Intragonadal incubation of progeny in three viviparous asterinid sea stars that differ in offspring provisioning, lecithotrophy vs matrotrophy

Abstract

In marine invertebrates that care for their young, the number of offspring is often correlated with adult size. The number, size, and mass of progeny relative to parent size were investigated in three asterinid sea star species that incubate their young in the gonads. Cryptasterina hystera has intragonadal planktonic-type lecithotrophic larvae with development supported by large eggs (440-µm diameter) and the juveniles are similar in size (655-µm diameter; coefficient of variation, CV = 6.89%). By contrast, Parvulastra vivipara and P. parvivipara have small vestigial larvae and small eggs (135–150-µm diameter) with offspring development supported by sibling cannibalism (matrotrophy). The juveniles in the gonads vary in size (500–5000-µm diameter, CV = 63.87 and 53.27%, respectively). All three species show a positive relationship between parent size and the number and size of juveniles. The allometry of brooding hypothesis that the number of progeny that can be cared for is (paradoxically) constrained in large adults due to space limitation was tested. In all species, the number of progeny increased with adult size, indicating that there are no allometric constraints on offspring incubation. To compare parental investment across the two modes of provisioning, the juvenile weight of C. hystera was used as a pro rata progeny unit. The matrotrophs had a higher reproductive output than similarly sized C. hystera. Of the hypotheses proposed to explain the evolution of parental care in marine invertebrates, none are broadly applicable to the viviparous asterinids because of the marked differences in their reproductive strategies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Allen RM, Marshall D (2014) Egg size effects across multiple life-history stages in the marine annelid Hydroides diramphus. PLoS One 9:e102253. https://doi.org/10.1371/journal.pone.0102253

    Article  PubMed  PubMed Central  Google Scholar 

  2. Allen RM, Buckley YM, Marshall DJ (2008) Offspring size plasticity in response to intraspecific competition: an adaptive maternal effect across life-history stages. Am Nat 171:225–237. https://doi.org/10.1086/524952

    Article  PubMed  Google Scholar 

  3. Avise JC (2013) Evolutionary perspectives on pregnancy. Columbia University Press, New York

    Book  Google Scholar 

  4. Baeza JA, Fernandez M (2002) Active brood care in Cancer setosus (Crustacea: Decapoda): the relationship between female behaviour, embryo oxygen consumption and the cost of brooding. Funct Ecol 16:241–251. https://doi.org/10.1046/j.1365-2435.2002.00616.x

    Article  Google Scholar 

  5. Berecoechea JJ, Brogger MI, Penchaszadeh PE (2017) New evidence of brooding in the deep-sea brittle star Astrotoma agassizii Lyman, 1876 from a South Western Atlantic Canyon. Deep-Sea Res Part I Oceanogr Res Pap 127:105–110. https://doi.org/10.1016/j.dsr.2017.08.007

    Article  Google Scholar 

  6. Bingham BL, Giles K, Jaeckle WB (2004) Variability in broods of the seastar Leptasterias aequalis. Can J Zool 82:457–463. https://doi.org/10.1139/Z04-009

    Article  Google Scholar 

  7. Blackburn DG (1992) Convergent evolution of viviparity, matrotrophy, and specializations for fetal nutrition in reptiles and other vertebrates. Am Zool 32:313–321

    Article  Google Scholar 

  8. Blackburn DG (2015) Evolution of vertebrate viviparity and specializations for fetal nutrition: a quantitative and qualitative analysis. J Morphol 276:961–990. https://doi.org/10.1002/jmor.20272

    Article  PubMed  Google Scholar 

  9. Bosch I, Slattery M (1999) Costs of extended brood protection in the Antarctic sea star, Neosmilaster georgianus (Echinodermata: Asteroidea). Mar Biol 134:449–459. https://doi.org/10.1007/s002270050561

    Article  Google Scholar 

  10. Byrne M (1991) Reproduction, development and population biology of the Caribbean ophiuroid Ophionereis olivacea, a protandric hermaphrodite that broods its young. Mar Biol 111:387–399. https://doi.org/10.1007/Bf01319411

