Skip to main content

Advertisement

Log in

Living under intertidal mussels: distribution, reproduction, and condition indices in a brooding sea star, Anasterias minuta, in Patagonia, Argentina

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Anasterias minuta is an abundant brooding sea star inhabiting tidepool habitats and mussel beds of Perumytilus purpuratus in Patagonia, Argentina. This study explores the influence of mussel bed complexity and tidal height on the size distribution of A. minuta living under mussel beds, and compares the abundance, reproduction, and condition indices in contrasting intertidal microhabitats (mussel hummocks and tidepools). Distribution patterns in mussel beds were explored at four sites along the coast of Argentina (45.4°S–47.4°S) during the austral spring, 2012/2017. Microhabitat comparisons were done at Caleta Cordova Norte between May 2004 and June 2005. Abundance inside mussel beds was correlated positively with mussel bed thickness and presence of mussel hummocks, and negatively with tidal height. Within mussel beds, early juveniles (recruits) and juveniles (greatest radius R < 15 mm) were generally restricted to low-tidal heights, while adults (R ≥ 15 mm) extended to mid-tidal levels. Sea stars were more abundant and larger in tidepools than under mussel beds. Numbers of recruits and juveniles increased significantly under mussel hummocks during austral spring and summer, coinciding with the release and subsequent growth of early juveniles. Brooding and gonadal cycles were synchronized between the microhabitats; however, the brooding cycle was nearly 2 months shorter under mussel hummocks (April–August) than in tidepools (April–October). The sea stars under mussels were smaller, had a less developed body wall, and greater gonadal production, indicating that more energy was allocated to reproduction compared to sea stars of similar size from tidepools. Further studies are needed to identify the specific environmental conditions that led to the observed adaptations and to understand the underlying physiological mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agresti A (2015) Foundations of linear and generalized linear models. Wiley, New York

    Google Scholar 

  • Alvarado JL, Castilla JC (1996) Tridimensional matrices of mussels Perumytilus purpuratus on intertidal platforms with varying wave forces in central Chile. Mar Ecol Prog Ser 133:135–141. https://doi.org/10.3354/meps133135

    Article  Google Scholar 

  • Baker P, Mann R (1997) The postlarval phase of bivalve mollusks: a review of functional ecology and new records of postlarval drifting of Chesapeake Bay bivalves. Bull Mar Sci 61:409–430

    Google Scholar 

  • Barahona M, Navarrete SA (2010) Movement patterns of the seastar Heliaster helianthus in central Chile: relationship with environmental conditions and prey availability. Mar Biol 157:647–661. https://doi.org/10.1007/s00227-009-1350-7

    Article  Google Scholar 

  • Bernasconi I (1964) Distribución geográfica de los equinoideos y asteroideos de la extremidad austral de Sudamérica. Bol Inst Biol Mar 7:43–50

    Google Scholar 

  • Bertness MD, Gaines SD, Yeh SM (1998) Making mountains out of barnacles: the dynamics of acorn barnacle hummocking. Ecology 79:1382–1394. https://doi.org/10.1890/0012-9658(1998)079%5B1382:MMOOBT%5D2.0.CO;2

    Article  Google Scholar 

  • Bertness MD, Crain CM, Silliman BR, Bazterrica MC, Reyna M, Hildago F, Farina J (2006) The community structure of western Atlantic Patagonian rocky shores. Ecol Monogr 76:439–460. https://doi.org/10.1890/0012-9615(2006)076%5B0439:TCSOWA%5D2.0.CO;2

    Article  Google Scholar 

  • Blankley WO, Grindley JR (1985) The intertidal and shallow subtidal food web at Marion Island. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 630–636

    Chapter  Google Scholar 

  • Briones C, Guiñez R (2005) Asimetría bilateral de la forma de las valvas y posición espacial en matrices del chorito Perumytilus purpuratus (Lamarck, 1819) (Bivalvia: Mytilidae). Rev Chil Hist Nat 78:3–14. https://doi.org/10.4067/S0716-078X2005000100001

    Article  Google Scholar 

  • Brogger MI, Gil DG, Rubilar T, Martinez MI, Díaz de Vivar ME, Escolar M, Epherra L, Pérez AF, Tablado A (2013) Echinoderms from Argentina: Biodiversity, distribution and current state of knowledge. In: Alvarado JJ, Solís-Marín FA (eds) Echinoderm research and diversity in Latin America. Springer, Berlin, pp 359–402

