Interspecific interactions, movement patterns and habitat use in a diverse coastal shark assemblage

Abstract

Sharks are a highly diverse predatory taxon and are regularly found in large, potentially competitive, assemblages. However, the mechanisms that enable long-term coexistence and factors that drive complementary movement are poorly understood. As interspecific interactions can have a large influence on survival and trophic linkages, research on shark assemblages could substantially increase our understanding of marine community dynamics. In this study, we used passive acoustic telemetry to compare the activity space size, spatial overlap and habitat use patterns of six co-occurring shark species from the same family in a tropical nearshore embayment. Our results indicated that all sizes of Rhizoprionodon taylori (a small-bodied, highly productive species) used significantly larger amounts of space (e.g., mean 95% KUD = 85.9 km2) than juveniles of large-bodied, less productive species (e.g., Carcharhinus amboinensis; 62.3 km2) that use nearshore areas as nursery areas. Most large, less productive species appeared risk averse by using less space, while the smaller more productive species took greater risk by roaming broadly. These movement strategies are likely a means of avoiding predation or gaining access to new or additional resources. Spatial overlap patterns varied substantially between species with overlap in core use areas ranging from 1.2 to 27.6%, but were consistent over time. Most species exhibited low spatial overlap, suggesting spatial partitioning to reduce interspecific competition. While a few species exhibited a high degree of spatial overlap (up to 60% of activity space extent), dietary diversity may reduce competition to support co-occurrence. These data suggest that complex interactions occur in communal nurseries in nearshore waters where species are in direct competition for resources at vulnerable life stages.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abascal FJ, Quintans M, Ramos-Cartelle A, Mejuto J (2011) Movements and environmental preferences of the shortfin mako, Isurus oxyrinchus, in the southeastern Pacific Ocean. Mar Biol 158:1175–1184. https://doi.org/10.1007/s00227-011-1639-1

    Article  Google Scholar 

  2. Allen LG, Yoklavich MM, Cailliet GM, Horn MH (2006) Bays and estuaries. In: Allen LG, Pondella DJ, Horn MH (eds) The ecology of marine fishes: California and adjacent waters. University of California Press, Los Angeles, pp 119–148

    Google Scholar 

  3. Almany GR (2004a) Differential effects of habitat complexity, predators and competitors on abundance of juvenile and adult coral reef fishes. Oecologia 141:105–113. https://doi.org/10.1007/s00442-004-1617-0

    Article  PubMed  Google Scholar 

  4. Almany GR (2004b) Does increased habitat complexity reduce predation and competition in coral reef fish assemblages? Oikos 106:275–284. https://doi.org/10.1111/j.0030-1299.2004.13193.x

    Article  Google Scholar 

  5. Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193. https://doi.org/10.1890/10-1510.1

    Article  Google Scholar 

  6. Beauchamp G (2003) Group-size effects on vigilance: a search for mechanisms. Behav Process 63:111–121. https://doi.org/10.1016/S0376-6357(03)00002-0

    Article  Google Scholar 

  7. Beck MW, Heck KL, Able KW, Childers DL, Eggleston DB, Gillanders BM, Halpern B, Hays CG, Hoshino K, Minello TJ, Orth RJ, Sheridan PF, Weinstein MP (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51:633–641. https://doi.org/10.1641/0006-3568(2001)051%5b0633:ticamo%5d2.0.co;2

    Article  Google Scholar 

  8. Benkwitt CE (2013) Density-dependent growth in invasive lionfish (Pterois volitans). PLoS One 8:e66995. https://doi.org/10.1371/journal.pone.0066995

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Bethea DM, Buckel JA, Carlson JK (2004) Foraging ecology of the early life stages of four sympatric shark species. Mar Ecol Prog Ser 268:245–264. https://doi.org/10.3354/meps268245

    Article  Google Scholar 

  10. Bethea DM, Ajemian MJ, Carlson JK, Hoffmayer ER, Imhoff JL, Grubbs RD, Peterson CT, Burgess GH (2015) Distribution and community structure of coastal sharks in the northeastern Gulf of Mexico. Environ Biol Fishes 98:1233–1254. https://doi.org/10.1007/s10641-014-0355-3

    Article  Google Scholar 

  11. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. https://doi.org/10.1016/j.tree.2008.10.008

    Article  PubMed  Google Scholar 

  12. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media, New York

    Google Scholar 

  13. Butts C (2013) sna: tools for social network analysis.–R package ver. 2.3-1

  14. Calenge C (2006) The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519. https://doi.org/10.1016/j.ecolmodel.2006.03.017