    Article  Google Scholar 

  11. Byrne M (1996) Viviparity and intragonadal cannibalism in the diminutive sea stars Patiriella vivipara and P. parvivipara (family Asterinidae). Mar Biol 125:551–567

    Google Scholar 

  12. Byrne M (2005) Viviparity in the sea star Cryptasterina hystera (Asterinidae)—conserved and modified features in reproduction and development. Biol Bull 208:81–91. https://doi.org/10.2307/3593116

    Article  PubMed  Google Scholar 

  13. Byrne M (2006) Life history diversity and evolution in the Asterinidae. Integr Comp Biol 46:243–254. https://doi.org/10.1093/icb/icj033

    CAS  Article  PubMed  Google Scholar 

  14. Byrne M, Cerra A (1996) Evolution of intragonadal development in the diminutive asterinid sea stars Patiriella vivipara and P. parvivipara with an overview of development in the Asterinidae. Biol Bull 191:17–26. https://doi.org/10.2307/1543057

    CAS  Article  PubMed  Google Scholar 

  15. Byrne M, Cerra A, Villinski JT (1999) Oogenic strategies in the evolution of development in Patiriella (Echinodermata: Asteroidea). Invertebr Reprod Dev 36:195–202. https://doi.org/10.1080/07924259.1999.9652700

    Article  Google Scholar 

  16. Byrne M, Hart MW, Cerra A, Cisternas P (2003) Reproduction and larval morphology of broadcasting and viviparous species in the Cryptasterina species complex. Biol Bull 205:285–294. https://doi.org/10.2307/1543292

    Article  PubMed  Google Scholar 

  17. Cameron H, Monro K, Malerba M, Munch S, Marshall D (2016) Why do larger mothers produce larger offspring? A test of classic theory. Ecology 97:3452–3459

    Article  Google Scholar 

  18. Chaparro O, Oyarzun R, Vergara A, Thompson R (1999) Energy investment in nurse eggs and egg capsules in Crepidula dilatata Lamarck (Gastropoda, Calyptraeidae) and its influence on the hatching size of the juvenile. J Exp Mar Biol Ecol 232:261–274

    Article  Google Scholar 

  19. Chia F (1974) Classification and adaptive significance of developmental patterns in marine invertebrates. Thalassia Jugosl 10:121–130

    Google Scholar 

  20. Christiansen F, Fenchel T (1979) Evolution of marine invertebrate reproductive patterns. Theor Popul Biol 16:267–282

    CAS  Article  Google Scholar 

  21. Clarke MRB (1980) The reduced major axis of a bivariate sample. Biometrika 67:441–446. https://doi.org/10.2307/2335487

    Article  Google Scholar 

  22. Clarke A (1992) Reproduction in the cold—Thorson revisited. Invertebr Reprod Dev 22:175–184. https://doi.org/10.1080/07924259.1992.9672270

    Article  Google Scholar 

  23. Collin R, Spangler A (2012) Impacts of adelphophagic development on variation in offspring size, duration of development, and temperature-mediated plasticity. Biol Bull 223:268–277. https://doi.org/10.1086/BBLv223n3p268

    Article  PubMed  Google Scholar 

  24. Crespi B, Semeniuk C (2004) Parent-offspring conflict in the evolution of vertebrate reproductive mode. Am Nat 163:635–653. https://doi.org/10.1086/382734

    Article  PubMed  Google Scholar 

  25. Daly J (1972) The maturation and breeding biology of Harmothoe imbricata (Polychaeta: Polynoidae). Mar Biol 12:53–66

    Google Scholar 

  26. Dartnall AJ, Byrne M, Collins J, Hart MW (2003) A new viviparous species of asterinid (Echinodermata, Asteroidea, Asterinidae) and a new genus to accommodate the species of pantropical exiguoid sea stars. Zootaxa 359:1–14

    Article  Google Scholar 

  27. Eernisse DJ (1988) Reproductive patterns in six species of Lepidochitona (Mollusca: Polyplacophora) from the Pacific Coast of North America. Biol Bull 174:287–302

