Comparative population genomics confirms little population structure in two commercially targeted carcharhinid sharks

Abstract

Many shark species are at risk of overexploitation due to their high economic value, slow maturation, and low recruitment compared to most teleosts. However, there is insufficient knowledge about population structure at different spatial scales necessary to optimise fisheries models. We used single-nucleotide polymorphisms (SNPs) obtained through complexity-reduction genome sequencing to quantify the population structure of two highly mobile and commercially fished shark species: bronze whalers (Carcharhinus brachyurus) and dusky sharks (C. obscurus). We applied a comprehensive approach to test several population-structure hypotheses and signal consistency across methods and marker type. We found that C. obscurus was panmictic across Australia and Indonesia and across the Indian Ocean to South Africa based on neutral loci, whereas for C. brachyurus, the westernmost Australian samples appeared to be separate from the rest. The southernmost east Australian samples indicated some difference from the rest of Australia and New Zealand based on candidate loci for C. brachyurus, and potentially also C. obscurus; however, the lack of a reference genome makes the interpretation difficult. Despite similar patterns in both species, subtle and potentially important structure differences emphasise the importance of studying each target species independently rather than assuming similar patterns from closely related species with similar dispersal abilities, as well as considering different marker types in future studies. We found evidence of connectivity across the regions sampled, suggesting that the cumulative effects of regional fisheries and the potential for cross-jurisdictional fishery assessments and management should be considered for Australian, Indonesian, and New Zealand populations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

(modified from Duffy and Gordon 2003a) with sample sets indicated: 3–W_SW1, 5–S_GAB, 6–S_SG, 7–S_GSV, 8–S_Vic, 9–E_South, and 10–E_NZ (see Table 1 for abbreviation definitions)

Fig. 4

(modified from Musick et al. 2009) with the sample sets indicated: 1–W_North, 2–W_Perth, 3–W_SW1, 4–W_SW2, 5–S_GAB, 6–S_SG, 7–S_GSV, 9–E_South, 11–E_Mid, 12–E_North, 13–E_NORF, 14–N_IDN, and 15–N_NT) (see Table 1 for abbreviation definitions)

References

  1. Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinform 9:323

    Article  Google Scholar 

  2. Ashe JL, Feldheim KA, Fields AT, Reyier EA, Brooks EJ, O’Connell MT, Skomal G, Gruber SH, Chapman CC (2015) Local population structure and context-dependent isolation by distance in a large coastal shark. Mar Ecol Prog Ser 520:203–216. https://doi.org/10.3354/meps11069

    Article  Google Scholar 

  3. Bailleul D, Mackenzie A, Sacchi O, Poisson F, Bierne N, Arnaud-Haond S (2018) Large-scale genetic panmixia in the blue shark (Prionace glauca): a single worldwide population, or a genetic lag-time effect of the “grey zone” of differentiation? Evol Appl 11:614–630

    CAS  Article  Google Scholar 

  4. Barbosa SS, Klanten SO, Puritz JB, Toonen RJ, Byrne M (2013) Very fine-scale population genetic structure of sympatric asterinid sea stars with benthic and pelagic larvae: influence of mating system and dispersal potential. Biol J Linn Soc 108:821–833. https://doi.org/10.1111/bij.12006

    Article  Google Scholar 

  5. Barnes TC, Junge C, Myers SA, Taylor MD, Rogers PJ, Ferguson GJ, Lieschke JA, Donnellan SC, Gillanders BM (2015) Population structure in a wide-ranging coastal teleost (Argyrosomus japonicus, Sciaenidae) reflects marine biogeography across southern Australia. Mar Freshw Res 67:8. https://doi.org/10.1071/MF15044

    Article  Google Scholar 

  6. Benavides MT, Feldheim KA, Duffy CA, Wintner S, Braccini M, Boomer J, Huveneers C, Rogers P, Mangel JC, Alfaro-Shigueto J, Cartamil DP, Chapman DD (2011a) Phylogeography of the copper shark (Carcharhinus brachyurus) in the southern hemisphere: implications for the conservation of a coastal apex predator. Mar Freshw Res 62:861–869. https://doi.org/10.1071/mf10236