    Article  Google Scholar 

  15. Carlson J, Heupel M, Bethea D, Hollensead L (2008) Coastal habitat use and residency of juvenile Atlantic sharpnose sharks (Rhizoprionodon terraenovae). Estuaries Coast 31:931–940. https://doi.org/10.1007/s12237-008-9075-2

    Article  Google Scholar 

  16. Carrier JC, Musick JA, Heithaus MR (2012) Biology of sharks and their relatives. CRC Press, Boca Raton

    Google Scholar 

  17. Castro JI (1993) The shark nursery of Bulls Bay, South Carolina, with a review of the shark nurseries of the southeastern coast of the United States. Environ Biol Fishes 38:37–48. https://doi.org/10.1007/bf00842902

    Article  Google Scholar 

  18. Chin A, Heupel MR, Simpfendorfer CA, Tobin AJ (2013a) Ontogenetic movements of juvenile blacktip reef sharks: evidence of dispersal and connectivity between coastal habitats and coral reefs. Aquat Conserv 23:468–474. https://doi.org/10.1002/aqc.2349

    Article  Google Scholar 

  19. Chin A, Tobin AJ, Heupel MR, Simpfendorfer CA (2013b) Population structure and residency patterns of the blacktip reef shark Carcharhinus melanopterus in turbid coastal environments. J Fish Biol 82:1192–1210. https://doi.org/10.1111/jfb.12057

    CAS  Article  PubMed  Google Scholar 

  20. Chin A, Heupel MR, Simpfendorfer CA, Tobin AJ (2016) Population organisation in reef sharks: new variations in coastal habitat use by mobile marine predators. Mar Ecol Prog Ser 544:197–211

    Article  Google Scholar 

  21. Connell JH (1983) On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am Nat 122:661–696. https://doi.org/10.2307/2460847

    Article  Google Scholar 

  22. Conrath CL, Musick JA (2010) Residency, space use and movement patterns of juvenile sandbar sharks (Carcharhinus plumbeus) within a Virginia summer nursery area. Mar Freshw Res 61:223–235. https://doi.org/10.1071/MF09078

    CAS  Article  Google Scholar 

  23. Core Development Team R (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  24. Croft DP, Madden JR, Franks DW, James R (2011) Hypothesis testing in animal social networks. Trends Ecol Evol 26:502–507. https://doi.org/10.1016/j.tree.2011.05.012

    Article  PubMed  Google Scholar 

  25. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Complex Syst 1695:1–9

    Google Scholar 

  26. Dale JJ, Stankus AM, Burns MS, Meyer CG (2011) The shark assemblage at French Frigate Shoals Atoll, Hawaii: species composition, abundance and habitat use. PLoS One 6:e16962. https://doi.org/10.1371/journal.pone.0016962

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Davenport S, Stevens J (1988) Age and growth of two commercially imported sharks (Carcharhinus tilstoni and C. sorrah) from Northern Australia. Mar Fresh Res 39:417–433. https://doi.org/10.1071/MF9880417

    Article  Google Scholar 

  28. Duncan KM, Holland KN (2006) Habitat use, growth rates and dispersal patterns of juvenile scalloped hammerhead sharks Sphyrna lewini in a nursery habitat. Mar Ecol Prog Ser 312:211–221. https://doi.org/10.3354/meps312211

    Article  Google Scholar 

  29. Ebert DA (1991) Observations on the predatory behaviour of the sevengill shark Notorynchus cepedianus. S Afr J Mar Sci 11:455–465. https://doi.org/10.2989/025776191784287637

    Article  Google Scholar 

  30. Ebert D, Fowler S, Compagno L (2013) Sharks of the world. Princeton University Press, Princeton

    Google Scholar 

  31. Fausch KD, White RJ (1981) Competition between brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) for positions in a Michigan stream. Can J Fish Aquat Sci 38:1220–1227. https://doi.org/10.1139/f81-164

    Article  Google Scholar 

  32. Fox J, Weisberg S (2011) An R companion to applied regression. Sage, Thousand Oaks

    Google Scholar 

  33. Froeschke JT, Stunz GW, Sterba-Boatwright B, Wildhaber ML (2010) An empirical test of the ‘shark nursery area concept’ in Texas bays using a long-term fisheries-independent data set. Aquat Biol 11:65–76. https://doi.org/10.3354/ab00290