    Article  Google Scholar 

  28. Fernandez M, Bock C, Portner HO (2000) The cost of being a caring mother: the ignored factor in the reproduction of marine invertebrates. Ecol Lett 3:487–494. https://doi.org/10.1046/j.1461-0248.2000.00172.x

    Article  Google Scholar 

  29. Fernandez M, Calderon R, Cifuentes M, Pappalardo P (2006) Brooding behaviour and cost of brooding in small body size brachyuran crabs. Mar Ecol Prog Ser 309:213–220. https://doi.org/10.3354/meps309213

    Article  Google Scholar 

  30. Fox CW, Czesak ME (2000) Evolutionary ecology of progeny size in arthropods. Annu Rev Entomol 45:341–369. https://doi.org/10.1146/annurev.ento.45.1.341

    CAS  Article  PubMed  Google Scholar 

  31. Frick JE (1998) Evidence of matrotrophy in the viviparous holothuroid echinoderm Synaptula hydriformis. Invertebr Biol 117:169–179. https://doi.org/10.2307/3226968

    Article  Google Scholar 

  32. George SB (1996) Echinoderm egg and larval quality as a function of adult nutritional state. Oceanol Acta 19:297–308

    Google Scholar 

  33. Gillespie JM, McClintock JB (2007) Brooding in echinoderms: how can modern experimental techniques add to our historical perspective? J Exp Mar Biol Ecol 342:191–201

    Article  Google Scholar 

  34. Hart MW, Byrne M, Smith MJ (1997) Molecular phylogenetic analysis of life-history evolution in asterinid starfish. Evolution 51:1848–1861. https://doi.org/10.1111/j.1558-5646.1997.tb05108.x

    Article  PubMed  Google Scholar 

  35. Heath DJ (1977) Simultaneous hermaphroditism; cost and benefit. J Theor Biol 64:363–373

    CAS  Article  Google Scholar 

  36. Hendler G (1979) Sex-reversal and viviparity in Ophiolepis kieri, n. sp., with notes on viviparous brittlestars from the Caribbean (Echinodermata: Ophiuroidea). Proc Biol Soc Wash 92:783–795

    Google Scholar 

  37. Hendry AP, Day T, Cooper AB (2001) Optimal size and number of propagules: allowance for discrete stages and effects of maternal size on reproductive output and offspring fitness. Am Nat 157:387–407. https://doi.org/10.1086/319316

    CAS  Article  PubMed  Google Scholar 

  38. Hess HC (1993) The evolution of parental care in brooding spirorbid polychaetes—the effect of scaling constraints. Am Nat 141:577–596. https://doi.org/10.1086/285492

    Article  Google Scholar 

  39. Ilano AS, Fujinaga K, Nakao S (2004) Mating, development and effects of female size on offspring number and size in the neogastropod Buccinum isaotakii (Kira, 1959). J Molluscan Stud 70:277–282. https://doi.org/10.1093/mollus/70.3.277

    Article  Google Scholar 

  40. Kabat AR (1985) The allometry of brooding in Transennella tantilla (Gould) (Mollusca, Bivalvia). J Exp Mar Biol Ecol 91:271–279. https://doi.org/10.1016/0022-0981(85)90181-9

    Article  Google Scholar 

  41. Kalinka AT (2015) How did viviparity originate and evolve? Of conflict, co-option, and cryptic choice. BioEssays 37:721–731

    Article  Google Scholar 

  42. Kamel SJ, Williams PD (2017) Resource exploitation and relatedness: implications for offspring size variation within broods. Oikos 126:1219–1226. https://doi.org/10.1111/oik.04034

    Article  Google Scholar 

  43. Kamel SJ, Oyarzun FX, Grosberg RK (2010) Reproductive biology, family conflict, and size of offspring in marine invertebrates. Integr Comp Biol 50:619–629. https://doi.org/10.1093/icb/icq104