    Chapter  Google Scholar 

  • Burnaford JL (2004) Habitat modification and refuge from sublethal stress drive a marine plant–herbivore association. Ecology 85:2837–2849. https://doi.org/10.1890/03-0113

    Article  Google Scholar 

  • Buschbaum C, Dittmann S, Hong JS, Hwang IS, Strasser M, Thiel M, Valdivia N, Yoon S, Reise K (2009) Mytilid mussels: global habitat engineers in coastal sediments. Helgol Mar Res 63:47–58. https://doi.org/10.1007/s10152-008-0139-2

    Article  Google Scholar 

  • Byrne M (1995) Changes in larval morphology in the evolution of benthic development by Patiriella exigua (Asteroidea: Asterinidae), a comparison with the larvae of Patiriella species with planktonic development. Biol Bull 188:293–305

    Article  CAS  PubMed  Google Scholar 

  • Castilla JC, Luxoro C, Navarrete SA (1989) Galleries of the crabs Acanthocyclus under intertidal mussel beds: their effects on the use of primary substratum. Rev Chil Hist Nat 62:199–204

    Google Scholar 

  • Chen BY, Chen CP (1992) Reproductive cycle, larval development, juvenile growth and population dynamics of Patiriella pseudoexigua (Echinodermata: Asteroidea) in Taiwan. Mar Biol 113:271–280. https://doi.org/10.1007/BF00347281

    Article  Google Scholar 

  • Chia FS, Walker CW (1991) Echinodermata: Asteroidea. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, vol VI. Echinoderms and lophophorates. Boxwood Press, California, pp 301–353

    Google Scholar 

  • Clark AM, Downey ME (1992) Starfishes of the Atlantic. Chapman & Hall, London

    Google Scholar 

  • Cossi PF, Boy CC, Giménez J, Pérez AF (2015) Reproductive biology and energy allocation of the sea star Cosmasterias lurida (Echinodermata: Asteroidea) from the Beagle Channel, Tierra del Fuego, Argentina. Polar Biol 38:1321–1333

    Article  Google Scholar 

  • Dahlhoff EP, Buckley BA, Menge BA (2001) Physiology of the rocky intertidal predator Nucella ostrina along an environmental stress gradient. Ecology 82:2816–2829. https://doi.org/10.1890/0012-9658(2001)082%5B2816:POTRIP%5D2.0.CO;2

    Article  Google Scholar 

  • Davenport J, Moore PG, LeComte E (1996) Observations on defensive interactions between predatory dogwhelks, Nucella lapillus (L.) and mussels, Mytilus edulis L. J Exp Mar Biol Ecol 206:133–147. https://doi.org/10.1016/S0022-0981(96)02628-7

    Article  Google Scholar 

  • Davenport J, Moore PG, Magill SH, Fraser LA (1998) Enhanced condition in dogwhelks, Nucella lapillus (L.) living under mussel hummocks. J Exp Mar Biol Ecol 230:225–234. https://doi.org/10.1016/S0022-0981(98)00082-3

    Article  Google Scholar 

  • Dolmer P (1998) The interactions between bed structure of Mytilus edulis L. and the predator Asterias rubens L. J Exp Mar Biol Ecol 228:137–150. https://doi.org/10.1016/S0022-0981(98)00024-0

    Article  Google Scholar 

  • Duarte C, Jaramillo E, Contreras H, Figueroa L (2006) Community structure of the macroinfauna in the sediments below an intertidal mussel bed (Mytilus chilensis (Hupe)) of southern Chile. Rev Chil Hist Nat 79:353–368

    Article  Google Scholar 

  • Feder HM, Christensen AM (1966) Aspects of asteroid biology. In: Boolootian RA (ed) Physiology of echinodermata. Interscience, New York, pp 87–127

    Google Scholar 

  • Firstater FN, Hidalgo FJ, Lomovasky BJ, Ramos E, Gamero P, Iribarne OO (2011) Habitat structure is more important than nutrient supply in modifying mussel bed assemblage in an upwelling area of the Peruvian coast. Helgol Mar Res 65:187–196. https://doi.org/10.1007/s10152-010-0214-3

    Article  Google Scholar 

  • Fly EK, Monaco CJ, Pincebourde S, Tullis A (2012) The influence of intertidal location and temperature on the metabolic cost of emersion in Pisaster ochraceus. J Exp Mar Biol Ecol 422:20–28. https://doi.org/10.1016/j.jembe.2012.04.007