    Article  Google Scholar 

  34. Guttridge TL, van Dijk S, Stamhuis EJ, Krause J, Gruber SH, Brown C (2013) Social learning in juvenile lemon sharks, Negaprion brevirostris. Anim Cogn 16:55–64. https://doi.org/10.1007/s10071-012-0550-6

    Article  PubMed  Google Scholar 

  35. Harry AV, Macbeth WG, Gutteridge AN, Simpfendorfer CA (2011) The life histories of endangered hammerhead sharks (Carcharhiniformes, Sphyrnidae) from the east coast of Australia. J Fish Biol 78:2026–2051

    CAS  Article  Google Scholar 

  36. Harry AV, Morgan JAT, Ovenden JR, Tobin AJ, Welch DJ, Simpfendorfer CA (2012) Comparison of the reproductive ecology of two sympatric blacktip sharks (Carcharhinus limbatus and Carcharhinus tilstoni) off north-eastern Australia with species identification inferred from vertebral counts. J Fish Biol 81:1225–1233. https://doi.org/10.1111/j.1095-8649.2012.03400.x

    CAS  Article  PubMed  Google Scholar 

  37. Harry AV, Tobin AJ, Simpfendorfer CA (2013) Age, growth and reproductive biology of the spot-tail shark, Carcharhinus sorrah, and the Australian blacktip shark, C. tilstoni, from the Great Barrier Reef World Heritage Area, north-eastern Australia. Mar Freshw Res 64:277–293

    Article  Google Scholar 

  38. Heithaus MR (2007) Nursery areas as essential shark habitats: a theoretical perspective. Am Fish Soc Symp 50:3–13

    Google Scholar 

  39. Heithaus MR, Vaudo JJ, Kreicker S, Layman CA, Krützen M, Burkholder DA, Gastrich K, Bessey C, Sarabia R, Cameron K (2013) Apparent resource partitioning and trophic structure of large-bodied marine predators in a relatively pristine seagrass ecosystem. Mar Ecol Prog Ser 481:225–237. https://doi.org/10.3354/meps10235

    Article  Google Scholar 

  40. Heupel MR, Hueter RE (2002) Importance of prey density in relation to the movement patterns of juvenile blacktip sharks (Carcharhinus limbatus) within a coastal nursery area. Mar Freshw Res 53:543–550. https://doi.org/10.1071/MF01132

    Article  Google Scholar 

  41. Heupel MR, Simpfendorfer CA, Hueter RE (2004) Estimation of shark home ranges using passive monitoring techniques. Environ Biol Fishes 71:135–142

    Article  Google Scholar 

  42. Heupel MR, Carlson JK, Simpfendorfer CA (2007) Shark nursery areas: concepts, definition, characterization and assumptions. Mar Ecol Prog Ser 337:287–297. https://doi.org/10.3354/meps337287

    Article  Google Scholar 

  43. Heupel MR, Kanno S, Martins AP, Simpfendorfer CA (2018a) Advances in understanding the roles and benefits of nursery areas for elasmobranch populations. Mar Fresh Res. https://doi.org/10.1071/mf18081

    Article  Google Scholar 

  44. Heupel MR, Lédée EJ, Simpfendorfer CA (2018b) Telemetry reveals spatial separation of co-occurring reef sharks. Mar Ecol Prog Ser 589:179–192. https://doi.org/10.3354/meps12423

    Article  Google Scholar 

  45. Humphries NE, Simpson SJ, Wearmouth VJ, Sims DW (2016) Two’s company, three’s a crowd: fine-scale habitat partitioning by depth among sympatric species of marine mesopredator. Mar Ecol Prog Ser 561:173–187. https://doi.org/10.3354/meps11937

    Article  Google Scholar 

  46. Jacoby DMP, Brooks EJ, Croft DP, Sims DW (2012) Developing a deeper understanding of animal movements and spatial dynamics through novel application of network analyses. Methods Ecol Evol 3:574–583. https://doi.org/10.1111/j.2041-210X.2012.00187.x

    Article  Google Scholar 

  47. Kessel ST, Cooke SJ, Heupel MR, Hussey NE, Simpfendorfer CA, Vagle S, Fisk AT (2013) A review of detection range testing in aquatic passive acoustic telemetry studies. Rev Fish Biol Fish 24:199–218. https://doi.org/10.1007/s11160-013-9328-4

    Article  Google Scholar 

  48. Kinney MJ, Simpfendorfer CA (2009) Reassessing the value of nursery areas to shark conservation and management. Conserv Lett 2:53–60. https://doi.org/10.1111/j.1755-263X.2008.00046.x