    Article  PubMed  Google Scholar 

  44. Keever CC, Puritz JB, Addison JA, Byrne M, Grosberg RK, Toonen RJ, Hart MW (2013) Shallow gene pools in the high intertidal: extreme loss of genetic diversity in viviparous sea stars (Parvulastra). Biol Lett 9:20130551. https://doi.org/10.1098/rsbl.2013.0551

    Article  PubMed  PubMed Central  Google Scholar 

  45. Keough MJ, Dartnall AJ (1978) A new species of viviparous asterinid asteroid from Eyre Peninsula South Australia. Rec S Aust Mus (Adel) 17:406–416

    Google Scholar 

  46. Lardies MA, Fernandez M (2002) Effect of oxygen availability in determining clutch size in Acanthina monodon. Mar Ecol Prog Ser 239:139–146. https://doi.org/10.3354/meps239139

    Article  Google Scholar 

  47. Lawrence JM, Herrera J (2000) Stress and deviant reproduction in echinoderms. Zool Stud 39:151–171

    Google Scholar 

  48. Levin LF, Bridges TS (1995) Pattern and diversity in reproduction and development. In: McEdward LR (ed) Ecology of marine invertebrate larvae. CRC Press, Boca Raton/London/New York/Washington, DC, pp 1–48

    Google Scholar 

  49. Lim JN, Senior AM, Nakagawa S (2014) Heterogeneity in individual quality and reproductive trade-offs within species. Evolution 68:2306–2318

    PubMed  Google Scholar 

  50. Liversage K, Byrne M (2018) A note on life-history traits and conservation concerns for viviparous Australian seastars (Parvulastra parvivipara and P. vivipara). Res Ideas Outcomes 4:e29766

    Article  Google Scholar 

  51. Marshall DJ, Keough MJ (2006) Complex life cycles and offspring provisioning in marine invertebrates. Integr Comp Biol 46:643–651. https://doi.org/10.1093/icb/icl013

    Article  PubMed  Google Scholar 

  52. Marshall DJ, Keough MJ (2008) The evolutionary ecology of offspring size in marine invertebrates. In: Sims DW (ed) Advances in marine biology, vol 53. Elsevier Academic Press Inc, San Diego, pp 1–60. https://doi.org/10.1016/s0065-2881(07)53001-4

    Google Scholar 

  53. Marshall DJ, Bolton TF, Keough MJ (2003) Offspring size affects the post-metamorphic performance of a colonial marine invertebrate. Ecology 84:3131–3137

    Article  Google Scholar 

  54. Marshall DJ, Bonduriansky R, Bussiere LF (2008) Offspring size variation within broods as a bet-hedging strategy in unpredictable environments. Ecology 89:2506–2517. https://doi.org/10.1890/07-0267.1

    Article  PubMed  Google Scholar 

  55. Marshall DJ, Heppell SS, Munch SB, Warner RR (2010) The relationship between maternal phenotype and offspring quality: do older mothers really produce the best offspring? Ecology 91:2862–2873. https://doi.org/10.1890/09-0156.1

    Article  PubMed  Google Scholar 

  56. McArdle BH (1988) The structural relationship—regression in biology. Can J Zool 66:2329–2339. https://doi.org/10.1139/z88-348

    Article  Google Scholar 

  57. McClary DJ, Mladenov PV (1990) Brooding biology of the sea star Pteraster militaris (OF Müller): energetic and histological evidence for nutrient translocation to brooded juveniles. J Exp Mar Biol Ecol 142:183–199

    Article  Google Scholar 

  58. McEdward LR, Janies DA (1993) Life cycle evolution in asteroids: what is a larva? Biol Bull 184:255–268. https://doi.org/10.2307/1542444

    CAS  Article  PubMed  Google Scholar 

  59. Menge BA (1975) Brood or broadcast—adaptive significance of different reproductive strategies in 2 intertidal sea stars Leptasterias hexactis and Pisaster ochraceus. Mar Biol 31:87–100. https://doi.org/10.1007/Bf00390651