    Article  Google Scholar 

  7. Benavides MT, Horn RL, Feldheim KA, Shivji MS, Clarke SC, Wintner S, Natanson L, Braccini M, Boomer JJ, Gulak SJB, Chapman DD (2011b) Global phylogeography of the dusky shark Carcharhinus obscurus: implications for fisheries management and monitoring the shark fin trade. Endanger Species Res 14:13–22. https://doi.org/10.3354/esr00337

    Article  Google Scholar 

  8. Benestan L, Gosselin T, Perrier C, Sainte-Marie B, Rochette R, Bernatchez L (2015) RAD-genotyping reveals fine-scale genetic structuring and provides powerful population assignment in a widely distributed marine species; the American lobster (Homarus americanus). Mol Ecol 24:3299–3315. https://doi.org/10.1111/mec.13245

    Article  PubMed  Google Scholar 

  9. Blaber SJM, Dichmont CM, White W, Buckworth R, Sadiyah L, Iskandar B, Nurhakim S, Pillans R, Andamari R, Dharmadi Fahmi (2009) Elasmobranchs in southern Indonesian fisheries: the fisheries, the status of the stocks and management options. Rev Fish Biol Fisher 19:367–391

    Article  Google Scholar 

  10. Bonfil R, Meyer M, Scholl MC, Johnson R, O’Brien S, Oosthuizen H, Swanson S, Kotze D, Paterson M (2005) Transoceanic migration, spatial dynamics, and population linkages of white sharks. Science 310:100–103. https://doi.org/10.1126/science.1114898

    CAS  Article  PubMed  Google Scholar 

  11. Braccini M, Johnson G, Rogers P, Hansen S, Peddemors V (2016) Dusky Whaler (Carcharhinus obscurus). In: Stewardson C, Andrews J, Ashby C, Haddon M, Hartmann K, Hone P, Horvat P, Mayfield S, Roelofs A, Sainsbury K, Saunders T, Stewart J, Stobutzki I, Wise B (eds) 2016, Status of Australian fish stocks reports 2016. FRDC, Canberra

    Google Scholar 

  12. Bradshaw CJA, Field IC, McMahon CR, Johnson GJ, Meekan MG, Buckworth RC (2013) More analytical bite in estimating targets for shark harvest. Mar Ecol Prog Ser 488:221–232. https://doi.org/10.3354/meps10375

    Article  Google Scholar 

  13. Bradshaw CJA, Prowse TAA, Drew M, Gillanders BM, Donnellan SC, Huveneers C (2018) Predicting sustainable shark harvests when stock assessments are lacking. ICES J Mar Sci 75:1591–1601. https://doi.org/10.1093/icesjms/fsy031

    Article  Google Scholar 

  14. Case RAJ, Hutchinson WF, Hauser L, Van Oosterhout C, Carvalho GR (2005) Macro- and micro-geographic variation in pantophysin (PanI) allele frequencies in NE Atlantic cod Gadus morhua. Mar Ecol Prog Ser 301:267–278. https://doi.org/10.3354/meps301267

    CAS  Article  Google Scholar 

  15. Chapman DD, Feldheim KA, Papastamatiou YP, Hueter RE (2015) There and back again: a review of residency and return migrations in sharks, with implications for population structure and management. Annu Rev Mar Sci 7:547–570. https://doi.org/10.1146/annurev-marine-010814-015730

    Article  Google Scholar 

  16. Cliff G, Dudley SFJ (1992) Sharks caught in the protective gill nets off Natal, South Africa. 6. The copper shark Carcharhinus brachyurus (Günther). S Afr J Marine Sci 12:663–674. https://doi.org/10.2989/02577619209504731

    Article  Google Scholar 

  17. Cruz VMV, Kilian A, Dierig DA (2013) Development of DArT marker platforms and genetic diversity assessment of the US collection of the new oilseed crop Lesquerella and related species. PLoS One 8:e64062. https://doi.org/10.1371/journal.pone.0064062

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology 1:460–483

    Article  Google Scholar 

  19. Dichmont CM, Ovenden JR, Berry O, Welch DJ, Buckworth RC (2012) Scoping current and future genetic tools, their limitations and their applications for wild fisheries management. CSIRO, Brisbane, p 129

    Google Scholar 

  20. Donnellan SC, Foster R, Junge C, Huveneers C, Rogers P, Kilian A, Bertozzi T (2015) Fiddling with the proof: the magpie fiddler ray is a colour pattern variant of the common southern fiddler ray (Rhinobatidae: Trygonorrhina). Zootaxa 3981:367–384