    Article  Google Scholar 

  49. Kinney M, Hussey N, Fisk A, Tobin A, Simpfendorfer C (2011) Communal or competitive? Stable isotope analysis provides evidence of resource partitioning within a communal shark nursery. Mar Ecol Prog Ser 439:263–276. https://doi.org/10.3354/meps09327

    Article  Google Scholar 

  50. Knip DM, Heupel MR, Simpfendorfer CA (2010) Sharks in nearshore environments: models, importance, and consequences. Mar Ecol Prog Ser 402:1–11. https://doi.org/10.3354/meps08498

    Article  Google Scholar 

  51. Knip DM, Heupel MR, Simpfendorfer CA, Tobin AJ, Moloney J (2011) Ontogenetic shifts in movement and habitat use of juvenile pigeye sharks Carcharhinus amboinensis in a tropical nearshore region. Mar Ecol Prog Ser 425:233–246. https://doi.org/10.3354/meps09006

    Article  Google Scholar 

  52. Knip DM, Heupel MR, Simpfendorfer CA (2012) Habitat use and spatial segregation of adult spottail sharks Carcharhinus sorrah in tropical nearshore waters. J Fish Biol 80:767–784. https://doi.org/10.1111/j.1095-8649.2012.03223.x

    CAS  Article  PubMed  Google Scholar 

  53. Last PR, Stevens JD (2009) Sharks and rays of Australia, 2nd edn. CSIRO Publishing Collingwood, Victoria

    Google Scholar 

  54. Lédée EJI, Heupel MR, Tobin AJ, Simpfendorfer CA (2015) Movements and space use of giant trevally in coral reef habitats and the importance of environmental drivers. Anim Biotelem 3:6. https://doi.org/10.1186/s40317-015-0024-0

    Article  Google Scholar 

  55. Lédée EJ, Heupel MR, Tobin AJ, Mapleston A, Simpfendorfer CA (2016) Movement patterns of two carangid species in inshore habitats characterised using network analysis. Mar Ecol Prog Ser 553:219–232. https://doi.org/10.3354/meps11777

    Article  Google Scholar 

  56. Marshall AD, Kyne PM, Bennett MB (2008) Comparing the diet of two sympatric urolophid elasmobranchs (Trygonoptera testacea Müller & Henle and Urolophus kapalensis Yearsley & Last): evidence of ontogenetic shifts and possible resource partitioning. J Fish Biol 72:883–898. https://doi.org/10.1111/j.1095-8649.2007.01762.x

    Article  Google Scholar 

  57. Matich P, Heithaus MR (2015) Individual variation in ontogenetic niche shifts in habitat use and movement patterns of a large estuarine predator (Carcharhinus leucas). Oecologia 178:347–359. https://doi.org/10.1007/s00442-015-3253-2

    Article  PubMed  Google Scholar 

  58. Matich P, Ault JS, Boucek RE, Bryan DR, Gastrich KR, Harvey CL, Heithaus MR, Kiszka JJ, Paz V, Rehage JS (2017) Ecological niche partitioning within a large predator guild in a nutrient-limited estuary. Limnol Oceanogr 62:934–953. https://doi.org/10.1002/lno.10477

    Article  Google Scholar 

  59. Matley J, Tobin A, Lédée E, Heupel M, Simpfendorfer C (2016a) Contrasting patterns of vertical and horizontal space use of two exploited and sympatric coral reef fish. Mar Biol 163:253. https://doi.org/10.1007/s00227-016-3023-7

    Article  Google Scholar 

  60. Matley JK, Heupel MR, Fisk AT, Simpfendorfer CA, Tobin AJ (2016b) Measuring niche overlap between co-occurring Plectropomus spp. using acoustic telemetry and stable isotopes. Mar Fresh Res 68:1468–1478. https://doi.org/10.1071/MF16120

    Article  Google Scholar 

  61. McMahon TE, Tash JC (1988) Experimental analysis of the role of emigration in population regulation of desert pupfish. Ecology 69:1871–1883

    Article  Google Scholar 

  62. Mourier J, Jacoby DMP, Guttridge TL (2018) Network analysis and theory in shark ecology-methods and applications. In: Carrier JC, Heithaus MR, Simpfendorfer CA (eds) Shark research: emerging technologies and applications for the field and laboratory. CRC Press, Boca Roton, pp 337–356

    Google Scholar 

  63. Munroe SEM, Simpfendorfer CA, Heupel MR (2014) Habitat and space use of an abundant nearshore shark, Rhizoprionodon taylori. Mar Freshw Res 65:959–968. https://doi.org/10.1071/MF13272