    Article  Google Scholar 

  60. Mercier A, Sun Z, Parrish CC, Hamel JF (2016) Remarkable shifts in offspring provisioning during gestation in a live-bearing cnidarian. PLoS One 11:e0154051. https://doi.org/10.1371/journal.pone.0154051

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Miloslavich P, Dufresne L (1994) Development and effect of female size on egg and juvenile production in the neogastropod Buccinum cyaneum from the Saguenay Fjord. Can J Fish Aquat Sci 51:2866–2872. https://doi.org/10.1139/f94-285

    Article  Google Scholar 

  62. Moran AL, Emlet RB (2001) Offspring size and performance in variable environments: field studies on a marine snail. Ecology 82:1597–1612. https://doi.org/10.2307/2679803

    Article  Google Scholar 

  63. Morrison KR, Ngo V, Cardullo RA, Reznick DN (2017) How fish eggs are preadapted for the evolution of matrotrophy. Proc R Soc B 284:20171342. https://doi.org/10.1098/rspb.2017.1342

    CAS  Article  PubMed  Google Scholar 

  64. Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407

    CAS  Article  Google Scholar 

  65. Musick JA, Ellis JK (2005) Reproductive evolution of Chondrichthyans, vol 3. CRC Press, USA

    Google Scholar 

  66. Nasution S, Roberts D, Farnsworth K, Parker GA, Elwood RW (2010) Maternal effects on offspring size and packaging constraints in the whelk. J Zool 281:112–117. https://doi.org/10.1111/j.1469-7998.2009.00681.x

    Article  Google Scholar 

  67. Naylor J, Taylor E, Bennett D (1999) Oxygen uptake of developing eggs of Cancer pagurus (Crustacea: Decapoda: Cancridae) and consequent behaviour of the ovigerous females. J Mar Biol Assoc UK 79:305–315

    Article  Google Scholar 

  68. Ostrovsky AN (2013a) Evolution of sexual reproduction in marine invertebrates: example of gymnolaemate bryozoans. Springer, Dordrecht. Heidelberg, NewYork, London

    Book  Google Scholar 

  69. Ostrovsky AN (2013b) From incipient to substantial: evolution of placentotrophy in a phylum of aquatic colonial invertebrates. Evolution 67:1368–1382. https://doi.org/10.1111/evo.12039

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ostrovsky AN, Gordon DP, Lidgard S (2009) Independent evolution of matrotrophy in the major classes of Bryozoa: transitions among reproductive patterns and their ecological background. Mar Ecol Prog Ser 378:113–124. https://doi.org/10.3354/meps07850

    Article  Google Scholar 

  71. Ostrovsky AN, Lidgard S, Gordon DP, Schwaha T, Genikhovich G, Ereskovsky AV (2016) Matrotrophy and placentation in invertebrates: a new paradigm. Biol Rev Camb Philos Soc 91:673–711. https://doi.org/10.1111/brv.12189

    Article  PubMed  Google Scholar 

  72. Oyarzun FX, Brante A (2014) The effects of nurse eggs and sibling interactions on the larval development of the poecilogonous annelid Boccardia proboscidea (Spionidae). Invertebr Biol 133:340–353

    Article  Google Scholar 

  73. Pearse JS, Eernisse DJ, Pearse VB, Beauchamp KA (1986) Photoperiodic regulation of gametogenesis in sea stars, with evidence for an annual calendar independent of fixed daylength. Am Zool 26:417–431. https://doi.org/10.1093/icb/26.2.417

    Article  Google Scholar 

  74. Peters RH (1986) The ecological implications of body size, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  75. Pollux BJA, Reznick DN (2011) Matrotrophy limits a female’s ability to adaptively adjust offspring size and fecundity in fluctuating environments. Funct Ecol 25:747–756. https://doi.org/10.1111/j.1365-2435.2011.01831.x

    Article  Google Scholar 

  76. Prestedge GK (1998) The distribution and biology of Patiriella vivipara (Echinodermata: Asteroidea: Asterinidae) a sea star endemic to Southeast Tasmania. Rec Aust Mus 50:161–170. https://doi.org/10.3853/j.0067-1975.50.1998.1277