    Article  Google Scholar 

  21. Drew M, Rogers P, Huveneers C (2017) Slow life-history traits of a neritic predator, the bronze whaler (Carcharhinus brachyurus). Mar Freshw Res 68:461–472

    Article  Google Scholar 

  22. Dudgeon CL, Blower DC, Broderick D, Giles JL, Holmes BJ, Kashiwagi T, Krück NC, Morgan AT, Tillett BJ, Ovenden JR (2012) A review of the application of molecular genetics for fisheries management and conservation of sharks and rays. J Fish Biol 80:1789–1843. https://doi.org/10.1111/j.1095-8649.2012.03265.x

    CAS  Article  PubMed  Google Scholar 

  23. Dudley SFJ, Cliff G, Zungu MP, Smale MJ (2005) Sharks caught in the protective gill nets off KwaZulu-Natal, South Africa. 10. The dusky shark Carcharhinus obscurus (Lesueur 1818). Afr J Mar Sci 27:107–127. https://doi.org/10.2989/18142320509504072

    Article  Google Scholar 

  24. Duffy C, Gordon I (2003a) Carcharhinus brachyurus (SSG Australia & Oceania Regional Workshop, March 2003). The IUCN Red List of Threatened Species version 20143 online: http://iucnredlist.org/

  25. Duffy C, Gordon I (2003b) Carcharhinus brachyurus. In: Cavanagh Rachel D, Kyne PM, Fowler SL, Musick JA, Bennett MB (ed) The conservation status of Australian chondrichthyans: report of the IUCN Shark Specialist Group Australia and Oceania Regional Red List Workshop. The University of Queensland, School of Biomedical Sciences, Brisbane, Australia, vol x + 170, pp 106–109

  26. Dulvy NK, Fowler SL, Musick JA, Cavanagh RD, Kyne PM, Harrison LR, Carlson JK, Davidson LNK, Fordham SV, Francis MP, Pollock CM, Simpfendorfer CA, Burgess GH, Carpenter KE, Compagno LJV, Ebert DA, Gibson C, Heupel MR, Livingstone SR, Sanciangco JC, Stevens JD, Valenti S, White WT (2014) Extinction risk and conservation of the world’s sharks and rays. eLife 3:e00590

    Article  Google Scholar 

  27. Dulvy NK, Simpfendorfer CA, Davidson LNK, Fordham SV, Bräutigam A, Sant G, Welch DJ (2017) Challenges and priorities in shark and ray conservation. Curr Biol 27:R565–R572

    CAS  Article  Google Scholar 

  28. Earl D, vonHoldt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  29. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  Article  Google Scholar 

  30. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Field IC, Meekan MG, Buckworth RC, Bradshaw CJ (2009) Susceptibility of sharks, rays and chimaeras to global extinction. Adv Mar Biol 56:275–363

    Article  Google Scholar 

  32. Flood MSI, Andrews J, Ashby C, Begg G, Fletcher R, Gardner C, Georgeson L, Hansen S, Hartmann K, Hone P, Horvat P, Maloney L, McDonald B, Moore A, Roelofs A, Sainsbury K, Saunders T, Smith T, Stewardson C, Stewart J, Wise B (eds) (2014) Status of key Australian fish stocks reports 2014. FRDC, Canberra

    Google Scholar 

  33. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993. https://doi.org/10.1534/genetics.108.092221

    Article  PubMed  PubMed Central  Google Scholar 

  34. Frisk MG, Miller TJ, Dulvy NK (2005) Life histories and vulnerability to exploitation of elasmobranchs: inferences from elasticity, perturbation and phylogenetic analyses. J Northwest Atl Fish Sci 35:27–45

    Article  Google Scholar 

  35. Gaggiotti OE, Bekkevold D, Jørgensen HBH, Foll M, Carvalho GR, Andre C, Ruzzante DE (2009) Disentangling the effects of evolutionary, demographic, and environmental factors influeing genetic structure of natural populations: Atlantic herring as a case study. Evolution 63:2939–2951. https://doi.org/10.1111/j.1558-5646.2009.00779.x

