Skip to main content
Log in

Microherbivores are significant grazers on Palau’s forereefs

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Herbivory plays an important role in controlling benthic dynamics on coral reefs. The previous studies have highlighted the importance of grazing herbivorous fishes in removing algal turf biomass, but fewer studies have investigated the impact of invertebrate microherbivore grazing. This study examined the impact of microherbivore grazing in areas of high- and low-wave exposure on the forereefs of Palau, Micronesia, in June 2015. Experimental tiles were placed on open benthos, and in benthic and suspended herbivore exclusion cages at exposed and sheltered sites to partition the grazing impacts of microherbivores from fish grazers while examining the effect of exposure on algal turf productivity. Microherbivore grazing significantly impacted algal turf biomass, and this impact was greater in exposed sites than sheltered sites. Exposure did not significantly affect algal turf biomass on experimental tiles in the suspended exclusion cages. Surveys of microherbivore density revealed only Paguroidea (hermit crabs, especially of family Diogenidae) were more abundant at exposed sites than sheltered sites. Furthermore, tank trials of grazing rates showed diogenid hermit crabs removed over four times as much algal turf biomass as Columbellidae (marine gastropods), the second most abundant microherbivores. These results show that microherbivores are significant grazers on Palau’s forereefs, and may play an important role in maintaining reef resilience as reef health continues to decline worldwide. The significant role of invertebrate microherbivores in removing algal turf biomass should be investigated when considering the ecological role of herbivory on coral reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adey WH, Goertemiller T (1987) Coral reef algal turfs: master producers in nutrient poor seas. Phycologia 26:374–386

    Article  Google Scholar 

  • Adey WH, Steneck RS (1985) Highly productive eastern Caribbean reefs: synergistic effects of biological, chemical, physical and geological factors. Ecol Coral Reefs 3:163–187

    Google Scholar 

  • Arnold SN, Steneck RS, Mumby PJ (2010) Running the gauntlet: inhibitory effects of algal turfs on the processes of coral recruitment. Mar Ecol Prog Ser 414:91–105

    Article  Google Scholar 

  • Aronson RB, Precht WF (2000) Herbivory and algal dynamics on the coral reef at Discovery Bay, Jamaica. Limnol Oceanogr 45:251–255

    Article  Google Scholar 

  • Aronson RB, Precht WF, Toscano MA, Koltes KH (2002) The 1988 bleaching event and its aftermath on a coral reef in Belize. Mar Biol 141:435–447

    Article  Google Scholar 

  • Aronson RB, Macintyre IG, Wapnick CM, O’Neill MW (2004) Phase shifts, alternative states, and the unprecedented convergence of two reef systems. Ecology 85:1876–1891

    Article  Google Scholar 

  • Australian Bureau of Meteorology and CSIRO (2014) Palau. In: Climate variability, extremes and change in the western tropical Pacific: new science and updated country reports. Pacific-Australia climate change science and adaptation planning program technical report. Australian Bureau of Meteorology and Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia, pp 201–218

  • Bejarano S, Jouffray JB, Chollet I, Allen R, Roff G, Marshell A, Steneck R, Ferse SCA, Mumby PJ (2017) The shape of success in a turbulent world: wave exposure filtering on coral reef herbivory. Funct Ecol 31:1312–1324. https://doi.org/10.1111/1365-2435.12828

    Article  Google Scholar 

  • Bellwood DR, Fulton CJ (2008) Sediment-mediated suppression of herbivory on coral reefs: decreasing resilience to rising sea-levels and climate change? Limnol Oceanogr 53:2695–2701

    Article  Google Scholar 

  • Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol Lett 6:281–285

    Article  Google Scholar 

  • Birrell CL, McCook LJ, Willis BL (2005) Effects of algal turfs and sediment on coral settlement. Mar Pollut Bull 51:408–414

    Article  CAS  PubMed  Google Scholar 

  • Bonaldo RM, Bellwood DR (2008) Size-dependent variation in the functional role of the parrotfish Scarus rivulatus on the Great Barrier Reef, Australia. Mar Ecol Prog Ser 360:237–244

    Article  Google Scholar 

  • Box SJ, Mumby PJ (2007) Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar Ecol Prog Ser 342:139–149

    Article  Google Scholar 

  • Brawley SH, Adey WH (1977) Territorial behavior of three spot damselfish (Eupomecentrus planifrons) increases reef algal biomass and productivity. Environ Biol Fishes 2:45–51