    Article  Google Scholar 

  77. Puritz JB, Keever CC, Addison JA, Byrne M, Hart MW, Grosberg RK, Toonen RJ (2012) Extraordinarily rapid life-history divergence between Cryptasterina sea star species. P Roy Soc B Biol Sci 279:3914–3922

    Article  Google Scholar 

  78. Raff RA, Byrne M (2006) The active evolutionary lives of echinoderm larvae. Heredity (Edinb) 97:244–252. https://doi.org/10.1038/sj.hdy.6800866

    CAS  Article  Google Scholar 

  79. Roediger LM (2011) Population and reproductive ecology of the direct-developing sea stars Parvulastra parvivipara and Cryptasterina hystera. PhD Thesis, Flinders University, Adelaide

  80. Roediger LM, Bolton TF (2008) Abundance and distribution of South Australia’s endemic sea star, Parvulastra parvivipara (Asteroidea: Asterinidae). Mar Freshw Res 59:205–213. https://doi.org/10.1071/Mf07084

    Article  Google Scholar 

  81. Rollinson N, Rowe L (2016) The positive correlation between maternal size and offspring size: fitting pieces of a life-history puzzle. Biol Rev 91:1134–1148

    Article  Google Scholar 

  82. Royle NJ, Smiseth PT, Kölliker M (2012) The evolution of parental care. Oxford University Press, Oxford

    Book  Google Scholar 

  83. Sakai S, Harada Y (2001) Why do large mothers produce large offspring? theory and a test. Am Nat 157:348–359. https://doi.org/10.1086/319194

    CAS  Article  PubMed  Google Scholar 

  84. Schrader M, Travis J (2009) Do embryos influence maternal investment? Evaluating maternal-fetal coadaptation and the potential for parent-offspring conflict in a placental fish. Evolution 63:2805–2815

    Article  Google Scholar 

  85. Schrader M, Travis J (2012) Variation in offspring size with birth order in placental fish: a role for asymmetric sibling competition? Evolution 66:272–279. https://doi.org/10.1111/j.1558-5646.2011.01422.x

    Article  PubMed  Google Scholar 

  86. Sewell MA (1994) Small size, brooding, and protandry in the apodid sea cucumber Leptosynapta clarki. Biol Bull 187:112–123. https://doi.org/10.2307/1542170

    CAS  Article  PubMed  Google Scholar 

  87. Sewell MA, Koss RON, Turner A, Chia F-S (2006) Evidence for matrotrophy in the viviparous sea cucumber Leptosynapta clarki: a role for the genital haemal sinus? Invertebr Reprod Dev 49:225–236. https://doi.org/10.1080/07924259.2006.9652212

    Article  Google Scholar 

  88. Shine R (1978) Propagule size and parental care: the “safe harbor” hypothesis. J Theor Biol 75:417–424. https://doi.org/10.1016/0022-5193(78)90353-3

    CAS  Article  PubMed  Google Scholar 

  89. Smith CC, Fretwell SD (1974) The optimal balance between size and number of offspring. Am Nat 108:499–506

    Article  Google Scholar 

  90. Steer MA, Moltschaniwskyj MA, Nichols DS, Miller M (2004) The role of temperature and maternal ration in embryo survival: using the dumpling squid Euprymna tasmanica as a model. J Exp Mar Biol Ecol 307:73–89. https://doi.org/10.1016/j.jembe.2004.01.017

    Article  Google Scholar 

  91. Strathmann RR (1985) Feeding and nonfeeding larval development and life-history evolution in marine invertebrates. Annu Rev Ecol Syst 16:339–361. https://doi.org/10.1146/annurev.es.16.110185.002011

    Article  Google Scholar 

  92. Strathmann RR, Chaffee C (1984) Constraints on egg masses. 2. Effect of spacing, size, and number of eggs on ventilation of masses of embryos in jelly, adherent groups, or thin-walled capsules. J Exp Mar Biol Ecol 84:85–93. https://doi.org/10.1016/0022-0981(84)90232-6