    Article  PubMed  Google Scholar 

  36. Geraghty PT, Macbeth WG, Harry AV, Bell JE, Yerman MN, Williamson JE (2013) Age and growth parameters for three heavily exploited shark species off temperate eastern Australia. ICES J Mar Sci 71:559–573. https://doi.org/10.1093/icesjms/fst164

    Article  Google Scholar 

  37. Geraghty PT, Williamson JE, Macbeth WG, Blower DC, Morgan JAT, Johnson G, Ovenden JR, Gillings MR (2014) Genetic structure and diversity of two highly vulnerable carcharhinids in Australian waters. Endanger Species Res 24:45–60. https://doi.org/10.3354/esr00580

    Article  Google Scholar 

  38. Geraghty P, Macbeth W, Williamson J (2015) Aspects of the reproductive biology of dusky, spinner and sandbar sharks (Family Carcharhinidae) from the Tasman Sea. Mar Freshw Res 67:513–525

    Article  Google Scholar 

  39. Gore MA, Rowat D, Hall J, Gell FR, Ormond RF (2008) Transatlantic migration and deep mid-ocean diving by basking shark. Biol Lett 4:395–398

    Article  Google Scholar 

  40. Guo BC, DeFaveri J, Sotelo G, Nair A, Merilä J (2015) Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks. BMC Biol 13:19. https://doi.org/10.1186/s12915-015-0130-8

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hastings A (1993) Complex interactions between dispersal and dynamics: lessons from coupled logistic equations. Ecology 74:1362–1372

    Article  Google Scholar 

  42. Hemmer-Hansen J, Therkildsen NO, Meldrup D, Nielsen EE (2014) Conserving marine biodiversity: insights from life-history trait candidate genes in Atlantic cod (Gadus morhua). Conserv Genet 15:213–228. https://doi.org/10.1007/s10592-013-0532-5

    Article  Google Scholar 

  43. Hess JE, Campbell NR, Close DA, Docker MF, Narum SR (2013) Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species. Mol Ecol 22:2898–2916. https://doi.org/10.1111/mec.12150

    CAS  Article  PubMed  Google Scholar 

  44. Hoenner X, Huveneers C, Steckenreuter A, Simpfendorfer C, Tattersall K, Jaine F, Atkins N, Babcock R, Brodie S, Burgess J (2018) Australia’s continental-scale acoustic tracking database and its automated quality control process. Sci Data 5:170206

    Article  Google Scholar 

  45. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  Google Scholar 

  46. Hussey NE, McCarthy ID, Dudley SF, Mann BQ (2009) Nursery grounds, movement patterns and growth rates of dusky sharks, Carcharhinus obscurus: a long-term tag and release study in South African waters. Mar Fresh Res 60:571–583

    Article  Google Scholar 

  47. Huveneers C, Rogers PJ, Drew M (2014) Monitoring shark species of conservation concern within the Adelaide metropolitan and Gulf St Vincent regions. Final report to the Adelaide and Mount Lofty ranges natural resources management board. SARDI research report series No. 754, SARDI Aquatic Sciences, Adelaide, Australia

  48. Izzo C, Huveneers C, Drew M, Bradshaw CJ, Donnellan SC, Gillanders BM (2016) Vertebral chemistry demonstrates movement and population structure of bronze whaler. Mar Ecol Prog Ser 556:195–207

    CAS  Article  Google Scholar 

  49. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. https://doi.org/10.1093/bioinformatics/btn129

    CAS  Article  PubMed  Google Scholar 

  50. Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071. https://doi.org/10.1093/bioinformatics/btr521

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics 11:94. https://doi.org/10.1186/1471-2156-11-94

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jones GK (2008) Review of the fishery status for whaler sharks (Carcharhinus spp.) in South Australian and adjacent waters. FRDC Project 2004/067. SARDI Aquatic Sciences

  53. Junge C, Vøllestad LA, Barson NJ, Haugen TO, Otero J, Sætre G-P, Primmer CR (2011) Strong gene flow and lack of stable population structure in the face of rapid adaptation to local temperature in a spring-spawning salmonid, the European grayling (Thymallus thymallus). Heredity 106:460–471. https://doi.org/10.1038/hdy.2010.160