    Article  Google Scholar 

  • Brawley SH, Adey WH (1981) The effect of micrograzers on algal community structure in a coral reef microcosm. Mar Biol 61:167–177

    Article  Google Scholar 

  • Bronstein O, Loya Y (2014) Echinoid community structure and rates of herbivory and bioerosion on exposed and sheltered reefs. J Exp Mar Biol Ecol 456:8–17

    Article  Google Scholar 

  • Bruggemann JH, van Kessle AM, van Rooji JM, Breeman AM (1996) Bioerosion and sediment ingestion by the Caribbean parrotfish Scarus vetula and Sparisoma viride: implications of fish size, feeding mode and habitat use. Mar Ecol Prog Ser 134:59–71

    Article  Google Scholar 

  • Burkepile DE, Hay ME (2008) Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc Natl Acad Sci USA 105:16201–16206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkepile DE, Hay ME (2010) Impact of herbivore identity on algal succession and coral growth on a Caribbean reef. PLoS ONE 5:e8963

    Article  PubMed  PubMed Central  Google Scholar 

  • Carpenter RC (1986) Partitioning herbivory and its effects on coral reef algal communities. Ecol Monogr 56:345

    Article  Google Scholar 

  • Carpenter RC (1988) Mass mortality of a Caribbean sea urchin: immediate effects on community metabolism and other herbivores. Proc Natl Acad Sci USA 85:511–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter RC, Williams SL (1993) Effects of algal turf canopy height and microscale substratum topography on profiles of flow speed in a coral forereef environment. Limnol Oceanogr 38:687–694

    Article  Google Scholar 

  • Carpenter RC, Hackney JM, Adey WH (1991) Measurement of primary productivity and nitrogenase activity of coral reef algae in a chamber incorporating oscillatory flow. Limnol Oceanogr 36:40–49

    Article  CAS  Google Scholar 

  • Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortes J, Delbeek JC, Devantier L, Edgar GJ, Edwards AJ, Fenner D, Guzman HM, Hoeksema BW, Hodgson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro BA, Precht WF, Quibilan MC, Reboton C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith J, Stuart S, Turak E, Veron JEN, Wallace C, Weil E, Wood E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563

    Article  CAS  PubMed  Google Scholar 

  • Carreiro-Silva M, McClanahan TR (2001) Echinoid bioerosion and herbivory on Kenyan coral reefs: the role of protection from fishing. J Exp Mar Biol Ecol 262:133–153

    Article  CAS  PubMed  Google Scholar 

  • Cernerhorsky NH, McClanahan TR, Babu I, Horsak M (2015) Small herbivores suppress algal accumulation on Agatti atoll, Indian Ocean. Coral Reefs 34:1023–1035

    Article  Google Scholar 

  • Choat JH (1991) The biology of herbivorous fishes on coral reefs. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press Inc, San Diego, pp 120–155

  • Clarke KR (1993) Non parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMERv6: user manual/tutorial. Primer-E, Plymouth Marine Laboratory, Plymouth

    Google Scholar 

  • Coen LD (1988a) Herbivory by Caribbean majid crabs: feeding ecology and plant susceptibility. J Exp Mar Biol Ecol 122:257–276

    Article  Google Scholar 

  • Coen LD (1988b) Herbivory by crabs and the control of algal epibionts on Caribbean host corals. Oecologia 75:198–203

    Article  CAS  PubMed  Google Scholar 

  • Coen LD, Tanner CE (1989) Morphological variation and differential susceptibility to herbivory in the tropical brown alga Lobophora variegata. Mar Ecol Prog Ser 54:287–298

    Article  Google Scholar 

  • Cronin G, Paul VJ, Hay ME, Renical W (1997) Are tropical herbivores more resistant than temperate herbivores to seaweed chemical defences? Diterpenoid metabolites from Dictyota acutiloba as feeding deterrents for tropical versus temperate fishes and urchins. J Chem Ecol 23:289–302

    Article  CAS  Google Scholar 

  • Doropoulos C, Ward S, Marshell A, Diaz-Pulido G, Mumby PJ (2012) Interactions among chronic and acute impacts on coral recruits: the importance of size-escape thresholds. Ecology 93:2131–2138

    Article  PubMed  Google Scholar 

  • Doropoulos C, Roff G, Zupan M, Nestor V, Isechal AL, Mumby PJ (2014) Reef-scale failure of coral settlement following typhoon disturbance and macroalgal bloom in Palau, Western Pacific. Coral Reefs 33:613–623