    Article  Google Scholar 

  93. Strathmann RR, Strathmann MF (1982) The relationship between adult size and brooding in marine invertebrates. Am Nat 119:91–101. https://doi.org/10.1086/283892

    Article  Google Scholar 

  94. Strathmann RR, Strathmann MF (1995) Oxygen-supply and limits on aggregation of embryos. J Mar Biol Assoc UK 75:413–428. https://doi.org/10.1017/S0025315400018270

    Article  Google Scholar 

  95. Strathmann RR, Strathmann MF, Emson RH (1984) Does limited brood capacity link adult size, brooding, and simultaneous hermaphroditism? A test with the starfish Asterina phylactica. Am Nat 123:796–818

    Article  Google Scholar 

  96. Sun Z, Hamel JF, Mercier A (2012) Marked shifts in offspring size elicited by frequent fusion among siblings in an internally brooding marine invertebrate. Am Nat 180:E151–E160. https://doi.org/10.1086/667862

    Article  PubMed  Google Scholar 

  97. Thompson MB, Speake BK (2006) A review of the evolution of viviparity in lizards: structure, function and physiology of the placenta. J Comp Physiol B 176:179–189. https://doi.org/10.1007/s00360-005-0048-5

    Article  PubMed  Google Scholar 

  98. Trexler JC (1997) Resource availability and plasticity in offspring provisioning: embryo nourishment in sailfin mollies. Ecology 78:1370–1381

    Article  Google Scholar 

  99. Trexler JC, DeAngelis DL (2003) Resource allocation in offspring provisioning: an evaluation of the conditions favoring the evolution of matrotrophy. Am Nat 162:574–585. https://doi.org/10.1086/378822

    Article  PubMed  Google Scholar 

  100. Trivers RL (1974) Parent-offspring conflict. Am Zool 14:249–264

    Article  Google Scholar 

  101. Trumbo ST (1996) Parental care in invertebrates. Adv study behav, vol 25. Elsevier, Amsterdam, pp 3–51

    Google Scholar 

  102. Valentinsson D (2002) Reproductive cycle and maternal effects on offspring size and number in the neogastropod Buccinum undatum (L.). Mar Biol 140:1139–1147. https://doi.org/10.1007/s00227-002-0793-x

    Article  Google Scholar 

  103. Vance RR (1973) More on reproductive strategies in marine benthic invertebrates. Am Nat 107:353–361. https://doi.org/10.1086/282839

    Article  Google Scholar 

  104. Wourms JP (1981) Viviparity—the maternal-fetal relationship in fishes. Am Zool 21:473–515

    Article  Google Scholar 

  105. Wourms JP, Lombardi J (1992) Reflections on the evolution of piscine viviparity. Am Zool 32:276–293

    Article  Google Scholar 

  106. Wray G (1995) Evolution of larvae and developmental modes. In: McEdward LR (ed) Ecology of marine invertebrate larvae. CRC Press, Boca Raton/London/New York/Washington, DC, pp 413–447

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Liz McTaggart, Senior Natural Resources Officer, Department of Environment, Water and Natural Resources, South Australia for assistance in sample collection and to Mr. Geoff Prestedge for assistance with samples in Tasmania. We also like to thank Dr. Christopher Friesen and Dr. Mathew Crowther from the University of Sydney for assisting in data analyses.

Funding

The research was supported by a grant from the Australian Research Council (MB). MSRK was supported by a University Sydney International Scholarship (SC0853).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad S. R. Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

As the study organisms were echinoderms, ethical approval was not required. We collected P. parvivipara samples from South Australia on the basis of ministerial exemption ME9902902.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by J. Hodin and A. N. Ostrovsky.

Responsible Editor: J. Grassle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 245 kb)

Supplementary material 2 (PDF 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, M.S.R., Whittington, C.M., Thompson, M.B. et al. Intragonadal incubation of progeny in three viviparous asterinid sea stars that differ in offspring provisioning, lecithotrophy vs matrotrophy. Mar Biol 166, 81 (2019). https://doi.org/10.1007/s00227-019-3507-3

Download citation