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, Caig V, Heller-Uszynska K, Jaccoud D, Hopper C, Aschenbrenner-Kilian M, Evers M, Peng K, Cayla C, Hok P, Uszynski G (2012) Diversity arrays technology: a generic genome profiling technology on open platforms. In: Pompanon F, Bonin A (eds) Data production and analysis in population genomics, vol 888. Methods in Molecular Biology. Humana Press, New York, pp 67–89. https://doi.org/10.1007/978-1-61779-870-2_5

    Google Scholar 

  55. Kohler NE, Casey JG, Turner PA (1998) NMFS cooperative shark tagging program, 1962-93: an atlas of shark tag and recapture data. Mar Fish Rev 60:1–87

    Google Scholar 

  56. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191. https://doi.org/10.1111/1755-0998.12387

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Krück NC, Innes DI, Ovenden JR (2013) New SNPs for population genetic analysis reveal possible cryptic speciation of eastern Australian sea mullet (Mugil cephalus). Mol Ecol Resour 13:715–725. https://doi.org/10.1111/1755-0998.12112

    CAS  Article  PubMed  Google Scholar 

  58. Lamichhaney S, Martinez Barrio A, Rafati N, Sundström G, Rubin C-J, Gilbert ER, Berglund J, Wetterbom A, Laikre L, Webster MT, Grabherr M, Ryman N, Andersson L (2012) Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. Proc Natl Acad Sci USA 109:19345–19350. https://doi.org/10.1073/pnas.1216128109

    Article  PubMed  Google Scholar 

  59. Lea JSE, Wetherbee BM, Queiroz N, Brunie N, Aming C, Sousa LL, Muceintes GR, Humphries NE, Harvey GM, Sims DW, Shivji MS (2015) Repeated, long-distance migrations by a philopatric predator targeting highly contrasting ecosystems. Sci Rep 5:11202. https://doi.org/10.1038/srep11202

    Article  PubMed  PubMed Central  Google Scholar 

  60. Leigh DM, Lischer HEL, Grossen C, Keller LF (2018) Batch effects in a multiyear sequencing study: false biological trends due to changes in read lengths. Mol Eco Resour 18(4):778–788

    CAS  Article  Google Scholar 

  61. Limborg MT et al (2012) Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Mol Ecol 21:3686–3703. https://doi.org/10.1111/j.1365-294X.2012.05639.x

    CAS  Article  PubMed  Google Scholar 

  62. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994

    CAS  Article  Google Scholar 

  63. Macbeth WG, Geraghty PT, Peddemors VM, Gray CA (2009) Observer-based study of targeted commercial fishing for large shark species in waters off northern New South Wales. Industry & Investment NSW—Fisheries Final Report Series 114

  64. McAuley RB, Simpfendorfer CA, Hall NG (2007) A method for evaluating the impacts of fishing mortality and stochastic influences on the demography of two long-lived shark stocks. ICES J Mar Sci 64:1710–1722. https://doi.org/10.1093/icesjms/fsm146

    Article  Google Scholar 

  65. Meirmans PG (2015) Seven common mistakes in population genetics and how to avoid them. Mol Ecol 24:3223–3231. https://doi.org/10.1111/mec.13243

    Article  PubMed  Google Scholar 

  66. Meirmans PG, Van Tienderen PH (2004) Genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794. https://doi.org/10.1111/j.1471-8286.2004.00770.x

    Article  Google Scholar 

  67. Milano I, Babbucci M, Cariani A, Atanassova M, Bekkevold D, Carvalho GR, Espiñeira M, Florentino F, Garofalo G, Geffen AJ, Hansen JH, Helyar SJ, Nielsen EE, Ogden R, Patarnello T, Stagioni M, FishPopTrace Consortium, Tinti F, Bargelloni L (2014) Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius). Mol Ecol 23:118–135

    Article  Google Scholar 

  68. Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248. https://doi.org/10.1101/gr.5681207

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Moore J-S, Bourret V, Dionne M, Bradbury I, O’Reilly P, Kent M, Chaput G, Bernatchez L (2014) Conservation genomics of anadromous Atlantic salmon across its North American range: outlier loci identify the same patterns of population structure as neutral loci. Mol Ecol 23:5680–5697. https://doi.org/10.1111/mec.12972

    CAS  Article  PubMed  Google Scholar 

  70. Musick JA, Grubbs RD, Baum J, Cortés E (2009) Carcharhinus obscurus. The IUCN red list of threatened species 2009:e.T3852A10127245. https://doi.org/10.2305/IUCN.UK.2009-2.RLTS.T3852A10127245.en