    Article  Google Scholar 

  64. Munroe SEM, Simpfendorfer CA, Moloney J, Heupel MR (2015) Nearshore movement ecology of a medium-bodied shark, the creek whaler Carcharhinus fitzroyensis. Anim Biotelem 3:10. https://doi.org/10.1186/s40317-015-0026-y

    Article  Google Scholar 

  65. Munroe SEM, Simpfendorfer CA, Heupel MR (2016) Variation in blacktip shark movement patterns in a tropical coastal bay. Environ Biol Fishes 99:377–389. https://doi.org/10.1007/s10641-016-0480-2

    Article  Google Scholar 

  66. Munsch SH, Cordell JR, Toft JD (2016) Fine-scale habitat use and behavior of a nearshore fish community: nursery functions, predation avoidance, and spatiotemporal habitat partitioning. Mar Ecol Prog Ser 557:1–15. https://doi.org/10.3354/meps11862

    Article  Google Scholar 

  67. Nakamura I, Watanabe YY, Papastamatiou YP, Sato K, Meyer CG (2011) Yo-Yo vertical movements suggest a foraging strategy for tiger sharks Galeocerdo cuvier. Mar Ecol Prog Ser 424:237–246. https://doi.org/10.3354/meps08980

    Article  Google Scholar 

  68. Opsahl T (2009) Structure and evolution of weighted networks. University of London, London

    Google Scholar 

  69. O’Shea O, Thums M, Van Keulen M, Kempster R, Meekan M (2013) Dietary partitioning by five sympatric species of stingray (Dasyatidae) on coral reefs. J Fish Biol 82:1805–1820. https://doi.org/10.1111/jfb.12104

    Article  PubMed  Google Scholar 

  70. Papastamatiou YP, Wetherbee BM, Lowe CG, Crow GL (2006) Distribution and diet of four species of carcharhinid shark in the Hawaiian Islands: evidence for resource partitioning and competitive exclusion. Mar Ecol Prog Ser 320:239–251. https://doi.org/10.3354/meps320239

    Article  Google Scholar 

  71. Pinheiro J, Bates D, DebRoy S, Sarkar D (2012) R Development Core Team. nlme: linear and nonlinear mixed effects models, R package version:3.1-103. http://CRAN.R-project.org/package=nlme

  72. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113. https://doi.org/10.1111/j.2041-210X.2010.00012.x

    Article  Google Scholar 

  73. Schlaff AM, Heupel MR, Simpfendorfer CA (2014) Influence of environmental factors on shark and ray movement, behaviour and habitat use: a review. Rev Fish Biol Fisheries 24:1089–1103. https://doi.org/10.1007/s11160-014-9364-8

    Article  Google Scholar 

  74. Schoener TW (1986) Resource partitioning. In: Kilkkawa J, Anderson DJ (eds) Community ecology: pattern and process. Blackwell Scientific Publications, Boston, pp 91–126

    Google Scholar 

  75. Simpfendorfer C (1992) Reproductive strategy of the Australian sharpnose shark, Rhizoprionodon taylori (Elasmobranchii: Carcharhinidae), from Cleveland Bay, Northern Queensland. Mar Freshw Res 43:67–75. https://doi.org/10.1071/MF9920067

    Article  Google Scholar 

  76. Simpfendorfer CA (1993) Age and growth of the Australian sharpnose shark, Rhizoprionodon taylori, from north Queensland, Australia. Environ Biol Fishes 36:233–241. https://doi.org/10.1007/bf00001718

    Article  Google Scholar 

  77. Simpfendorfer C (1998) Diet of the Australian sharpnose shark, Rhizoprionodon taylori, from northern Queensland. Mar Freshw Res 49:757–761

    Article  Google Scholar 

  78. Simpfendorfer CA, Milward NE (1993) Utilisation of a tropical bay as a nursery area by sharks of the families Carcharhinidae and Sphyrnidae. Environ Biol Fishes 37:337–345. https://doi.org/10.1007/BF00005200

    Article  Google Scholar 

  79. Simpfendorfer CA, Heupel MR, Hueter RE (2002) Estimation of short-term centers of activity from an array of omnidirectional hydrophones and its use in studying animal movements. Can J Fish Aquat Sci 59:23–32. https://doi.org/10.1139/f01-191

    Article  Google Scholar 

  80. Sommerville E, Platell ME, White WT, Jones AA, Potter IC (2011) Partitioning of food resources by four abundant, co-occurring elasmobranch species: relationships between diet and both body size and season. Mar Fresh Res 62:54–65. https://doi.org/10.1071/MF10164

