kranz SA, Tortell PD, Morel FMM (2015a) Slow carboxylation of RuBisCO constrains the rate of carbon fixation during Antarctic phytoplankton blooms. New Phytol 205(1):172–181. CrossRefGoogle Scholar
  103. Young JN, Kranz SA, Goldman JAL, Tortell PD, Morel FMM (2015b) Antarctic phytoplankton down-regulate their carbon-concentrating mechanisms under high CO2 with no change in growth rates. Mar Ecol Prog Ser 532:13–28. CrossRefGoogle Scholar
  104. Young JN, Heureux AMC, Sharwood RE, Rickaby REM, Morel FMM, Whitney SM (2016) Large variation in the RuBisCO kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. J Exp Bot 67(11):3445–3456. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Earth System ScienceStanford UniversityStanfordUSA
  2. 2.Lamont–Doherty Earth Observatory, Columbia UniversityPalisadesUSA
  3. 3.Department of Earth and Environmental SciencesColumbia UniversityPalisadesUSA
  4. 4.Mount Allison UniversitySackvilleCanada

Personalised recommendations