    Article  Google Scholar 

  • Doropoulos C, Roff G, Bozec Y, Zupan M, Werminghausen J, Mumby PJ (2016) Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol Monogr 86:20–44

    Google Scholar 

  • Duffy JE, Hay ME (1990) Seaweed adaptations to herbivory. Bioscience 40:368–375

    Article  Google Scholar 

  • Dumas P, Kulbicki M, Chifflet S, Fichez R, Ferraris J (2007) Environmental factors influencing urchin spatial distributions on disturbed coral reefs (New Caledonia, South Pacific). J Exp Mar Biol Ecol 344:88–100

    Article  Google Scholar 

  • Dunn RP, Altieri AH, Miller K, Yeager M, Hovel KA (2017) Coral identity and structural complexity drive habitat associations and demographic processes for an increasingly important Caribbean herbivore. Mar Ecol Prog Ser 577:34–47

    Article  Google Scholar 

  • Fang JKH, Schönberg CHL, Kline DI, Hoegh-Guldberg O, Dove S (2012) Methods to quantify components of the excavating sponge Cliona orientalis Thiele, 1900. Mar Ecol 34:193–206

    Article  Google Scholar 

  • Foster NL, Box SJ, Mumby PJ (2008) Competitive effects of macroalgae on the fecundity of the reef-building coral Montastraea annularis. Mar Ecol Prog Ser 367:143–152

    Article  Google Scholar 

  • Fox RJ, Bellwood DR (2008) Direct versus indirect methods of quantifying herbivore grazing impact on a coral reef. Mar Biol 154:325–334

    Article  Google Scholar 

  • Froese R, Pauly D (2016) Fishbase. http://www.fishbase.org/. Accessed 27 July 2015

  • Fulton CJ, Bellwood DR (2005) Wave-induced water motion and the functional implications for coral reef fish assemblages. Limnol Oceanogr 50:255–264

    Article  Google Scholar 

  • Goatley CHR, Bellwood DR (2012) Sediment suppresses herbivory across a coral reef depth gradient. Biol Lett 8:1016–1018

    Article  PubMed  PubMed Central  Google Scholar 

  • Goatley CHR, Bonaldo RM, Fox RJ, Bellwood DR (2016) Sediments and herbivory as sensitive indicators of coral reef degradation. Ecol Soc 21:29

    Article  Google Scholar 

  • Harris JL, Lewis LS, Smith JE (2015) Quantifying scales of spatial variability in algal turf assemblages on coral reefs. Mar Ecol Prog Ser 532:41–57

    Article  Google Scholar 

  • Hatcher BG, Larkum AWD (1983) An experimental analysis of factors controlling the standing crop of the epilithic algal community on a coral reef. J Exp Mar Biol Ecol 69:61–84

    Article  Google Scholar 

  • Hay ME (1997) The ecology and evolution of seaweed-herbivore interactions on coral reefs. Coral Reefs 16:S67–S76

    Article  Google Scholar 

  • Hixon MA, Brostoff WN (1996) Succession and herbivory: effects of differential fish grazing on Hawaiian coral reef algae. Eol Monogr 66:67–90

    Article  Google Scholar 

  • Hoey AS, Bellwood DR (2009) Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems 12:1316–1328

    Article  Google Scholar 

  • Hughes TP, Reed DC, Boyle M (1987) Herbivory on coral reefs: community structure following mass mortalities of sea urchins. J Exp Mar Biol Ecol 113:39–59

    Article  Google Scholar 

  • Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365

    Article  CAS  PubMed  Google Scholar 

  • Idjadi JA, Edmunds PJ (2006) Scleractinian corals as facilitators for other invertebrates on a Caribbean reef. Mar Ecol Prog Ser 319:117–127

    Article  Google Scholar 

  • Johansson CL, van de Leemput IA, Depczynski M, Hoey AS, Bellwood DR (2013) Key herbivores reveal limited functional redundancy on inshore coral reefs. Coral Reefs 32:963–972

    Article  Google Scholar 

  • Jyoti J, Awatshi M (2013) Factors affecting algal growth. In: Kumar S, Tyagi SK (eds) Recent advances in bioenergy research, vol 2. Sardar Swaran Singh National Institute of Renewable Energy, Kapurthala, pp 315–324

    Google Scholar 

  • Klumpp DW, McKinnon AD (1989) Temporal and spatial patterns in primary production of a coral-reef epilithic algal community. J Exp Mar Biol Ecol 131:1–22