    Article  Google Scholar 

  • Fréchette M, Butman CA, Geyer WR (1989) The importance of boundary-layer flows in supplying phytoplankton to the benthic suspension feeder, Mytilus edulis L. Limnol Oceanogr 34:19–36. https://doi.org/10.4319/lo.1989.34.1.0019

    Article  Google Scholar 

  • Gaymer CF, Himmelman JH, Johnson LE (2001) Distribution and feeding ecology of the seastars Leptasterias polaris and Asterias vulgaris in the northern Gulf of St. Lawrence, Canada. J Mar Biol Assoc UK 81:827–843. https://doi.org/10.1017/S0025315401004660

    Article  Google Scholar 

  • Gemmill JF (1912) I. The development of the starfish Solaster endeca Forbes. Trans Zool Soc Lond 20:1–71. https://doi.org/10.1111/j.1469-7998.1912.tb07829.x

    Article  Google Scholar 

  • George SB (1994) Population differences in maternal size and offspring quality for Leptasterias epichlora (Brandt) (Echinodermata: Asteroidea). J Exp Mar Biol Ecol 175:121–131. https://doi.org/10.1016/0022-0981(94)90179-1

    Article  Google Scholar 

  • Gil DG, Zaixso HE (2007) The relation between feeding and reproduction in Anasterias minuta (Asteroidea: Forcipulata). Mar Biol Res 3:256–264. https://doi.org/10.1080/17451000701472035

    Article  Google Scholar 

  • Gil DG, Zaixso HE (2008) Feeding ecology of the subantarctic sea star Anasterias minuta within tide pools in Patagonia, Argentina. Rev Biol Trop 56:311–328

    Google Scholar 

  • Gil DG, Escudero G, Zaixso HE (2011) Brooding and development of Anasterias minuta (Asteroidea: Forcipulata) in Patagonia, Argentina. Mar Biol 158:2589–2602. https://doi.org/10.1007/s00227-011-1760-1

    Article  Google Scholar 

  • Guiñez R, Castilla JC (1999) A tridimensional self-thinning model for multilayered intertidal mussels. Am Nat 154:341–357

    PubMed  Google Scholar 

  • Gutiérrez JL, Jones CG, Strayer DL, Iribarne OO (2003) Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101:79–90. https://doi.org/10.1034/j.1600-0706.2003.12322.x

    Article  Google Scholar 

  • Gutiérrez JL, Palomo MG, Bagur M, Arribas LP, Soria SA (2015) Wave action limits crowding in an intertidal mussel. Mar Ecol Prog Ser 518:153–163. https://doi.org/10.3354/meps11086

    Article  Google Scholar 

  • Harger JRE, Landenberger DE (1971) The effect of storms as a density dependent mortality factor on populations of sea mussels. Veliger 14:195–201

    Google Scholar 

  • Harrold C, Pearse JS (1980) Allocation of pyloric caecum reserves in fed and starved sea stars, Pisaster giganteus (Stimpson): somatic maintenance comes before reproduction. J Exp Mar Biol Ecol 48:169–183. https://doi.org/10.1016/0022-0981(80)90015-5

    Article  Google Scholar 

  • Hendler G, Franz DR (1982) The biology of a brooding seastar, Leptasterias tenera, in Block Island Sound. Biol Bull 162:273–289

    Article  Google Scholar 

  • Hernández DA, Tablado A (1985) Asteroidea de Puerto Deseado (Santa Cruz, Argentina). Contribución CENPAT N°104, Argentina

  • Hidalgo FJ, Silliman BR, Bazterrica MC, Bertness MD (2007) Predation on the rocky shores of Patagonia, Argentina. Estuar Coast 30:886–894. https://doi.org/10.1007/BF02841342

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Interpretation of the fitted logistic regression model. In: Hosmer DW, Lemeshow S (eds) Applied logistic regression. Wiley, New York, pp 47–90

    Chapter  Google Scholar 

  • Joly-Turquin G, Dubois P, Leyzour S, Pernet P, De Ridder F, Pintelon R, Guillou M (2013) Contrasting relationships between pyloric caecum and gonad growth in the starfish Asterias rubens: combined field and experimental approaches. J Mar Biol Assoc UK 93:1073–1086

    Article  Google Scholar 

  • Labraga JC (1994) Extreme winds in the Pampa del Castillo Plateau, Patagonia, Argentina, with reference to wind farm settlement. J Appl Meteorol 33:85–95