  71. Narum SR, Hess JE (2011) Comparison of FST outlier tests for SNP loci under selection. Mol Ecol Resour 11:184–194

    Article  Google Scholar 

  72. Otway NM, Bradshaw CJA, Harcourt RG (2004) Estimating the rate of quasi-extinction of the Australian grey nurse shark (Carcharias taurus) population using deterministic age- and stage-classified models. Biol Conserv 119:341–350. https://doi.org/10.1016/j.biocon.2003.11.017

    Article  Google Scholar 

  73. Ovenden JR (2013) Crinkles in connectivity: combining genetics and other types of biological data to estimate movement and interbreeding between populations. Mar Freshw Res 64:201–207. https://doi.org/10.1071/mf12314

    Article  Google Scholar 

  74. Ovenden J, Kashiwagi T, Broderick D, Giles J, Salini J (2009) The extent of population genetic subdivision differs among four co-distributed shark species in the Indo-Australian archipelago. BMC Evol Biol 9:1–15. https://doi.org/10.1186/1471-2148-9-40

    CAS  Article  Google Scholar 

  75. Ovenden JR, Berry O, Welch DJ, Buckworth RC, Dichmont CM (2015) Ocean’s eleven: a critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish Fish 16:125–159. https://doi.org/10.1111/faf.12052

    Article  Google Scholar 

  76. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  77. Pérez-Figueroa A, García-Pereira MJ, Saura M, Rolán-Alvarez E, Caballero A (2010) Comparing three different methods to detect selective loci using dominant markers. J Evol Biol 23:2267–2276. https://doi.org/10.1111/j.1420-9101.2010.02093.x

    Article  PubMed  Google Scholar 

  78. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Quintela M, Skaug HJ, Ølen N, Haug T, Seliussen BB, Solvang HK, Pampoulie C, Kanda N, Pastene LA, Glover KA (2014) Investigating population genetic structure in a highly mobile marine organism: the minke whale Balaenoptera acutorostrata in the North East Atlantic. PLoS One 9:e108640. https://doi.org/10.1371/journal.pone.0108640

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  81. Roberts CD, Stewart AL, Struthers CD (eds) (2015) The fishes of New Zealand. In four volumes. Te Papa Press, Wellington

    Google Scholar 

  82. Rogers PJ, Huveneers C, Goldsworthy SD, Cheung WWL, Jones GK, Mitchell JG, Seuront L (2013a) Population metrics and movement of two sympatric carcharhinids: a comparison of the vulnerability of pelagic sharks of the southern Australian gulfs and shelves. Mar Freshw Res 64:20–30. https://doi.org/10.1071/MF11234

    Article  Google Scholar 

  83. Rogers PJ, Huveneers C, Goldsworthy SD, Mitchell JG, Seuront L (2013b) Broad-scale movements and pelagic habitat of the dusky shark Carcharhinus obscurus off southern Australia determined using pop-up satellite archival tags. Fish Oceanogr 22:102–112. https://doi.org/10.1111/fog.12009

    Article  Google Scholar 

  84. Romine J, Musick J, Burgess G (2009) Demographic analyses of the dusky shark, Carcharhinus obscurus, in the Northwest Atlantic incorporating hooking mortality estimates and revised reproductive parameters. Environ Biol Fish 84:277–289. https://doi.org/10.1007/s10641-008-9435-6

    Article  Google Scholar 

  85. Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  86. Roy D, Hardie DC, Treble MA, Reist JD, Ruzzante DE (2014) Evidence supporting panmixia in Greenland halibut (Reinhardtius hippoglossoides) in the Northwest Atlantic. Can J Fish Aquat Sci 71:763–774. https://doi.org/10.1139/cjfas-2014-0004

    Article  Google Scholar 

  87. Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Notes 6:600–602

    Article  Google Scholar 

  88. Sellas AB, Bassos-Hull K, Pérez-Jiménez JC, Angulo-Valdés JA, Bernal MA, Hueter RE (2015) Population structure and seasonal migration of the spotted eagle ray, Aetobatus narinari. J Hered 106:266–275. https://doi.org/10.1093/jhered/esv011