    Article  Google Scholar 

  • Klumpp DW, Polunin NVC (1989) Partitioning among grazers of food resources within damselfish territories on a coral reef. J Exp Mar Biol Ecol 125:145–169

    Article  Google Scholar 

  • Klumpp DW, Pulfrich A (1989) Trophic significance of herbivorous macroinvertebrates on the central Great Barrier Reef. Coral Reefs 8:135–144

    Article  Google Scholar 

  • Kohler KE, Gill SM (2006) Coral Point Count with Excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32:1259–1269

    Article  Google Scholar 

  • Kuempel CD, Altieri AH (2017) The emergent role of small-bodied herbivores in pre-empting phase shifts on degraded coral reefs. Sci Rep 7:39670. https://doi.org/10.1038/srep39670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulbicki M, Guillemot N, Amand M (2005) A general approach to length-weight relationships for New Caledonian lagoon fishes. Cybium 29:235–252

    Google Scholar 

  • Larned ST, Atkinson MJ (1997) Effects of water velocity on NH4 and PO4 uptake and nutrient-limited growth in the macroalga Dictyosphaeria cavernosa. Mar Ecol Prog Ser 157:295–302

    Article  CAS  Google Scholar 

  • Ledlie MH, Graham NAJ, Bythell JC, Wilson SK, Jennings S, Polunin SVC, Hardcastle J (2007) Phase shifts and the role of herbivory in the resilience of coral reefs. Coral Reefs 26:641–653

    Article  Google Scholar 

  • Marshell A, Mumby P (2015) The role of surgeonfish (Acanthuridae) in maintaining algal turf biomass on coral reefs. J Exp Mar Biol Ecol 473:152–160

    Article  Google Scholar 

  • Mathieson AC, Fralick RA, Burns R, Flahive W (1971) Comparative studies of subtidal vegetation in the Virgin Islands and New England coastlines. In: Miller JW, VanDerwalker JG, Waller RA (eds) Scientists in the sea. Department of the Interior, Washington, DC, pp 106–129

    Google Scholar 

  • McClanahan TR (1999) Predation and the control of the sea urchin Echinometra viridis and fleshy algae in the patch reefs of Glovers Reef, Belize. Ecosystems 2:511–523

    Article  Google Scholar 

  • Mumby PJ, Hedley JD, Zychaluk K, Harborne AR, Blackwell PG (2006a) Revisiting the catastrophic die-off of the urchin Diadema antillarum on Caribbean coral reefs: fresh insights on resilience from a simulation model. Ecol Model 196:131–148

    Article  Google Scholar 

  • Mumby PJ, Dahlgren CP, Harborne AR, Kappel CV, Micheli F, Brumbaugh DR, Holmes KE, Mendes JM, Broad K, Sanchirico JN, Buch K, Box S, Stoffle RW, Gill AB (2006b) Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311:98–101. https://doi.org/10.1126/science.1121129

    Article  CAS  PubMed  Google Scholar 

  • Mumby PJ, Steneck RS, Adjeroud M, Arnold SN (2015) High resilience masks underlying sensitivity to algal phase shifts of Pacific coral reefs. Oikos 125:644–655

    Article  Google Scholar 

  • Muthiga N, McClanahan TR (1987) Population changes of sea urchin (Echinometra mathaei) on an exploited fringing reef. Afr J Ecol 25:1–8

  • Nelson HR, Kuempel CD, Altieri AH (2016) The resilience of reef invertebrate biodiversity to coral mortality. Ecosphere 7:e01399. https://doi.org/10.1002/ecs2.1399

    Article  Google Scholar 

  • Netchy K, Hallock P, Lunz KS, Daly KL (2015) Epibenthic mobile invertebrate diversity organized by coral habitat in Florida. Mar Biodivers 46:1–13

    Google Scholar 

  • Nystrom M, Folke C (2001) Spatial resilience on coral reefs. Ecosystems 4:406–417

    Article  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJ, Paredes G (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  CAS  PubMed  Google Scholar 

  • Quan-Young LI, Espinoza-Avalos J (2006) Reduction of zooxanthellae density, chlorophyll a concentration, and tissue thickness of the coral Montastraea faveolata (Scelractinia) when competing with mixed turf algae. Limnol Oceanogr 51:1159–1166