    Article  Google Scholar 

  • Lane DJW, Beaumont AR, Hunter JR (1985) Byssus drifting and the drifting threads of the young post-larval mussel Mytilus edulis. Mar Biol 84:301–308. https://doi.org/10.1007/BF00392500

    Article  Google Scholar 

  • Lawrence JM, Herrera J (2000) Stress and deviant reproduction in echinoderms. Zool Stud 39:151–171

    Google Scholar 

  • Lawrie SM, McQuaid CD (2001) Scales of mussel bed complexity: structure, associated biota and recruitment. J Exp Mar Biol Ecol 257:135–161. https://doi.org/10.1016/S0022-0981(00)00290-2

    Article  PubMed  Google Scholar 

  • Le Corre N, Martel AL, Guichard F, Johnson LE (2013) Variation in recruitment: differentiating the roles of primary and secondary settlement of blue mussels Mytilus spp. Mar Ecol Prog Ser 481:133–146. https://doi.org/10.3354/meps10216

    Article  Google Scholar 

  • Legendre P, Legendre LF (2012) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Lohrer AM, Fukui Y, Wada K, Whitlatch RB (2000) Structural complexity and vertical zonation of intertidal crabs, with focus on habitat requirements of the invasive Asian shore crab, Hemigrapsus sanguineus (de Haan). J Exp Mar Biol Ecol 244:203–217

    Article  Google Scholar 

  • López DA, López BA, Burgos IC, Arriagada SE, González ML (2007) Consequences of base modification in hummocks of the barnacle Austromegabalanus psittacus. N Z J Mar Freshw Res 41:291–298. https://doi.org/10.1080/00288330709509916

    Article  Google Scholar 

  • Mauzey KP (1966) Feeding behavior and reproductive cycles in Pisaster ochraceus. Biol Bul 131:127–144

    Article  Google Scholar 

  • McArdle BH, Anderson MJ (2004) Variance heterogeneity, transformations, and models of species abundance: a cautionary tale. Can J Fish Aquat Sci 61:1294–1302. https://doi.org/10.1139/f04-051

    Article  Google Scholar 

  • Menge BA (1970) The population ecology and community role of the predaceous asteroid, Leptasterias hexactis (Stimpson). Ph.D. dissertation, University of Washington

  • Menge BA (1972) Foraging strategy of a starfish in relation to actual prey availability and environmental predictability. Ecol Monogr 42:25–50

    Article  Google Scholar 

  • Menge BA, Olson AM, Dahlhoff EP (2002) Environmental stress, bottom-up effects, and community dynamics: integrating molecular-physiological and ecological approaches. Integr Comp Biol 42:892–908. https://doi.org/10.1093/icb/42.4.892

    Article  PubMed  Google Scholar 

  • Nakamura Y (2015) Mucous-cord secretion for drifting by the clam Meretrix lusoria (Veneridae) under varying light/dark and submergence/exposure conditions. Plankton Benthos Res 10:18–25. https://doi.org/10.3800/pbr.10.18

    Article  Google Scholar 

  • Navarrete SA, Castilla JC (1990) Resource partitioning between intertidal predatory crabs: interference and refuge utilization. J Exp Mar Biol Ecol 143:101–129. https://doi.org/10.1016/0022-0981(90)90114-R

    Article  Google Scholar 

  • Nicastro KR, Zardi GI, McQuaid CD (2007) Behavioural response of invasive (Mytilus galloprovincialis) and indigenous (Perna perna) mussels exposed to risk of predation. Mar Ecol Prog Ser 336:69–175

    Article  Google Scholar 

  • Nicastro KR, Zardi GI, McQuaid CD, Pearson GA, Serrão EA (2012) Love thy neighbour: group properties of gaping behaviour in mussel aggregations. PLoS ONE 7(10):e47382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen TM (1973) Population and reproductive biology of the six-rayed sea star Leptasterias hexactis on the protected outer coast. Ph.D. dissertation, University of Oregon

  • O’Donnell MF (2008) Reduction of wave forces within bare patches in mussel beds. Mar Ecol Prog Ser 362:157–167. https://doi.org/10.3354/meps07435

    Article  Google Scholar 

  • Olsson AA (1961) Mollusks of the tropical eastern Pacific, Panamic Pacific Pelecypoda. Paleontological Research Institute, Ithaca

    Google Scholar 

  • Paine RT (1976) Size-limited predation: an observational and experimental approach with the MytilusPisaster interaction. Ecology 57:858–873

    Article  Google Scholar 

  • Paine RT, Levin SA (1981) Intertidal landscapes: disturbance and the dynamics of pattern. Ecol Monogr 51:145–178. https://doi.org/10.2307/2937261