    Article  Google Scholar 

  81. Speed CW, Meekan MG, Field IC, McMahon CR, Stevens JD, McGregor F, Huveneers C, Berger Y, Bradshaw CJA (2011) Spatial and temporal movement patterns of a multi-species coastal reef shark aggregation. Mar Ecol Prog Ser 429:261–618. https://doi.org/10.3354/meps09080

    Article  Google Scholar 

  82. Springer S (1967) Social organization of shark populations. In: Gilbert PW, Mathewson RF, Rall DP (eds) Sharks, skates and rays. John Hopkins Press, Baltimore, pp 149–174

    Google Scholar 

  83. Sridhar H, Beauchamp G, Shanker K (2009) Why do birds participate in mixed-species foraging flocks? A large-scale synthesis. Anim Behav 78:337–347. https://doi.org/10.1016/j.anbehav.2009.05.008

    Article  Google Scholar 

  84. Tamburello N, Côté IM, Dulvy NK (2015) Energy and the scaling of animal space use. Am Nat 186:196–211. https://doi.org/10.1086/682070

    Article  PubMed  Google Scholar 

  85. Taylor MD, Fairfax AV, Suthers IM (2013) The race for space: using acoustic telemetry to understand density-dependent emigration and habitat selection in a released predatory fish. Rev Fish Sci 21:276–285. https://doi.org/10.1080/10641262.2013.796813

    Article  Google Scholar 

  86. Tillett BJ, Meekan MG, Field IC, Hua Q, Bradshaw CJA (2011) Similar life history traits in bull (Carcharhinus leucas) and pigeye (C. amboinensis) sharks. Mar Fresh Res 62:850–860. https://doi.org/10.1071/MF10271

    Article  Google Scholar 

  87. Tobin AJ, Mapleston A, Harry AV, Espinoza M (2014) Big fish in shallow water; use of an intertidal surf-zone habitat by large-bodied teleosts and elasmobranchs in tropical northern Australia. Environ Biol Fishes 97:821–838. https://doi.org/10.1007/s10641-013-0182-y

    Article  Google Scholar 

  88. Webster MS (2004) Density dependence via intercohort competition in a coral-reef fish. Ecology 85:986–994. https://doi.org/10.1890/02-0576

    Article  Google Scholar 

  89. White W, Potter I (2004) Habitat partitioning among four elasmobranch species in nearshore, shallow waters of a subtropical embayment in Western Australia. Mar Biol 145:1023–1032. https://doi.org/10.1007/s00227-004-1386-7

    Article  Google Scholar 

  90. White WT, Platell ME, Potter IC (2004) Comparison between the diets of four abundant species of elasmobranch in a subtropical embayment: implications for resource partitioning. Mar Biol 144:439–448. https://doi.org/10.1007/s00227-003-1218-1

    Article  Google Scholar 

  91. Yates PM, Heupel MR, Tobin AJ, Moore SK, Simpfendorfer CA (2015) Diversity in immature-shark communities along a tropical coastline. Mar Fresh Res 66:399–410. https://doi.org/10.1071/MF14033

    Article  Google Scholar 

  92. Yick JL, Tracey SR, White RWG (2011) Niche overlap and trophic resource partitioning of two sympatric batoids co-inhabiting an estuarine system in southeast Australia. J Appl Ichthyol 27:1272–1277. https://doi.org/10.1111/j.1439-0426.2011.01819.x

    Article  Google Scholar 

  93. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the staff and students at the Centre for Sustainable Tropical Fisheries and Aquaculture and the countless volunteers for their assistance, especially D Knip.

Funding

Funding for this research was provided by the Australian Research Council and Great Barrier Reef Marine Park Authority (GBRMPA) awarded to MRH and CAS; additional support was provided by the National Environmental Research Program awarded to CAS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michelle R. Heupel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All research was conducted in accordance with James Cook University (JCU) animal ethics permit A1566 and Great Barrier Reef (G11/346181.1) and QDAF (144482) permits for animal collection.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by D. Jacoby and an undisclosed expert.

Responsible Editor: J.K. Carlson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 242 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heupel, M.R., Munroe, S.E.M., Lédée, E.J.I. et al. Interspecific interactions, movement patterns and habitat use in a diverse coastal shark assemblage. Mar Biol 166, 68 (2019). https://doi.org/10.1007/s00227-019-3511-7

Download citation