    Article  Google Scholar 

  • Rasher DB, Hay ME (2010) Chemically rich seaweeds poison corals when not controlled by herbivores. Proc Natl Acad Sci USA 107:9683–9688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritson-Williams R, Arnold SN, Paul VJ, Steneck RS (2014) Larval settlement preferences of Acropora palmata and Montastraea faveolata in response to diverse red algae. Coral Reefs 33:59–66

    Article  Google Scholar 

  • Russ G (1984) Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. I. Levels of variability across the entire continental shelf. Mar Ecol Prog Ser 20:23–34

    Article  Google Scholar 

  • Russ GR (2003) Grazer biomass correlates more strongly with production than with biomass of algal turfs on a coral reef. Coral Reefs 22:63–67

    Google Scholar 

  • Sammarco PW (1982) Effects of grazing by Diadema antillarum Philippi (Echinodermata: Echinoidea) on algal diversity and community structure. J Exp Mar Biol Ecol 65:83–105

    Article  Google Scholar 

  • Sangil C, Guzman HM (2016) Assessing the herbivore role of the sea-urchin Echinometra viridis: keys to determine the structure of communities in disturbed coral reefs. Mar Environ Res 120:202–213

    Article  CAS  PubMed  Google Scholar 

  • Schlichting H (1979) Boundary-layer theory. McGraw-Hill, New York

    Google Scholar 

  • Schupp PJ, Paul VJ (1994) Calcium carbonate and secondary metabolites in tropical seaweeds: variable effects on herbivorous fishes. Ecology 75:1172–1185

    Article  Google Scholar 

  • Steneck RS (1983) Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 9:44–61

    Article  Google Scholar 

  • Steneck RS (1988) Herbivory on coral reefs: a synthesis. In: Proceedings of the 6th international coral reef symposium, vol 1, pp 37–49

  • Steneck RS, Dethier MN (1994) A functional group approach to the structure of algal-dominated communities. Oikos 69:476–498

    Article  Google Scholar 

  • Steneck RS, Arnold SN, Mumby PJ (2014) Experiment mimics fishing on parrotfish: insights on coral reef recovery and alternative attractors. Mar Ecol Prog Ser 506:115–127

    Article  Google Scholar 

  • Tanner JE (1995) Competition between scleractinian corals and macroalgae: an experimental investigation of coral growth, survival and reproduction. J Exp Mar Biol Ecol 190:151–168

    Article  Google Scholar 

  • Thomas FIM, Atkinson MJ (1997) Ammonium uptake by coral reefs: effects of water velocity and surface roughness on mass transfer. Limnol Oceanogr 42:81–88

    Article  CAS  Google Scholar 

  • Vermeij MJA, Moorselaar IV, Engelhard S, Hornlein C, Vonk SM, Visser PM (2010) The effects of nutrient enrichment and herbivore abundance on the ability of turf algae to overgrow coral in the Caribbean. PLoS ONE 5(12):e14312. https://doi.org/10.1371/journal.pone.0014312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel S (1984) Drag and flexibility in sessile organisms. Integr Comp Biol 24:37–44

    Google Scholar 

  • Wilson SK, Bellwood DR, Choat JH, Furnas MJ (2003) Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanogr Mar Biol 41:279–309

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Princeton Environmental Institute’s Undergraduate Research fund for senior thesis research at Princeton University, the Mountlake Field Research Fund, and the Council on Science and Technology for financial support (grants to NAK). Additional funding was provided by the Australian Research Council’s Centre of Excellence for Coral Reef Studies (grant to PJM), the Australian Endeavour Award Postdoctoral Fellowship, and PADI Foundation Award (grants to AM) We also thank the Palau International Coral Reef Center for graciously hosting this study, Steve Lindfield for field assistance, Jessica Stella for help with invertebrate identification, and Stephen Pacala for additional guidance. We thank the reviewers for their comments, which improved our final manuscript.

Funding

Funding was provided by the Princeton Environmental Institute’s Undergraduate Research fund for senior thesis research at Princeton University, the Mountlake Field Research Fund, and the Council on Science and Technology (grants to NAK), as well as the Australian Research Council’s Centre of Excellence for Coral Reef Studies (grant to PJM), the Australian Endeavour Award Postdoctoral Fellowship, and PADI Foundation Award (grants to AM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alyssa Marshell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: J. Grassle.

Reviewed by Undisclosed experts.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altman-Kurosaki, N.T., Priest, M.A., Golbuu, Y. et al. Microherbivores are significant grazers on Palau’s forereefs. Mar Biol 165, 74 (2018). https://doi.org/10.1007/s00227-018-3327-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-018-3327-x

Navigation