    Article  Google Scholar 

  • Perales SG, Boraso AL (2006) Relación de Blidingia minima (Ulvales, Chlorophyta) con factores ambientales en Punta Maqueda (golfo San Jorge, Argentina). Rev Biol Mar Oceanogr 41:21–33

    Article  Google Scholar 

  • Pérez AF, Boy CC, Calcagno J, Malanga G (2015) Reproduction and oxidative metabolism in the brooding sea star Anasterias antarctica (Lütken, 1957). J Exp Mar Biol Ecol 463:150–157

    Article  CAS  Google Scholar 

  • Petes LE, Menge BA, Murphy GD (2007) Environmental stress decreases survival, growth, and reproduction in New Zealand mussels. J Exp Mar Biol Ecol 351:83–91. https://doi.org/10.1016/j.jembe.2007.06.025

    Article  Google Scholar 

  • Petes LE, Mouchka ME, Milston-Clements RH, Momoda TS, Menge BA (2008) Effects of environmental stress on intertidal mussels and their sea star predators. Oecologia 156:671–680. https://doi.org/10.1007/s00442-008-1018-x

    Article  PubMed  Google Scholar 

  • Pincebourde S, Sanford E, Helmuth B (2008) Body temperature during low tide alters the feeding performance of a top intertidal predator. Limnol Oceanogr 53:1562–1573. https://doi.org/10.4319/lo.2008.53.4.1562

    Article  Google Scholar 

  • Porri F, Zardi GI, McQuaid CD, Radloff S (2007) Tidal height, rather than habitat selection for conspecifics, controls settlement in mussels. Mar Biol 152:631–637. https://doi.org/10.1007/s00227-007-0716-y

    Article  Google Scholar 

  • Prado L, Castilla JC (2006) The bioengineer Perumytilus purpuratus (Mollusca: Bivalvia) in central Chile: biodiversity, habitat structural complexity and environmental heterogeneity. J Mar Biol Assoc UK 86:417–421. https://doi.org/10.1017/S0025315406013282

    Article  Google Scholar 

  • Raymond JF, Himmelman JH, Guderley HE (2004) Sex differences in biochemical composition, energy content and allocation to reproductive effort in the brooding sea star Leptasterias polaris. Mar Ecol Prog Ser 283:179–190. https://doi.org/10.3354/meps283179

    Article  CAS  Google Scholar 

  • Roediger LM, Bolton TF (2008) Abundance and distribution of South Australia’s endemic sea star, Parvulastra parvivipara (Asteroidea: Asterinidae). Mar Freshw Res 59:205–213. https://doi.org/10.1071/MF07084

    Article  Google Scholar 

  • Saier B (2001) Direct and indirect effects of seastars Asterias rubens on mussel beds (Mytilus edulis) in the Wadden Sea. J Sea Res 46:29–42. https://doi.org/10.1016/S1385-1101(01)00067-3

    Article  Google Scholar 

  • Salvat MB (1985) Biología de la reproducción de Anasterias minuta Perrier (Echinodermata, Asteroidea), especie incubadora de las costas patagónicas. Ph.D. dissertation, Universidad de Buenos Aires

  • Seed R (1996) Patterns of biodiversity in the macro-invertebrate fauna associated with mussel patches on rocky shores. J Mar Biol Assoc UK 76:203–210. https://doi.org/10.1017/S0025315400029131

    Article  Google Scholar 

  • Silliman BR, Bertness MD, Altieri AH, Griffin JN, Bazterrica MC, Hidalgo FJ, Crain CM, Reyna MV (2011) Whole-community facilitation regulates biodiversity on Patagonian rocky shores. PLoS ONE 6:e24502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloan NA (1980) Aspects of the feeding biology of asteroids. Oceanogr Mar Biol Annu Rev 18:57–124

    Google Scholar 

  • Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press, London

    Book  Google Scholar 

  • Smith JR, Fong P, Ambrose RF (2006) Dramatic declines in mussel bed community diversity: response to climate change? Ecology 87:1153–1161. https://doi.org/10.1890/0012-9658(2006)87[1153:DDIMBC]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. WH Freeman and Co, New York

    Google Scholar 

  • Soliman ES, Nojima S (1984) Some observations on dispersal behavior of the early juvenile of the sea-star, Asterina minor. Publ Amakusa Mar Biol Lab 7:81–93