    CAS  Article  PubMed  Google Scholar 

  89. Simpfendorfer CA, McAuley R, Chidlow J, Lenanton R, Hall N, Bastow T (1999) Biology and stock assessment of western Australia’s commercially important shark species. Final Report. FRDC, ISBN 0 7309 8448 6, Canberra, Australia

  90. Skomal GB, Zeeman SI, Chisholm JH, Summers EL, Walsh HJ, McMahon KW, Thorrold SR (2009) Transequatorial migrations by basking sharks in the Western Atlantic Ocean. Curr Biol 19:1019–1022. https://doi.org/10.1016/j.cub.2009.04.019

    CAS  Article  PubMed  Google Scholar 

  91. Smart JJ, Chin A, Tobin AJ, White WT, Kumasi B, Simpfendorfer CA (2017) Stochastic demographic analyses of the silvertip shark (Carcharhinus albimarginatus) and the common blacktip shark (Carcharhinus limbatus) from the Indo-Pacific. Fish Res 191:95–107

    Article  Google Scholar 

  92. Smith SE, Au DW, Show C (1998) Intrinsic rebound potentials of 26 species of Pacific sharks. Mar Freshwater Res 49:663–678. https://doi.org/10.1071/MF97135

    Article  Google Scholar 

  93. Veríssimo A, Sampaio Í, McDowell JR, Alexandrino P, Mucientes G, Queiroz N, da Silva C, Jones CS, Noble LR (2017) World without borders—genetic population structure of a highly migratory marine predator, the blue shark (Prionace glauca). Ecol Evol 7:4768–4781

    Article  Google Scholar 

  94. Walker TI (1998) Can shark resources be harvested sustainably? A question revisited with a review of shark fisheries. Mar Freshw Res 49:553–572

    Article  Google Scholar 

  95. Walter JP, Ebert DA (1991) Preliminary estimates of age of the bronze whaler Carcharhinus brachyurus (Chondrichthyes: Carcharhinidae) from southern Africa, with a review of some life history parameters. S Afr J Mar Sci 10:37–44. https://doi.org/10.2989/02577619109504617

    Article  Google Scholar 

  96. Waples RS, Punt AE, Cope JM (2008) Integrating genetic data into management of marine resources: how can we do it better? Fish Fish 9:423–449. https://doi.org/10.1111/j.1467-2979.2008.00303.x

    Article  Google Scholar 

  97. Warnes G, Leisch F (2006) Genetics: population genetics. R Package, version 1.2.1

  98. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  99. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920. https://doi.org/10.1073/pnas.0401076101

    CAS  Article  PubMed  Google Scholar 

  100. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer Science & Business Media, Berlin

    Google Scholar 

  101. Wright D, Bishop JM, Matthee CA, von der Heyden S (2015) Genetic isolation by distance reveals restricted dispersal across a range of life histories: implications for biodiversity conservation planning across highly variable marine environments. Divers Distrib 21:698–710. https://doi.org/10.1111/ddi.12302

    Article  Google Scholar 

Download references

Acknowledgements

We thank W White, M Scott, S Tindale, J Ovenden, and Auckland museum for providing samples, R Keane for the distance estimations, A Loi for help in the lab, and JCA Pistevos for the shark artwork in Figs. 3 and 4. The project received funding from the Australian Research Council (LP120100652), the Neiser Foundation, and the Nature Foundation of South Australia. BMG and CJAB were supported by ARC Future Fellowships FT100100767 and FT110100306, respectively). Unpublished acoustic tracking data was sourced from the Acoustic Tracking Database (animaltracking.aodn.org.au) of the Integrated Marine Observing System (IMOS; www.imos.org.au)—IMOS is a national collaborative research infrastructure supported by Australian Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Claudia Junge.

Ethics declarations

No sharks were sacrificed for this study. All tissue samples were approximately 2 × 2 cm and were taken from pectoral fins (unless otherwise indicated). All samples were obtained legally (see Electronic Supplementary Material 10).

Conflict of interest

All authors declare that they have no conflict of interest and all applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by P. Hablützel and an undisclosed expert.

Responsible Editor: J. Raeymaekers.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Junge, C., Donnellan, S.C., Huveneers, C. et al. Comparative population genomics confirms little population structure in two commercially targeted carcharhinid sharks. Mar Biol 166, 16 (2019). https://doi.org/10.1007/s00227-018-3454-4

Download citation