    Google Scholar 

  • Stephens EG, Bertness MD (1991) Mussel facilitation of barnacle survival in a sheltered bay habitat. J Exp Mar Biol Ecol 145:33–48. https://doi.org/10.1016/0022-0981(91)90004-G

    Article  Google Scholar 

  • Suchanek TH (1985) Mussels and their role in structuring rocky shore communities. In: Moore PG, Seed R (eds) The ecology of rocky coasts. Hodder and Stoughton, London, pp 70–96

    Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 45). Microcomputer Power, New York

    Google Scholar 

  • Thiel M, Ullrich N (2002) Hard rock versus soft bottom: the fauna associated with intertidal mussel beds on hard bottoms along the coast of Chile, and considerations on the functional role of mussel beds. Helgol Mar Res 56:21–30. https://doi.org/10.1007/s10152-001-0098-3

    Article  Google Scholar 

  • Tokeshi M (1995) Polychaete abundance and dispersion patterns in mussel beds: a non-trivial infaunal assemblage on a Pacific South American rocky shore. Mar Ecol Prog Ser 125:137–147. https://doi.org/10.3354/meps125137

    Article  Google Scholar 

  • Tokeshi M, Romero L (1995) Quantitative analysis of foraging behaviour in a field population of the South American sun-star Heliaster helianthus. Mar Biol 122:297–303. https://doi.org/10.1007/BF00348943

    Article  Google Scholar 

  • Tomanek L, Somero GN (1999) Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: implications for limits of thermotolerance and biogeography. J Exp Biol 202:2925–2936

    CAS  PubMed  Google Scholar 

  • Town JC (1980) Diet and food preference of intertidal Astrostole scabra (Asteroidea: Forcipulata). N Zl J Mar Fresh 14:427–435. https://doi.org/10.1080/00288330.1980.9515887

    Article  Google Scholar 

  • Tsuchiya M, Nishihira M (1985) Islands of Mytilus as a habitat for small intertidal animals: effect of island size on community structure. Mar Ecol Prog Ser 25:71–81. https://doi.org/10.3354/meps025071

    Article  Google Scholar 

  • White GC, Bennetts RE (1996) Analysis of frequency count data using the negative binomial distribution. Ecology 77:2549–2557. https://doi.org/10.2307/2265753

    Article  Google Scholar 

  • Wieters EA, Salles E, Januario SM, Navarrete SA (2009) Refuge utilization and preferences between competing intertidal crab species. J Exp Mar Biol Ecol 374:37–44. https://doi.org/10.1016/j.jembe.2009.04.006

    Article  Google Scholar 

  • Zaixso HE, Boraso de Zaixso AL, López Gappa JJ (1978) Observaciones sobre el mesolitoral rocoso de la zona de Ushuaia (Tierra del Fuego, Argentina). Ecosur 5:119–130

    Google Scholar 

  • Zaixso HE, Stoyanoff P, Gil DG (2009) Detrimental effects of the isopod, Edotia doellojuradoi, on gill morphology and host condition of the mussel, Mytilus edulis platensis. Mar Biol 156:2369–2378. https://doi.org/10.1007/s00227-009-1265-3

    Article  Google Scholar 

  • Zaixso HE, Boraso de Zaixso AL, Pastor de Ward CT, Lizarralde ZI, Dadón J, Galvan D (2015) El bentos costero patagónico. La zona costera patagónica Argentina. EDUPA, Comodoro Rivadavia

    Google Scholar 

  • Zardi GI, Nicastro K, McQuaid CD, Rius M, Porri F (2006) Hydrodynamic stress and habitat partitioning between indigenous (Perna perna) and invasive (Mytilus galloprovincialis) mussels: constraints of an evolutionary strategy. Mar Biol 150:79–88. https://doi.org/10.1007/s00227-006-0328-y

    Article  Google Scholar 

Download references

Acknowledgements

We thank Alicia Boraso, Martin Varisco, Val Gerard, and two anonymous reviewers for insightful comments.

Funding

This study was partially supported by Universidad Nacional de la Patagonia San Juan Bosco. Project UNPSJB 955 (RN°127/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damián G. Gil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: J. Grassle.

Reviewed by undisclosed experts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil, D.G., Reartes, M.B., Mutti, C. et al. Living under intertidal mussels: distribution, reproduction, and condition indices in a brooding sea star, Anasterias minuta, in Patagonia, Argentina. Mar Biol 165, 140 (2018). https://doi.org/10.1007/s00227-018-3397-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-018-3397-9

Navigation